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Abstract 

 

 

This work considers an Elliptic Partial Differential Equation (PDE) with 

Dirichlet boundary condition, with the aim of establishing a sufficient condition 

for the existence of weak and classical solution. Applying the Lax-Milgram 

theorem on linear elliptic PDE with Dirichlet Boundary Conditions, the results 

obtained indicate that the equation is continuous and coercive. This establishes 

the existence of a unique weak solution for the Dirichlet boundary conditions 

of the equation. The establishment of existence of classical solution shows that 

there exist a 𝑪𝟐 function 𝒖 on Ω which satisfy the linear elliptic PDE.  
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1.0     Introduction 
Non linear elliptic system on a bounded and unbounded domains of 𝑅𝑁 was investigated [1] and they were able to ascertain 

that the generalized formation of many stationary boundary value problem for partial differential equations lead to operator 

equation on a Banach space. The weak formulation consists in looking for an unknown function 𝑢 from a Banach space 𝑉 such 

that an integral identity containing 𝑢 holds for each test function 𝑣 from the space 𝑉. Denoting the terms containing the 

unknown 𝑢 as the value of an operator 𝐴, they obtain an equation which is equivalent to a functional on 𝑉. Using the theory of 

monotone operator the existence of weak solution for these systems was established. The existence of weak solution of the non 

linear elliptic system by using the method of sub and super solutions was also established [2,3]. The variational method in a 

weighted Sobolev space was used to prove the existence of solution for certain class of singular nonlinear ordinary differential 

equations [4]. This type of equation arises in the context of standing wave solutions of nonlinear Klein-Gordon and Schrodinger 

equations as well as in self-focusing problem for intense optical beams. Solution was sought for singular nonlinear boundary 

value problem in a weighted Sobolev space designed to include the boundary condition at infinity as well as handle the 

singularity at 𝑡 = 0. Some of the results was extended by allowing a more general weight function 𝑝(𝑡). The existence of the 

solution of the second-order impulsive differential equations with non constant coefficients was considered and the second-

order impulsive partial differential equation was changed into the equivalent equation by transformation. Using the critical 

point theory of variational method and Lax-Milgram theorem, new results for the existence of the solution for the impulsive 

partial differential equations was obtained. Existence of global solutions for a class of second order impulsive abstract 

functional differential equations was also studied and result obtained using Leray-Schauder's Alternative fixed point theorem 

[5].   

Some over determined elliptic system in a domain of 𝑅3 which contains an axis were examined, assuming that the functions 

belonged to Sobolev spaces with weights proportional to a power of the distance from the axis, existence of solutions in the 

corresponding weighted Sobolev spaces was established [6]. The resolution of some elliptical problems in the half-space 𝑅+
𝑁, 

with 𝑁 ≥ 2 was investigated using the Dirichlet and Neumann conditions for the Laplace operator and existence and uniqueness 

of  solution was established in 𝐿𝑃 Spaces[7]. Existence of weak solutions in the weighted Sobolev spaces 𝑊0
1,𝑝

 (Ω,ѡ) for the 

Dirichlet problem to some degenerate qausilinear  elliptic equations in a bounded open set Ω ⊂ 𝑅𝑛 and 𝜕Ω is the boundary of  

Ω in 𝑅𝑛 was established [8]. 
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Weight here means a locally integral function w on 𝑅𝑛 such that 0 < 𝑤(𝑥) < ∞ for 𝑥 ∈ 𝑅𝑛 . They made use of two 

major theorems, the weighed Sobolev inequality and the Lax-Milgram theorem from [9] to establish the existence of weak 

solution in the weighted Sobolev spaces 𝑊0
1,𝑝

 (Ω,ѡ) for the Dirichlet problem above. Two elliptic partial differential equations: 

the homogeneous Dirichlet problem and the homogeneous Neumann problem using the Lax-Milgram representation theorem 

and some of properties of Sobolev spaces was investigated and it was established that there exist a weak solution for both 

problems [10]. The approach used consisted of weak formulation, existence and of weak solution and recovery of classical 

solution. 

 Most of the work reviewed concentrated on existence of weak solution in one form or the other but failed to talk about 

the necessary condition that made weak solution in a Sobolev space a classical solution. That is what motivated us to try to 

establish the existences of weak solution using a different approach and establish sufficient conditions for a weak solution of 

linear elliptic partial differential equation with Dirichlet boundary condition to be a classical solution. 

 

2.0  Methodology 

2.1  Weak Solutions 
The existence and uniqueness of weak solution of elliptic partial differential equations shall be established using the Lax-

Milgram theorem in bilinear form. 

Lemma 2.1 (Lax-Milgram): 

Let H be a Hilbert space and let 𝑎(𝑢, 𝑣) be a continuous and coercive bilinear form on a Hilbert space. Given any 𝐿 ∈ 𝐻∗, there 

exists a unique element 𝑢 ∈ 𝐻 such that 

 𝑎(𝑢, 𝑣) = 𝐿(𝑣)   ∀ 𝑣 ∈ 𝐻                 (2.1)  

Proof:  

Case I: Existence: Let 𝑢 ∈ 𝐻 fixed. Define on H the linear form 𝑙 as follows: 

𝑙(𝑣) = 𝑎(𝑢, 𝑣)    ∀  𝑣 ∈ 𝐻                                                                       (2.2) 

From the assumptions above, it follows that  
|𝑙(𝑣)| = |𝑎(𝑢, 𝑣)| ≤ 𝑀‖𝑢‖𝐻‖𝑣‖𝐻 , ∀ 𝑣 ∈ 𝐻. 
So 𝐿 is continuous and moreover we have         

‖𝑙‖𝐻′ ≤ 𝑀‖𝑢‖𝐻                                                                                (2.3) 

By the Riesz-Frechet representation theorem, there exists a unique vector 𝐴𝑢 ∈ 𝐻 such that 

𝑎(𝑢, 𝑣) = 𝑙(𝑣) = (𝐴𝑢, 𝑣)𝐻 ,     ∀  𝑣 ∈ 𝐻, 
From equation (2.3), we have 
‖𝐴𝑢‖𝐻 ≤ 𝑀‖𝑢‖𝐻                                                                          (2.4)  

Now let 𝐴: 𝐻 → 𝐻 defined as follows 

(𝐴𝑢, 𝑣) = 𝑎(𝑢. 𝑣)𝐻    ∀   𝑢, 𝑣  ∈ 𝐻. 
A is linear, continuous (because of inequality (2.4)) and from the H-Ellipticity of the bilinear form we have 

𝛿‖𝑢‖𝐻 ≤ ‖𝐴𝑢‖𝐻 ≤ 𝑀‖𝑢‖𝐻 ,   ∀ 𝑢 ∈ 𝐻 

From the proceeding lemma, it follows that A is injective and it range 𝑅(𝐴) is closed in H. 

Next is to show that 𝐴 is onto which can be achieve by showing that 𝑅(𝐴) is dense in H. we will show that the orthogonal of 

𝑅(𝐴) is reduced to zero. Let 𝐴𝑢 ∈ 𝑅(𝐴),  then (𝐴𝑢, 𝑢)𝐻 = 0. But  

0 = (𝐴𝑢, 𝑢) = 𝑎(𝑢, 𝑢) ≥ 𝛿‖𝑢‖𝐻
2  

So 𝑢 = 0 and therefore 𝑅(𝐴)⊥ = {0}, thus 𝑅(𝐴) is dense in H. since it is close in 𝐻, it follows that 𝑅(𝐴) = 𝑅(𝐴)̅̅ ̅̅ ̅̅ ̅ = 𝐻. 
Now since  𝐿 ∈ 𝐻′, by Riesz-Frechet representation theorem there is a unique 𝑤 ∈ 𝐻 such that 

𝐿(𝑣) = (𝑤, 𝑣),    ∀ 𝑣 ∈ 𝐻. 
A is bijective, then there exist a unique 𝑢 ∈ 𝐻 such that 𝐴𝑢 = 𝑤 and so for all 𝑣 ∈ 𝐻 we have 

𝑎(𝑢, 𝑣) = (𝐴𝑢, 𝑣)𝐻 = (𝑤, 𝑣)𝐻 = 𝐿(𝑣) 

Case II: Uniqueness. Let 𝑢1, 𝑢2 such that 

𝑎(𝑢1, 𝑣) = 𝐿(𝑣),   ∀  𝑣 ∈  𝐻. 
𝑎(𝑢2, 𝑣) = 𝐿(𝑣),    ∀ 𝑣 ∈  𝐻. 
It follows that  

𝑎(𝑢1 − 𝑢2, 𝑣) = 0  ∀ 𝑣 ∈ 𝐻. 
If we take 𝑣 = 𝑢1 − 𝑢2 and we use the H-ellipticity of 𝑎 then we get 𝑢1 = 𝑢2. 

Lemma 2.2 (Poincare Inequality):  

Suppose that 1 ≤ 𝑝 ≤ ∞ and Ω is a bounded open set. Then there exist a constant 𝐶 (depending on Ω and 𝑝) such that 

‖𝑢‖𝐿𝑝(Ω) ≤ 𝐶‖∇𝑢‖𝐿𝑝(Ω)     ∀ 𝑢 ∈  𝑊0
1,𝑝(Ω). 

In particular the expression ‖𝑢‖𝐿𝑝(Ω) is a norm on 𝑊0
1,𝑝(Ω), and it is equivalent to the norm ‖𝑢‖𝑊1,𝑝; on 𝐻0

1(Ω) the expression 

∑ ∫
𝜕𝑢

𝜕𝑥𝑖

𝜕𝑣

𝜕𝑥𝑖Ω
𝑁
𝑖=1  is a scalar product that induces the norm ‖∇𝑢‖𝐿2     and is equivalent to the norm ‖𝑢‖𝐻1.      
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Remark: the Poincare’s inequality remains true if Ω has finite measure and also if Ω has a bounded projection on some axis. 

Lemma 2.3 [12]: 

Let 𝑢 ∈ 𝐿𝑝(Ω) 𝑤𝑖𝑡ℎ  1 ≤ 𝑝 ≤ ∞. 𝑝′ is the derivative of 𝑝. 
The following properties are equivalent:   

i. 𝑢 ∈ 𝑊1,𝑝(Ω) 

ii. 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑎 𝑐𝑜𝑛𝑠𝑎𝑛𝑡 𝐶 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

|∫ 𝑢
𝜕𝜑

𝜕𝑥𝑖Ω

| ≤ 𝐶‖𝜑‖𝐿𝑝′(Ω)  ∀𝜑 ∈ 𝐶𝑐
∞(Ω). ∀𝑖 = 1,2, … 𝑁 

iii. 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐶 𝑠𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑤 ⊂⊂ Ω, 𝑎𝑛𝑑 𝑎𝑙𝑙 ℎ ∈ 𝑅𝑁  𝑤𝑖𝑡ℎ |ℎ| < 𝑑𝑖𝑠𝑡 (𝜔, 𝜕Ω) 𝑤𝑒 ℎ𝑎𝑣𝑒 
‖𝜏ℎ − 𝑢‖𝐿𝑝(𝜔) ≤ 𝐶|ℎ|. 

(Note that 𝜏ℎ𝑢(𝑥) = 𝑢(𝑥 + ℎ) make sense for𝑓𝑜𝑟 𝑥 ∈ 𝜔 𝑎𝑛𝑑 |ℎ|  < 𝑑𝑖𝑠𝑡 (𝜔, 𝜕Ω)) furthermore, we can take 𝐶 =
|∇𝑢|𝐿𝑝(Ω) 𝑖𝑛 (𝑖𝑖) and 𝑎𝑛𝑑 (𝑖𝑖𝑖). 

𝐼𝑓 Ω = 𝑅𝑁  we have ‖𝜏ℎ𝑢 − 𝑢‖𝐿𝑝(𝑅𝑁) ≤ |ℎ||∇𝑢|𝐿𝑝(𝑅𝑁). 

 

2.2  Regularity of Weak Solutions 

The theory for deriving the smoothness of the weak solution is called regularity condition. We shall formulate and establish 

the regularity condition for the Dirichlet problem.  

 

3.1 Main Results  

Let Ω ⊂ 𝑅𝑁 be an open bounded set. We are looking for a function 𝑢: Ω̅ → ℝ 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑛𝑔  

{
−∇𝑢 + 𝑞(𝑥)𝑢 = 𝑓 𝑖𝑛 Ω

                      𝑢 = 0 𝑜𝑛 𝜕Ω
                  (3.1) 

where ∇𝑢 = ∑
𝜕2𝑢

𝜕𝑥𝑖
2

𝑁
𝑖=1 = Laplacian of 𝑢 and 𝑓 is a given function on Ω. The boundary condition 𝑢 = 0 on Γ is called the 

(homogeneous) Dirichlet condition. 

Definition 3.1:  

A classical or strong solution of equation (3.1) is a 𝐶2on Ω satisfying equation (3.1) in a usual sense. Multiplying equation 

(3.1) by a test function 𝑣 ∈ 𝐶1(Ω) and integrate by part we obtain  

 ∫ ∇𝑢. ∇𝑣 + ∫ 𝑢𝑣 = ∫ 𝑓𝑣,   ∀  𝑣 ∈ 𝐶1(Ω)
ΩΩΩ

                                    (3.2) 

where  

∇𝑢. ∇𝑣 = ∑
𝜕𝑢

𝜕𝑥𝑖

𝜕𝑣

𝜕𝑥𝑖

𝑁

𝑖=1

 

A 𝐶1 function 𝑢 that satisfy equation (3.2) is called a weak solution of equation (3.1). 

3.1.1 Existence and Uniqueness of Weak Solutions of the Homogeneous Dirichlet Problem 

In this subsection we are going to establish the existence of a unique weak solution of equation (3.1) where 𝑢 ∈ 𝐻1 and as a 

mollifiers 𝑣 ∈ (𝐻1)∗ = 𝐻1 consequently equation (3.1) mollified by 𝑣 ∈ 𝐻1(Ω) where 𝐻1 is the Hilbert space 𝑊1,2 becomes 

−∇𝑢. 𝑣 + 𝑞(𝑥)𝑢𝑣 = 𝑓𝑣 

and integrating over Ω, 

∫ −∇𝑢. 𝑣𝑑𝑥 + ∫ 𝑞(𝑥)𝑢𝑣𝑑𝑥 = ∫ 𝑓𝑣𝑑𝑥.
ΩΩΩ

 

Recall Green formula 

∫ (∇𝑢)𝑣 = ∫
𝜕𝑢

𝜕𝑛
𝑣𝑑𝜎 − ∫ ∇𝑢. ∇𝑣

Ω
     ∀ 𝑢 ∈ 𝐶2(Ω̅

𝛤
)

Ω
, ∀𝑣 ∈ 𝐶1(Ω̅), 

Then using Green formula and the fact that 
𝜕𝑢

𝜕𝑛
= 0 (𝑠𝑖𝑛𝑐𝑒 𝑢 = 0 𝑜𝑛 𝜕Ω) we have 

∫ ∇𝑢. ∇𝑣𝑑𝑥 + ∫ 𝑞(𝑥)𝑢𝑣𝑑𝑥 = ∫ 𝑓𝑣𝑑𝑥.
ΩΩΩ

 

Next we use the Lax-Milgram lemma to formulate a theorem to establish the existence of a unique weak solution of equation (3.1) 

Theorem 3.1:   

Assume that 𝐵: 𝐻 × 𝐻 → ℝ is a bilinear form on a Hilbert space such that for some constant 𝛼, 𝛽 > 0 we have 

 |𝐵(𝑢, 𝑣)| ≤ 𝛼‖𝑢‖2‖𝑣‖2       ∀ 𝑢, 𝑣 ∈ 𝐻                           (3.3)  

𝑎𝑛𝑑 𝐵(𝑢, 𝑢) ≥ 𝛽‖𝑢‖2
2   ∀ 𝑢 ∈  𝐻.                                                       (3.4)  

Then for any bounded linear functional 𝑓 ∈ 𝐻∗ there exist a unique element 𝑢 ∈ 𝐻 in equation (3.1) such that  

𝐵(𝑢, 𝑣) = 〈𝑓, 𝑣〉  ∀𝑣 ∈ 𝐻. 
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Applying Theorem 3.1 on equation (3.1) 

Let 𝐻 = 𝐻1(Ω). H is a Hilbert space as a close sub space of a Hilberrt space 𝐻1(Ω). 
Defining   

𝐵(𝑢, 𝑣) = ∫ ∇𝑢. ∇𝑣𝑑𝑥 + ∫ 𝑞(𝑥)𝑢𝑣𝑑𝑥 𝑎𝑛𝑑 𝐿(𝑣) = ∫ 𝑓𝑣𝑑𝑥
ΩΩΩ

                           (3.5) 

Next is to show that equation (3.5) satisfies inequality (3.3) and (3.4) above. 

First is to show that is satisfy inequality (3.3) 

𝐵(𝑢, 𝑣) = ∫ ∇𝑢. ∇𝑣𝑑𝑥 + ∫ 𝑞(𝑥)𝑢𝑣𝑑𝑥 
ΩΩ

 

Applying the Cauchy-Schwarz inequality  

|𝐵(𝑢, 𝑣)| ≤ ∫ |∇𝑢||∇𝑣|𝑑𝑥 + ∫ |𝑞(𝑥)𝑢𝑣|𝑑𝑥 
ΩΩ

 

≤ ||∇𝑢||𝐿2(Ω)||∇𝑣||𝐿2(Ω) + ||q||∞||𝑢||𝐿2(Ω)||𝑣||𝐿2(Ω) 

≤ (1 + ‖q‖∞)(||∇𝑢||𝑠𝐿2(Ω)||∇𝑣||𝐿2(Ω) + ||𝑢||𝐿2(Ω)||𝑣||𝐿2(Ω))  

≤ (1 + ‖q‖∞)(||𝑢||𝐿2||𝑣||𝐿2 + ||𝑢||𝐿2||𝑣||𝐿2) 

≤ 𝛼||𝑢||𝐿2||𝑣||𝐿2 

which shows that the equation (3.5) satisfies inequality (3.3) hence equation (3.5) can be said to be continuous. 

Next is to show that equation (3.5) satisfies inequality (3.4) 

𝐵(𝑢, 𝑢) = ∫ |∇𝑢|2𝑑𝑥 + ∫ 𝑞(𝑥)|𝑢|2

ΩΩ

𝑑𝑥 

= ‖∇𝑢‖
𝐿2
2 + 𝑞‖∇𝑢‖

𝐿2
2  

≥ 𝛽‖|∇𝑢|‖
𝐿2(Ω)
2  

≥ 𝛽||𝑢||𝐿2
2  (by Poincare inequality) 

which also show clearly that equation (3.5) satisfy inequality (3.4) hence its coercive.  

Corollary 3.1:  

From lemma (3.1) Since H is a Hilbert space and 𝐵(𝑢, 𝑣) in equation (3.5) is a continuous and coercive bilinear form on a 

Hilbert space then given any linear functional 𝑓 ∈ 𝐻∗, there exists a unique element 𝑢 ∈ 𝐻 such that  𝐵(𝑢, 𝑣) = 〈𝑓, 𝑣〉 ∀ 𝑣 ∈
𝐻. Which concludes the prove for the existence and uniqueness of solution of equation (3.1). 

3.1.2 Existence of Classical Solutions of the Homogeneous Dirichlet Problem 

In this subsection we considered the regularity condition that is, the conditions that will make a weak solution to be a classical 

solution for the homogeneous Dirichlet problem. We now proceed to formulate and prove a regularity theorem to establish it.  

Theorem 3.2:  

Let Ω be an open set of class C2 with Γ bounded. Let 𝑓 ∈ 𝐿2(Ω) and 𝑢 ∈ 𝐻0
1(Ω) satisfy   

∫ ∇𝑢. ∇𝜑 + ∫ 𝑢𝜑 = ∫ 𝑓𝜑
ΩΩΩ

, ∀ 𝜑 ∈ 𝐻0
1(Ω).                                  

Then 𝑢 ∈ 𝐻2(Ω) 𝑎𝑛𝑑 ||𝑢||
𝐻2 ≤ 𝐶||𝑓||

𝐿2 where 𝐶 is a constant depending only on Ω.  

Proof:  

For the proof we shall consider two cases the case where Ω = ℝ𝑁 , then the case where  Ω = ℝ+
𝑁. 

Case I: Ω = ℝ𝑵. 

Given ℎ ∈ 𝑅𝑁 , ℎ ≠ 0, 𝑠𝑒𝑡 

𝐷ℎ𝑢 =
1

|ℎ|
(𝜏ℎ𝑢 − 𝑢),    𝑖. 𝑒. ,    𝐷ℎ𝑢(𝑥) =

𝑢(𝑥 + ℎ) − 𝑢(𝑥)

|ℎ|
  

In (3.5) take 𝜑 = 𝐷−ℎ(𝐷ℎ𝑢). this is possible, since 𝜑 ∈ 𝐻1(ℝ𝑁) and (𝑢 ∈ 𝐻1(ℝ𝑁)); we obtain 

∫|∇Dhu|2 + ∫|Dhu|2 = ∫ 𝑓𝐷−ℎ(𝐷ℎ𝑢). 

and thus 

 ||𝐷ℎ𝑢||
𝐻𝟏
𝟐 ≤ ||𝑓||𝟐||𝐷−ℎ(𝐷ℎ𝑢)||𝟐                                         (3.6) 

On the other hand, recall from lemma (3.5) that 

||𝐷−ℎ𝑣||2 ≤ ||∇𝑣||2 ∀𝑣 ∈ 𝐻1.                                             (3.7) 

Using inequality (3.6), (3.7) with 𝑣 = 𝐷ℎ𝑢, we obtain 

||𝐷ℎ𝑢||
𝐻𝟏
𝟐 ≤ ||𝑓||𝟐||∇(𝐷ℎ𝑢)|| 𝟐.        

and consequently  
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‖𝐷ℎ
𝜕𝑢

𝜕𝑥𝑖
‖

2
≤ ||𝑓||𝟐 ∀𝑖 = 1,2, … , 𝑁.                                             (3.8) 

Then we see that 
𝜕𝑢

𝜕𝑥𝑖
∈ 𝐻1 and thus 𝑢 ∈ 𝐻2 

Case II: Ω = ℝ+
𝑵. 

We use again translations, but only in the tangential directions, i.e., in a direction ℎ ∈ ℝ𝑁−1 × {0}: we say that ℎ is parallel to 

the boundary, and denote this by ℎ||𝛤. 
It is essential to note that  

𝑢 ∈ 𝐻0
1(Ω) ⟹ 𝜏ℎ𝑢 ∈ 𝐻0

1(Ω) 𝑖𝑓 ℎ||𝛤 

Choosing ℎ||𝛤 and inserting 𝜑 = 𝐷−ℎ(𝐷ℎ𝑢) in equation (3.5); we obtain 

∫|∇Dhu|2 + ∫|Dhu|2 = ∫ 𝑓𝐷−ℎ(𝐷ℎ𝑢). 

i.e., 

 ||𝐷ℎ𝑢||
𝐻𝟏
𝟐 ≤ ||𝑓||𝟐||𝐷−ℎ(𝐷ℎ𝑢)||𝟐                                          (3.9) 

From equation (3.6) we have  

‖𝐷ℎ𝑣‖𝐿2(Ω) ≤ ||𝑓||𝟐     ∀𝒗 ∈ 𝐻𝟏(Ω),    ∀ℎ||𝛤.                           (3.10) 

Combining equation (3.8) and equation (3.9), we obtain  

‖𝐷ℎ𝑢‖𝐻1 ≤ ||𝑓||𝟐         ∀ℎ||𝛤.                                             (3.11) 

  Let 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑁 − 1, ℎ = |ℎ|𝑒𝑘, 𝜑 ∈ 𝐶𝑐
∞(Ω).  We have 

∫ 𝐷ℎ (
𝜕𝑢

𝜕𝑥𝑗

) 𝜑 = − ∫ 𝑢𝐷−ℎ (
𝜕𝜑

𝜕𝑥𝑗

) 

From equation (3.10), 

|∫ 𝑢𝐷−ℎ (
𝜕𝜑

𝜕𝑥𝑗

)| ≤ ||𝑓||𝟐||𝜑||𝟐 

Passing to the limit as ℎ → 0, this becomes 

|∫ 𝑢
𝜕2𝜑

𝜕𝑥𝑗𝜕𝑥𝑘

| ≤ ||𝑓||𝟐||𝜑||𝟐    ∀1 ≤ 𝑗 ≤ 𝑁  ∀1 ≤ 𝑘 ≤ 𝑁 − 1                                                                   (3.12) 

Finally, we claim that 

|∫ 𝑢
𝜕2𝜑

𝜕𝑥𝑁
2 | ≤ ||𝑓||𝟐||𝜑||𝟐 ∀𝜑 ∈ 𝐶𝑐

∞(Ω)                                           (3.13) 

From  equation 3.5 we deduce that  

 |∫ 𝑢
𝜕2𝜑

𝜕𝑥𝑁
2 | ≤ ∑  |∫ 𝑢

𝜕2𝜑

𝜕𝑥𝑖
2 | + |∫(𝑓 − 𝑢)𝜑| ≤ 𝐶‖𝑓‖2‖𝜑‖2

𝑁−1

𝑖=1

 

from equation (3.12). And combining equation (3.12) and equation (3.13), we end up with 

|∫ 𝑢
𝜕2𝜑

𝜕𝑥𝑗𝜕𝑥𝑘

| ≤ 𝐶||𝑓||
𝟐

||𝜑||
𝟐

  ∀𝜑 ∈ 𝐶𝑐
∞(Ω),   ∀ 1 ≤ 𝑗, 𝑘 ≤ 𝑁. 

As a consequence, 𝑢 ∈ 𝐻2, since there exist functions 𝑓𝑗𝑘 ∈ 𝐿2(Ω)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

|∫ 𝑢
𝜕2𝜑

𝜕𝑥𝑗𝜕𝑥𝑘

| = ∫ 𝑓𝑗𝑘𝜑        ∀𝜑 ∈ 𝐶𝑐
∞(Ω) 

Therefore we can have the following corollary as a result of theorem 3.2. 

Corollary 3.2:  

Given Ω an open set of class C2 with Γ bounded (or else Ω = 𝑅+
𝑁) and we were able to show that 𝑓 ∈ 𝐿2(Ω)𝑎𝑛𝑑 𝑢 ∈ 𝐻0

1(Ω) 

satisfy ∫ ∇𝑢. ∇𝜑 + ∫ 𝑢𝜑 = ∫ 𝑓𝜑
ΩΩΩ

, ∀𝜑 ∈ 𝐻0
1(Ω) then 𝑢 ∈ 𝐻2(Ω) 𝑎𝑛𝑑 ||𝑢||

𝐻2 ≤ 𝐶||𝑓||
𝐿2 where 𝐶 is a constant depending 

only on Ω. Therefore u is a classical solution of equation (3.1) from the definition of classical solutions. 
 

4. Discussion 
Cavalheiro [9] established the existence of weak solutions for the Dirichlet problem in a weighted Sobolev space using the 

weighted sobolev inequality and the lax-milgram theorem. In this research we apply the Lax-Milgram theorem of the bilinear 

form in section to establish the existence of a unique weak solution for linear elliptic partial differential equation with the 

Dirichlet boundary condition and We were able to obtain that there exists a weak solution to equation our equation and also 

the solution is unique in the sense that it cannot be different for the same equation no matter the method adopted to solve the 

equation. Therefore, we obtain almost a similar result apart from the fact that we also establish that the weak solution obtain 

is also unique.  
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Iyiola [11] and Cavalheiro [9] establish that they exist a weak solution for the Dirichlet problem but we improve on their result 

by formulating a regularity theorem to prove whether the unique weak solution obtained is a classical solution. We were able 

to prove that the weak solution meets the necessary condition to be a classical solution which is an improvement of their results. 

 

5. Conclusion 

From the research we were able to use the Lax-Milgram theorem to show that our linear elliptic PDE with Direchlet Boundary 

condition is continuous and coercive which lead us to conclude that they exist a unique weak solution to our equation. We 

were also able establish that there exist a 𝐶2 function 𝑢 on Ω which satisfy equation hence the conclusion that there exist a 

classical solution to equation.  
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