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Abstract 
 

We study the nonrelativistic Schrodinger equation for Ring- shaped 

Multiparameter potential using the generalized parametric form of 

Nikiforov- Uvarov method. The energy eigenvalues and corresponding 

normalized wavefunctions are obtained analytically. We have also discussed 

the special cases of this potential. 
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1.0     Introduction 
In various physical applications including those in nuclear physics and high energy physics [1,2], one of the fundamental 

problems is to obtain the exact and approximate solutions of the Schrodinger, Klein-Gordon (KG) and Dirac wave equations 

with  potentials of interest. However, exact solutions of these equations are very rare such that many quantum systems have 

to rely on approximate methods to obtain their solutions. These wave equations are used to describe particle dynamics in 

quantum mechanics. Over the past years, intensive efforts have been devoted by several authors to solve these wave 

equations for a number of potentials. Some of these potentials include the Coulomb and harmonicpotentials [3,4], Manning-

Rosen potential [5] , Hulthen potential [6], Eckart potential [7], and others [8]. For some quantum mechanical systems the 

most common approximation schemes are Supersymmetric quantum mechanics (SUSYQM) and Shape- invariance method 

[9], shifted 
N

1
expansion [10], Nikiforov-Uvarov method [11],the variational [12], the standard method [13], path integral 

approach [14], the asymptotic interaction method AIM [15] and others. 

The ring-shaped like potentials which belong to the classof noncentral potentials have been an area of special interest in 

physics and chemistry, in recent times. These potentials consist of radial and angular dependent potentials. Studies have 

shown that ring-shaped like potential have found applications in many areas of nuclear physicsand quantum chemistry such 

as the study of ring shaped molecules like benzene [16-18].Furthermore, the shape forms of this potentials play an important 

role when studying the structure of deformed nuclei or the nuclear interactions.Over the years, appreciable efforts have been 

made by many authors to obtain the solutions of different wave equations with ring-shaped potentials both in relativistic and 

non relativistic limits. For example, Zhang et al[19-21] obtained the complete solutions of the Schrödinger and Dirac 

equations with a spherically harmonic oscillatory RS potential. Ikhdair and Sever obtained the exact solutions of the D-

dimensional Schrödinger equation with RS pseudo-harmonic potential [22], modified Kratzer potential [23] and the D-

dimensional KG equation with ring-shaped pseudo-harmonic potential [24]. Hamzavi et al found the exact solutions of Dirac 

equation with Hartmann potential [25] and RS pseudo-harmonic oscillatory potential [26] by using NU method. Berkdemir 

and Sever [27] investigated the 

diatomic molecules subject to central potential plus RS potential. Some years ago, Chen and Dong [28] proposed a new ring 

– shaped potential and obtained the exact solution of Schrodinger equation for the coulomb potential. This type of potential 

used by Cheng and Dong [28] appears to be very similar to the potential used by Yasuk et al [29]. Moreover, Cheng and Dai 

[30], proposed a new potential consisting from the modified Kratzer’s potential [27] plus the new proposed ring-shaped  
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potential in [26]. They have presented the energy eigenvalues for this proposed exactly-solvable non-central potential in three 

dimensional (i.e., D = 3) Schrodinger equation by means of the NU method. Recently, Ikot et al. [31] proposed an improved 

ring- shaped potential and obtained the exact solution of the Schrodinger equation for the non-spherical harmonic oscillator 

and coulomb potential plus this improved ring-shaped potential which has possible applications to ring-shaped organic 

molecules like cyclic polyenes and benzene. 

Motivated by the study of the ring-shaped-like potential, we attempt to propose an improved ring –shaped multiparameter 

potential of the form, 
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)(rV is the multiparameter exponential potential (MPETP) in which PDCBA ,,,, , and q  are all variable  parameters. 

We can demonstrate that with appropriate choices of the parameters the MPETP can reduce to specific exponential potentials 

that have applications in the relativistic and non-relativistic quantum mechanics, for example Hulthen [32], Manning and 

Rosen [33], Eckart [34], and Woods Saxon [35]. Further, )(RSV is a new RS potential identical to the RS part of the non-

spherical harmonic oscillator potential [31]. 

It is therefore the aim of this work to study the Schrodinger equation with the improved ring-shaped multiparameter 

potentials using the NU method which to the best of our knowledge, has never been reported before in any available 

literature.  

This work is organized as follows: Section II describes the principles of NU formalism. The Schrodinger equation with the 

potential under consideration is examined in section III. Discussions on special cases are discussed in section IV.Finally, a 

brief conclusion is given in section V. 

 

2.0       Nikiforov – Uvarov Method 
The NU method can be used to solve a second- order differential equation of the form [36]   
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Where )(s and )(~ s must be polynomials of at most second degree and )(~ s is a polynomial with at most first degree 

and )(s  is a function of the hypergeometric type. 

The parametric generalization of the NU method that is valid for both central and non- central exponential type potential is 

given by the generalized hypergeometric- type equation as [37], 
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Comparing Eq. (2) with Eq. (3), the following polynomials are obtained. 
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According to the NU method, the energy eigenvalues equation is given by the equation: 

022)1()()12()12( 98837383952 =+++−+++++−  nnnnn ,  (6) 
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The wave functions are: 
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Thus, the total wave function becomes 
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Where 
lnN ,
 is the normalization constant. 

Also, the above wave functions can be expressed in terms of the hypergeometric function through  
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where 0,0 1312  cc and   .0,/1,0 33  ccs  

 

3.0     Bound State Solution of the Schrodinger Equation: Calculation of the Energy Eigenvalues 

 and Eigen Functions 
The Schrodinger equation in spherical coordinate for a particle with energy E moving in an external potential is written in 

the following form (in natural units 1== m ): 
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By choosing the wavefunction ),()(,),,( 1  mlnmln YrlRrr −= and performing the necessary calculations, we 

obtain the following equations: 
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A.        Solutions of the polar angular equation 

To obtain the energy eigenvalues and wave functions of Eqn. (10), we make use of an appropriate variables, 2cos=x  

and Eqn. (10) becomes 
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Comparing Eqn. (3) with Eqn. (12), we have the following, 

)13(.
4

)(
,

4

)()(2
,

4

)(
,1,

2

3
,

2

1
3

2

2

2

1321










+
=

−+−−
=

+−
====

m

4

)(

16

1
,

4

)()(2

8

1
,

4

)(

16

1
,

4

1
,

4

1
2

8

2

7

2

654










+
+=

−+−−
−−=

+−
+=−==

m

 
 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 3, (January, 2017), 223 – 232 



 

226 

 

Analytical Solution…           Onyenegecha, Chukwuocha, Ikot, Eze and Oloko    Trans. of NAMP 
 

( ),)(412
2

1
,

4

)()(2)()( 2

10

222

9 


 +++=
−+++++−

=
m

 









+++−+++++−+= 2222

11 )(41
4

1
)()(2)()(

2

1
12  m  

( )2

12 )(41
4

1
 ++=  

( )2222

13 )(41))((2)()(21
4

1
 +++−+++++−+−= m .            (14) 

Using the energy equation (6) and the coefficients given in Eqns. (13) and (14), we obtain the relationship between the 

separation constant  and the non-negative integer rnn = as, 
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Equation (15) is the contribution of the angle-dependent part of the IRNHO. However, by setting 0===  , the 

ring-shaped term potential in Eqn.(1) disappears and the separation constant turns into )1( += ll , where 

....2,1,0,12 =++= mmnl r To find the polar angular part of the wave function, we first obtain the weight function 

from Eqn. (5) as, 
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Which leads to the solutions of the first part of the angular wave function from Eqn. (6c) in terms of the Jacobi polynomial 

as, 
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From Eqn. (6b), we obtain the second part of the angular function as, 
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Thus, the total angular wave function can be obtained namely, )()(  nH =  or from Eqn. (7a) in terms of the 

hypergeometric function as,  
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B.    Solutions of the Radial Part 

In this section we will consider the radial part of the Ring-Shaped Multiparameter potential and obtain the eigenvalues and 

corresponding wave functions. Substituting 
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into Eqn. (9) and making use of the approximation to the centrifugal given by [38] 
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by applying the transformation 
xbe

p

q
s −= , we obtain 
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Comparing Eqn. (23) with Eqn. (3), we derive the physical constants, 
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Using Equations (25), (24) and (6), and after carrying out some mathematical operations, we obtain the energy eigenvalues of 

the radial part as  
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Where, 
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Using Eqns. (7), (24), and (25), corresponding wave function of the radial part is obtained as  
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and nlN  is the normalization constant. 

 

C. Effect of Angular dependent Part on the Radial Solutions 

The total energy of the Ring-Shaped multiparameter potential is obtained by considering the effect of the angle dependent 

part on the radial part. Substituting Eqn. (15) into Eqn. (26) yields the energy spectra for this system as 
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4.0   Discussions on Special Cases 
To test the validity of our results, several other potentials with different applications in physics can be derived from the 

Multiparameter potential by assigning values to the adjustable parameters. 

A.  The Hulthen Potential 

If the parameters are arranged as 1,,,0 −==−==== peqVoBDCA bL
, 0===  and ab 2= , 

the Multiparameter potential reduces to the Hulthen Potential of the form [32]: 

r

r

H
e

e
VorV





2

2

1
)(

−

−

−
−= .                                   (29) 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 3, (January, 2017), 223 – 232 



 

229 

 

Analytical Solution…           Onyenegecha, Chukwuocha, Ikot, Eze and Oloko    Trans. of NAMP 
 

With the corresponding eigenvalue obtained from Eqn. (28) as 
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B . The Manning- Rosen Potential 

Manning – Rosen potential is one of the short range potential and it has been used to describe the diatomic molecular 

vibration [39]If we set ,0== CA 1,,2/)1(,2/ 22 −==−=−= peqmDmKB bL
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=b , the Multiparameter potential changes into the Manning – Rosen potential of the form 
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with the corresponding eigenvalue obtained from Eqn. (28) as 
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C.  Eckart Potential 

By substituting 1,,,,0 ===−=== peqeCBDA bLbL 0===  and 


1
=b , we obtain the 

Eckart Potential as follows [34] 
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D.  Woods Saxon Potential 

 If the parameters are chosen as ,
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RL = , the Multiparameter potential is transformed to the Woods – Saxon potential [35] 
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5.0 Conclusion 
In this paper, we have obtain analytical solutions of the non relativistic Schrodinger equation with the Ring-shaped 

Multiparameter potential under the framework of Nikiforov-Uvarov method with the help of approximation scheme in Ref 

[33]to evaluate the centrifugal term. The energy eigenvalues and corresponding wavefunctions are obtained. By appropriate 

choice of parameters our potential in Eqn.(1) reduces to well known potentials: Hulthen, Woods-Saxon, Eckart, Manning 

Rosen, and with their respective eigenvaluesalso evaluated. 

Finally, it is worth noting that the approximate solution obtained in the newly proposed potential may have some significant 

applications in the study of quantum mechanical systems in both chemical and molecular physics. 
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