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Abstract 
 

Recently we formulated a generic second order partial differential equation 

(PDE) from the Oyibo grand unification theorem (GUT). The generic nature 

of our PDE means its solution continuously depend on the data of the 

problem hence for every application of our PDE, we are dealing with a well-

posed problem which is key to all PDEs. We were able to recover the second 

order PDEs important to mathematical physics from our generic PDE. One 

of these PDEs is the wave equation. Since in its basic form, the Klein-Gordon 

Hamiltonian is the wave equation with a mass term, it can in principle be 

directly recovered from our generic PDF. This is the study undertaken here. 

The successful formulation of the Klein-Gordon equation from our PDE 

means it is has been obtained from the Oyibo GUT and therefore all the 

applications of the Klein-Gordon equation can also be obtained as the 

extension of the Oyibo God Almighty Grand Unification Theory (GAGUT). 
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1.0     Introduction 
The Oyibo grand unified theorem (GUT) is a theorem comprising of a set of equations from which one can possibly construct 

the mathematical formulations of all known and unknown forces in the universe. Therefore it is proposed to be a potential 

mathematical candidate for the formation of the theory of everything. Thus its application to a number of aspects of both 

classical and quantum mechanicsas well as proposed applications beyond physics was designated by Oyiboas the God 

Almighty Grand Unification Theory (GAGUT)[1-3]. There has been serious opposition to both the GUT and GAGUT: the 

former for its esoteric approach and the latter for its relatively few demonstrated applications but very many bogus claims by 

Oyibo. We have repeatedly argued that the GUT should be treated differently from the GAGUT. The reason is that the 

former is a theorem and the latter is a theory emerging from it. By definition, a theorem is a mathematical statement that is 

proved using rigorous mathematical reasoning while a theory is a set of ideas explaining physical behaviors of a given 

category of physical systems and is therefore capable of producing experimental predictions for them. The implication is that 

a theorem could be sound yet a wrong theory can be developed from it. The Oyibo GUT has been tested even by the 

American Mathematical Society and they found it very sound even with its esoteric approach [3]. Now the Oyibo GAGUT 

may have flaws as all new theories do. For example, the Bohr model of the atom which together with the Somerfield 

elliptical model of the atom formed what is today known as the old quantum theory was developed by Bohr merely by 

invoking the Max Planck idea of quantization into the classical Rutherford model of the atom. The limited success of the 

Bohr theory especially in obtaining the Rydberg constant from atomic constants was a major step in developing a quantum 

model of the atom and the need to beautify it as well as extend it strongly boosted the study of microscopic physics which 

today has become a very established aspect of physics with all its vast applications, even as the beautification and extension 

continue. Another example is the Klein-Gordon equation which historically was first formulated by Schrodinger but rejected 

it and settled for the non-relativistic equation now known as the Schrodinger equation. The basic reason why he rejected the 

former was because its solution could not account for the electronic energy levels of the hydrogen atom while the latter was 

successful with that description  since the electrons are reasonably non- relativistic and the spin-dependent effects are fairly 

small [4]. It is a textbook knowledge that aside the reason for its initial rejection, the Klein-Gordon equation as man first step 

to a relativistically invariant quantum mechanical equation suffer other limitations. However, its adoption in field  
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theory for spin zero particlesh as been successful [5,6] and encourages its  beautification and extension [7,8]. This is why we 

have always insisted that we should strive to beautify and extend the GAGUT. Further, we have posited that one way to do so 

is to first recover already known solution from the GUT [9-12]. In one of our previous studies in line with that thinking, we 

developed a generic second order partial differential equation (PDE) from the Oyibo GUT from which we were able to 

recover the second order PDEs that have very important applications in physics [12, 13]. One of these PDE is the wave 

equation. It follows that if we adopt the approach of Ref. [14], then one can recover a number of solutions of the Klein-

Gorden equation from this wave equation. Basically, the Klein-Gordon Hamiltonian is the wave equation with a mass 

term[15]. Therefore there is strong motivation that one can obtain the Klein-Gordon equation directly from our generic PDE. 

This is the study undertaken here using the following plan. In Section 2, a brief review of the Klein-Gordon equation is given 

to help guide the formalism of the generic Klein-Gordon equation in Section 3. The Klein-Gordon equations for photon 

which is a massless particle and then for a particle having mass are obtained from the generic Klein-Gordon in Sections 4 and 

5 respectively. Thisis followed by a brief conclusion in Section 6. 

 

2.0 Brief Review of the Klein Gordon Equation 
The relativistic energy equation is given by 

42222 cmPcE +=          (1) 

Where E is the total energy, p is the momentum, m is the mass and c is the speed of light. Then it is easy to see that for a 

mass less particle like photon, Eq.(1) reduces to  
222 PcE =           (2) 

The quantization of Eq.(1) by introducing the quantum analogues of p and E: 

−= ip and
dt

d
iE =         (3) 

Will yield the Klein-Gordon Hamiltonian 
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2 =−− m
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         (4a) 

Which can also re-expressed as 

 0[] 22 =− m         (4b) 

Where   = c = 1 and the d’Alembertian operator is defined by 

22

2
22 1

[]
dtc

d
−= .        (5) 

It is easy to infer from Eq.(4) that the Klein_Gordon Hamiltonian is the wave equation or d’Alembertian equation with a 

mass term [15]. This is why it was possible to derive the solutions of the Klein-Gordon equation from the solutions of the 

wave equation [14]. Thereafter, the choice of the wave function ( )tr , will determine the applicability. 

( ) 0)([] ,

22 =− trm           (6) 

The general consensus is that it should be a spinless scalar field. For if we do not restrict it to a scalar field with zero spin, 

then the Klein-Gordon equation will become impracticable as such field will include particles with non-zero spin. 

 

3.0 Formalism of the Generic Klein-Gordon Equation 
The Oyibo generic conservation equation which is an arbitrary function of space and time coordinates (x,y,z,t), velocities 

),,( zyx  , density )( , fluid or gas viscosity )( , temperature (T), pressure (P), etc is given by (See pedagogical review in 

Ref. [9]): 

.0,....),,,,,,,,,,( =PTzyxtzyxGmn        (7) 

Eq.(7) can be generalized to a system of partial differential equations (PDEs) of order n given by 
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Which is conformally invariant under the transformations 
n

kT ,   

.
),,...,(

),,...,(
:
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Where p and q are any integers, 
1X and 

1g , 
1Y  and 

1h are functions of 
ix  and 

iy respectively and k is a single group 

parameter. 

 

Theorem 

Let us suppose that the form of 
jG in Eq.(8) for the system of partial differential equations are conformally invariant under 

the nth enlargement of the group 
kT ,then the invariant solution of  

jG may be expressed in terms of a new system of partial 

differential equations 
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Where 1  are the absolute invariant of the subgroups of the transformation for just the independent variables and  

)( iii FF = .          (11) 

A more detailed explanation and proof of the above theorem can be found in Ref. [1] and the references therein.  

For the space-time coordinate, Eq.(7) can be expressed as [1-3, 9-12]: 

0)()()()( 3210 =+++ znynxntn GGGG ,       (12) 

and its generic solution given by  
1
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Where n  which is now purely a function of space-time coordinates (t, x, y, z) and the metric parameters (

33221100 ,,, gggg ) as well as n = 0, 1, 2, 3, 4 have applications in all aspect of physics.  We have focused on the case n = 0 

which is the generic wave solution [9,10,12]: 

zgygxgctg 302010000 +++= .
       

(14) 

It has been shown that the unified field wave component, )( 0F  representing wave is 

)()()()()()( 000000  OFWFSFEMG FFFFFF ++++= ,     (15) 

where  FG is for gravitation,   FEM is for electromagnetism, FSF is for strong force, FWF is for weak force and FOF is for other 

forces [1,2,9,11]. 

In our construction of the generic partial differential equation [12], we have proposed a corollary  which we then proved:    

Corollary: The partial differential equations important in physics form a subset of the generic universal conservation 

equations. 

By applying the technique of partial differentiation [17,18] we have shown that the generic PDE of the wave component  of 

the Oyibo GUT is [12] 
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Where the Laplacian operator, 
2

2
2

dr


=  with r = x, y, z and m = 1, 2, 3. 

It is pertinent to emphasize that the generic nature of Eq.(11) means it is formulated to inherently solve well-posed problem 

and therefore meets an important goal of the study of PDE  which is to determine the conditions under which a problem is 

well-posed [19]. In general, one of the important conditions for a problem involving a PDE to be a well-posed problem is that 

its solution depends continuously on the data of the problem. Thus as already stated, the generic nature of our PDE means its 

solution will continuously depend on the data of the problem hence for every application of our PDE, we will be dealing with 

a well-posed problem.  

Now by differentiating Eq.(14), it is straightforward to show that  
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wherec is the corresponding wave speed. 

Taking Eq. (17) into account in Eq.(16), the d’Alembertian operator emerges naturally in the RHS of Eq.(16) so that it can be 

re-expressed as 
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Where the change of the sign in Eq. (18a) can be subsumed in our choice of the metric parameters. 

By comparing Eq.(6) and Eq.(18), one can claim that the latter is the generic Klein–Gordon equation obtained from Oyibo 

GUT. Again let it be emphasized that being ‘generic’ means that the final form of Eq.(18) depends on the system 

initial/boundary conditions and other system specifics. In this current case, the LHS of Eq.(18) has to be transformed to a 

mass term and the wavefield to a scalar field for it to be the form of Eq.(6) which is the standard Klein-Gordon equation that 

is applicable in physics. 

 

4.0 The Klein-Gordon Equation for Photon from the Generic Klein–Gordon Equation 
The quantum electromagnetic field is characterized by photons which have vanishing rest mass and no electric charge.  

Coherent states of the quantum electromagneticfields which contains many photons are well approximated by classical 

electromagnetic fields that satisfy the Maxwell equations. 

In the consideration of the electromagnetic field within the purview of the Oyibo GUT, the starting corollary was [1] 

Corollary: Maxwell’s electromagnetic field equations are a subset of the generic universal conservation equations. 

One of the interesting outcomes from the aforementioned consideration is that Oyibo was able to show that the Maxwell’s 

electromagnetic field of the electromagnetic wave component given by Eq.(15) is reproduced from the generic universal 

equations as: 

)()( 00  EMFG =          (19) 

The 0 is a function of space and time, that is, tr,0 = . [12]. If the particle is a photon so that it is massless, then the left 

hand side of Eq.(18) will be zero and we can argue that the wavefunction can be constructed as an electromagnetic wavefield 

with ),()()( 00 trFFFEM ==  from the Oyibo approach to Maxwell equations: 

][ 22
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][020202 zxxz HEHEgygG +−==        (20c) 
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where the electric field E is a scalar field described by  
)(

0),( wtkrieEtrE −= .         (21) 

Introducing this scalar field as a wavefunction of free waves ),(),(),( trtrEtrF  into Eq. (18), we obtain the 

Klein-Gordon equationfor photon as:  

0),(
1

2

2

2

2 =






 
− tr

dtc
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It is easy to show that if we use the dispersion relationship in free space, the deBroglie relation, =E and Einstein-Planck 

relation, kP = , then we can work back to recover the classical relativistic total energy for photon as done in Ref. [16]: 
222 cpE = .          (23) 
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5.0 The Klein-Gordon Equation for Particle with Mass from the Generic Klein–Gordon 

 Equation 
For a particle having mass m, the LHS of Eq.(18) will yield the mass and scalar field for it to correspond to Eq.(6). As 

already stated, tr,0 =  so that from Eq.(15), ),()( 0 trFF = : therefore we adopt the transformation, 

tr 
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In the LHS of Eq.(18) to obtain 
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Taking into account in Eq.(25) the common knowledge that the momentum for a particle moving with the speed of light is

mcp = and that it is related to the quantum analogue for p given by Eq.(3) which is introduced here in natural unit, then 

Eq.(18) can be expressed as 

tF
dtc
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Finally, since ),()( 0 trFF = , we can introduce the scalar field, ),( tr  into Eq.(26) using the transformations 

),()()()( 000 trFrFrF  =        (27a) 

and  ),()()()( 000 trFtFtF  =       (27b) 

to obtain the Klein-Gordon equation for a particle having mass as 
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6.0      Conclusion 
We have been able to obtain the Klein-Gordon equation from the Oyibo GUT generic wave component. It follows then that 

all applications of the Klein-Gorden equations can now be recovered from the Oyibo GUT. This includes its solution for 

relativistic  spin-zero particle in D-dimension yielding exact bound state spectra important in atomic and molecular physics 

and chemistry[20]. An interesting observation is that since the Klein-Gordon equation has been obtained from the GUT, then 

in principle one can recover the relativistic energy equation from it and then in turn using any of the standard methods to 

obtain the Dirac equation [5,6]. This will imply that all the solutions and applications of the Dirac equation can also be 

obtained from the Oyibo GUT [6]. Thus the study here is a major boost to the Oyibo GUT as it has laid the foundation for 

bringing quantum field theory within the purview of the GAGUT. 
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