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Abstract 
 

In this paper, flow due to oscillatory movement of one of the plate is 

considered in horizontal parallel plates embedded in porous medium. 

Brinkman- extended- Darcy equation was utilized to model the flow. Laplace 

transform technique was utilized to obtain solutions describing the flow at 

small and large values of time for steady and transient flows. A special case 

when the value of 𝑫𝒂 → ∞ is presented. 
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1.0     Introduction 
The study on oscillating fluid flow exists in many practical applications. Example of the applications is acoustic streaming 

around an oscillating body [1].In [2] the problem is termed viscous fluid flow caused by oscillation of flat plate as Stoke’s 

second problem.  Penton [3] presented solution of transient flow due to the oscillation of plate, and the large times steady 

state flow is set up with the same frequency of plane boundary. The starting solution is obtained from the addition of transient 

solution to steady solution, since the problem is linear. 

Recently, Singh [4] studied generalized Couette flow of two viscous, incompressible, immiscible fluids with heat transfer in 

presence of heat source through two straight parallel horizontal walls. The lower wall is bounded below, by a naturally 

permeable material of high porosity and the flow inside the porous medium is assumed to be of moderate permeability, 

modeled by Brinkman equation.  

In addition, Pantokratoras[5] studied the steady laminar flow in afluid-saturated porous medium channel bounded by two 

parallel plates withconstant but unequal temperatures. One plate is moving with constantvelocity while the other is stationary 

using Brinkman–Darcy–Forchheimer model. Jaballah et al [6] studied the numerical simulation of the heat transfer and the 

mixed convection of an incompressible fluid filling a horizontal channel where some porous blocks are intermittently inserted 

in transverse to the channel axis. Eldabe et al [7] analyzed the steady magneto hydrodynamicflow of an incompressible 

electrically conducting visco-elasticfluidthrough a porousmedium between two porous parallel plates under the influence of a 

transverse magnetic field using Brinkman-Forchheimer extension of Darcy's momentum equation for flow. Jain et al [8] 

studied Couette flow through a highly porous medium between two horizontal parallel porous flat plates with transverse 

sinusoidal injection of the fluid at the stationary plate and its corresponding removal by constant suction through the plate in 

uniform motion has been analyzed.  

Similarly, Fang [9] presented unsteady and steady velocity profiles for an incompressible Couette flow with mass transfer in 

simple horizontal channel. They discussed and solved the steady state temperature. Also they discussed and solved the steady 

state temperature. Similarly, Fang [10] presented pressure-driven unsteady and steady velocity profiles for an incompressible 

Couette flow with mass transfer in a simple horizontal channel. Das [11] studied and presented effect of suction and injection 

on MHD three dimensional Couette flow and heat transfer through a porous medium. Sharma [12] studied unsteady free 

convection oscillatory Couette flow through a porous medium with periodic wall temperature. 

Erdogan [13] recently, studied fluid flow due to moving boundary in its own plane. Sinusoidal variation of the velocity was 

considered. The time required to attain steady flows for the cosine oscillation of the boundary is one-half cycle and it was 

observed that for sine oscillation it is a full cycle.Other studies carried out recently among many others in porous media are 

[14] and [15]. So far no study is presented for oscillatory Couette flowin horizontal channel embedded in porous medium. 

Hence the present study. 
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2.0 Governing Equation 
A horizontal channel filled with uniform porous material between y=0 and y=h is considered. At y=0 the wall is initially 

oscillatory moving. The governing equation in non dimensional form is 
𝜕𝑢

𝜕𝑡
= 𝛾

𝜕2𝑢

𝜕𝑦2 −
𝑢

𝐷𝑎
                                 (1) 

where 𝑢(𝑦, 𝑡) is the velocity, 𝛾 viscosity of the fluid, 𝑦 is the coordinate and 𝑡 is the time. The initial and boundary conditions 

are  

𝑡 ≤ 0:    𝑢 = 0 for all 𝑦 

𝑡 > 0: 𝑢 = 𝑒𝑥𝑝(𝑖𝜔𝑡) at 𝑦 = 0                                     (2) 

𝑢 = 0    at 𝑦 = 𝐻 

The non dimensional parameters used in the governing equation and conditions are defined as: 

𝑢 =
𝑢′

𝑈
, 𝑇 = 𝜔𝑡, 𝑦 = 𝑦′√(

𝜔

𝜗
), 𝐻 = ℎ√(

𝜔

𝜗
), 𝐷𝑎 =

𝑘′

ℎ2 

Solution 

In order to obtain analytical solution at small and large times, Laplace transform technique is utilized. The Laplace transform 

of 𝑢 is defined by  

�̅� = ∫ 𝑢𝑒−𝑠𝑡𝑑𝑡

∞

0

 

Therefore the equation and the conditions take the form: 
𝑑2𝑢

𝑑𝑦2 = (𝑆 −
1

𝐷𝑎
) �̅�                                                                (4) 

𝑆 ≤ 0: �̅� = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 

𝑠 > 0:   �̅� =
1

𝑆−𝑖
 𝑎𝑡𝑦 = 0                                                              (5) 

�̅� = 0𝑎𝑡 𝑦 = 𝐻 

The solution of the differential equation (4) subject to the boundary condition (5) is  

�̅� = [−
1

(𝑆−𝑖)

𝑒𝑥𝑝(−2𝐻√𝑆+
1

𝐷𝑎
)

[1−exp (−2𝐻√𝑆+
1

𝐷𝑎
)]

] exp (y√S +
1

𝐷𝑎
) + [

1

(𝑆−𝑖)

1

[1−exp (−2𝐻√𝑆+
1

𝐷𝑎
)]

] exp (−y√S +
1

𝐷𝑎
) (6) 

Where  𝑖 = √−1 

Taking the Laplace inverse of the equation (6) utilizing shifting and convolution theorems of the Laplace transform [16] 

𝑢(𝑦, 𝑇) =  
1

2
𝑒𝑥𝑝 ((𝑖 +

1

𝐷𝑎
) 𝑇) ∑ [𝑒𝑥𝑝 (𝑎𝑦√𝑖 +

1

𝐷𝑎
) 𝑒𝑟𝑓𝑐 (

𝑎

2√𝑇
+ √(𝑖 +

1

𝐷𝑎
)𝑇) + 𝑒𝑥𝑝 (−𝑎√𝑖 +

1

𝐷𝑎
) 𝑒𝑟𝑓𝑐 (

𝑎

2√𝑇
− √(𝑖 +

1

𝐷𝑎
)𝑇) −∞

𝑛=0

𝑒𝑥𝑝 (𝑏𝑦√𝑖 +
1

𝐷𝑎
) 𝑒𝑟𝑓𝑐 (

𝑏

2√𝑇
+ √(𝑖 +

1

𝐷𝑎
)𝑇) − 𝑒𝑥𝑝 (−𝑏√𝑖 +

1

𝐷𝑎
) 𝑒𝑟𝑓𝑐 (

𝑏

2√𝑇
− √(𝑖 +

1

𝐷𝑎
)𝑇)]     (7) 

Where 𝑒𝑟𝑓𝑐(𝑥 + 𝑖𝑦)the complementary error is function of the complex argument given by 𝑒𝑟𝑓𝑐(𝑥 + 𝑖𝑦) = 1 − 𝑒𝑟𝑓 (𝑥 +
𝑖𝑦) and 𝑒𝑟𝑓 (𝑥 + 𝑖𝑦)is error function[13]. 

At large 𝑇𝑖. 𝑒 𝑇 → ∞ 

𝑒𝑟𝑓 [(
𝑦

2√𝑇
+ √

𝑇

2
) + (𝑖 +

1

𝐷𝑎
) √

𝑇

2
] → 0 

erf [(
y

2√T
− √

T

2
) − (i +

1

Da
) √

T

2
] → 2 

𝑢𝑆(𝑦, 𝑇) = 𝑒𝑥𝑝(𝑖𝑇) ∑ [𝑒𝑥𝑝 (𝑎𝑦√𝑖 +
1

𝐷𝑎
) − 𝑒𝑥𝑝 (−𝑏√𝑖 +

1

𝐷𝑎
)]∞

𝑛=0                                      (8) 

Therefore transient solution can be calculated using 

𝑢𝑡(𝑦, 𝑇) = 𝑢(𝑦, 𝑇) − 𝑢𝑠(𝑦, 𝑇)                                                                                          (9)   

Taking the real part of eqn. (7) and (8) gives the initial and periodic Couette motion due to 𝐶𝑜𝑠 (𝑇), the transient solution in 

initial periodic is 

 

 

 

 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 3, (January, 2017), 251 – 254 



 

253 

 

Unsteady Oscillatory Couette…           Jha and Kaurangini    Trans. of NAMP 
 

𝑢𝑡(𝑦, 𝑇) =
1

2
𝑒𝑥𝑝(𝑖𝑇) ∑ [𝑒𝑥𝑝 (𝑎𝑦√(𝑖 +

1

𝐷𝑎
)) 𝑒𝑟𝑓 (

𝑎

2√𝑇
+ √(𝑖 +

1

𝐷𝑎
)𝑇) − 𝑒𝑥𝑝 (𝑏𝑦√𝑖 +

1

𝐷𝑎
) 𝑒𝑟𝑓 (

𝑏

2√𝑇
+ √(𝑖 +

1

𝐷𝑎
)𝑇) +∞

𝑛=0

𝑒𝑥𝑝 (−𝑎𝑦√𝑖 +
1

𝐷𝑎
) {𝑒𝑟𝑓 (

𝑎

2√𝑇
− √(𝑖 +

1

𝐷𝑎
)𝑇) − 2} − 𝑒𝑥𝑝 (−𝑏𝑦√𝑖 +

1

𝐷𝑎
) {𝑒𝑟𝑓 (

𝑏

2√𝑇
− √(𝑖 +

1

𝐷𝑎
)𝑇) − 2}]  (10) 

Taking the imaginary part of eqn. (7) and (8) gives the initial and periodic Couette motion due to 𝑠𝑖𝑛 (𝑇), the transient 

solution in initial periodic is 

𝑢𝑡(𝑦, 𝑇) =
1

2
𝑒𝑥𝑝 (𝑖 +

1

𝐷𝑎
)𝑇) ∑ [𝑒𝑥𝑝 (𝑎𝑦√𝑖 +

1

𝐷𝑎
) 𝑒𝑟𝑓 (

𝑎

2√𝑇
+ √(𝑖 +

1

𝐷𝑎
) 𝑇) − 𝑒𝑥𝑝 (𝑏𝑦√𝑖 +

1

𝐷𝑎
) 𝑒𝑟𝑓 (

𝑏

2√𝑇
+ √(𝑖 +

1

𝐷𝑎
) 𝑇) −∞

𝑛=0

𝑒𝑥𝑝 (−𝑎√𝑖 +
1

𝐷𝑎
) 𝑒𝑟𝑓 (√(𝑖 +

1

𝐷𝑎
) 𝑇 −

𝑎

2√𝑇
) + 𝑒𝑥𝑝 (−𝑏√𝑖 +

1

𝐷𝑎
) 𝑒𝑟𝑓 (√(𝑖 +

1

𝐷𝑎
) 𝑇 −

𝑏

2√𝑇
)]                   (11) 

Where  𝑎 = 2𝑛𝐻 + 𝑦    𝑎𝑛𝑑    𝑏 = 2𝑛𝐻 + 2𝐻 − 𝑦 

MATLAB is then utilized to study the effects of parameters involved in oscillatory Couette flow. The transient solution is 

initially periodically oscillatory Couette flow with sine or cosine oscillation. In figure 1 variation of the velocity with porous 

material for sine oscillation is depicted. It is noted that the velocity decreases periodically and became steady at large time. 

Similarly, variation of velocity for cosine oscillation is depicted in figure 2. Here it is noted that velocity increases 

periodically and became steady at large time. 

 
 

 

PARTICULAR CASE 𝑫𝒂 → ∞ 

The governing equation in non dimensional form when 𝐷𝑎 → ∞ is 
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑦2                                                       (12) 

With the initial and boundary conditions as 

𝑡 ≤ 0:    𝑢 = 0 for all 𝑦 

𝑡 > 0: 𝑢 = 𝑒𝑥𝑝(𝑖𝜔𝑡) at 𝑦 = 0         (13) 

𝑢 = 0    at 𝑦 = 𝐻 

𝑢(𝑦, 𝑇) =
1

2
𝑒𝑥𝑝(𝑖𝑇) ∑ [𝑒𝑥𝑝(𝑎𝑦√𝑖) 𝑒𝑟𝑓𝑐 (

𝑎

2√𝑇
+ √𝑖𝑇) + 𝑒𝑥𝑝(−𝑎√𝑖) 𝑒𝑟𝑓𝑐 (

𝑎

2√𝑇
+ √𝑖𝑇)

∞

𝑛=0

− 𝑒𝑥𝑝(𝑏𝑦√𝑖) 𝑒𝑟𝑓𝑐 (
𝑏

2√𝑇
+ √𝑖𝑇) − 𝑒𝑥𝑝(−𝑏√𝑖) 𝑒𝑟𝑓𝑐 (

𝑏

2√𝑇
− √𝑖𝑇)]   

At large 𝑇𝑖. 𝑒 𝑇 → ∞ 

erf (
y

2√T
+ √iT) → 0 

erf (
y

2√T
+ √iT) → 2 

𝑢𝑆(𝑦, 𝑇) = 𝑒𝑥𝑝(𝑖𝑇) ∑ [𝑒𝑥𝑝(𝑎𝑦√𝑖) − 𝑒𝑥𝑝(−𝑏√𝑖)]∞
𝑛=0                                        (14) 

Therefore transient solutions are calculated using Eqs (9). In figure 3variation of the velocity for sine oscillation is depicted. 

It is noted that the velocity decreases periodically and became steady at large time. Similarly, variation of velocity for cosine 

oscillation is depicted in figure 4. Here it is noted that velocity increases periodically and became steady at large time. 

In both figures 3 and 4, it can be noticed that in comparison with figure 1 and 2, the flow is strongly dependent on the 

oscillatory movement of the plate and porous material. 
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Figure 2: Variation of the velocity for cosine Couette 

oscillation with porous material 
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Figure 3: Variation of the velocity for sine Couette oscillation 

 

3.0 Conclusion 
Oscillatory Couette flow of viscous fluid in horizontal channel filled with uniform porous material was presented. Laplace 

transform technique was utilized to present transient and steady solution at small and large times.  A special case 𝐷𝑎 → ∞ is 

considered. It is found that the porous material and oscillatory movement of the plate are strongly affecting the flow in the 

channel. 
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