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Abstract 
 

This study presents the comprehensive investigation of the dynamic 

characteristics of bi-parametric elastic foundation on prismatic simply-

supported thick beam carrying moving distributed masses at uniform speed. 

An approach involving Generalized Galerkin’s method, the Struble’s 

asymptotic technique and Laplace method is developed. Analytical solutions 

of the model equations describing the motion of the vibrating structures are 

obtained and the results show that the higher the values of the variable bi-

parametric elastic foundation, the lower the dynamic response amplitude of 

the prismatic simply supported Rayleigh beam at constant speed. 
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1.0     Introduction 
The reliability of structural members under moving load has attracted the attention of researchers in the area of engineering 

and applied mathematics [1-3]. The safety and effects of these moving mass on the structural element are of great importance. 

In most of the existing literature in dynamics of structures under moving loads, moving loads have been idealized as moving 

concentrated loads which acts at a certain point on the structure and along a single line in space. That is, the moving load is 

modeled as a lumped load. In practice, it is known that loads are actually distributed over a small segment or over the entire 

length of the structural member as they traverse the structure. Such moving loads are termed uniform distributed loads. 

Concentrated forces are mere mathematical idealization but cannot be found in the real world, where all forces are body 

forces acting over an area.  

Several authors have worked on the concentrated load problems described above. Among them is the work of Timoshenko 

[6] who investigated the case of concentrated load problem moving with a constant velocity along a beam neglecting the 

effect of damping. He obtained analytical solution to the governing initial boundary problems. 

Oni and Awodola [7] studied the response of uniform Rayleigh beam carry moving masses resting on variable Winkler 

elastic foundation. They obtained an analytical solution to the fourth order partial differential equation. They observed that 

the deflections of the Rayleigh beams under the actions of moving masses are higher than the deflections when only the force 

effects of the moving loads are conserved.An efficient analytical method for vibration of Euler-Bernoulli beam on elastic 

foundation with elastically restrained ends using Fourier sine series with Stoke’s Transformation is used by Mustafa Ozguret 

[8] to obtain the vibration response. 

For the two-dimensional structures problem, Gbadeyan and Dada [9] investigated the dynamic analysis of rectangular plate 

on a Pasternak foundation and subjected to uniformly partially distributed masses neglecting the effects of shear deformation 

and rotatory inertia. The critical speeds of the moving masses and forces were calculated. 

In all the above works, studies have been limited to the cases where foundation on which the structure is resting is constant. 

The more practical case which considers the one-dimensional structural problems resting on variable bi-parametric elastic 

foundation is scanty in literature. 

In this paper, the problem of the vibrations under moving distributed masses of a uniform simply supported Rayleigh beams 

on a variable bi-parametric elastic subgrade moving with constant velocity is investigated. The method in [10] is employed to 

solve the governing equation. The analysis is carried out for various parameters in the model equation. 
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2.0 Model Equation 

 

 

 

 

 

 

 

 

 

Consider the vibration of a highly prestressed uniform Rayleigh beam of length L resting on variable bi-parametric elastic 

foundation and subjected to travelling distributed loads. 

Let us assume that the distributed masses M move across the beam starting at time 0t =  and advances on the beam from end

0x =  to end x L= of the beam with uniform velocity c. The governing fourth order partial differential equation of the 

undamped system is given by 
4 2 2 4

4 2 2 2 2

( , ) ( , ) ( , ) ( , )
( ) ( , ) ( , )o

k

Y x t Y x t Y x t Y x t
EI N R Q x Y x t P x t

x x t x t
 

   
− + − + =

    
 (1) 

Where x is the spatial co-ordinate, t is the time, ( , )Y x t is the transverse displacement, EI is the flexural rigidity of the 

structure,  is the mass per unit length of the beam, N is the axial force, 
oR is the rotatory inertia factor, ( ) ( , )kQ x Y x t is 

the foundation reaction and ( , )P x t is the moving distributed load. 

In this system, when the effect of the mass of the moving distributed load on the uniform Rayleigh beam is considered, 

( , )P x t takes the form [4] 

2 2 2
2

2 2
( ) 2 ( , )P MH x ct g c c Y x t

t x t x

    
= − − + +  

     
    (2) 

Where g is the acceleration due to gravity and ( )H  is the well-known Heaviside function. 

At this juncture, the boundary conditions for the dynamical system is arbitrary and the initial conditions without any loss of 

generality are taken as 

( ,0)
( ,0) 0

Y x
Y x

t


= =

          

(3) 

The beam is assumed to rest on variable elastic foundation and the relationship between the foundation reaction and the 

lateral deflection ( , )Y x t takes the form 

( , )
( , ) ( )( ) ( , ) ( )k

Y x t
Q x t K x x Y x t G x

x x

  
= −  

  
      (4) 

where ( )K x and ( )G x are two variable parameters of the elastic foundation and specifically, ( )K x is the variable foundation 

stiffness and ( )G x is the variable shear modulus. 

In this paper, an example of variable elastic foundation in [5] is adopted namely, 
2 3

0( ) (4 3 )K x K x x x= − +
       

  (5a) 

2 3

0( ) (12 13 6 )G x G x x x= − + −        (5b)
 

 

Using equations (2) to (5b), equation (1) yields 
4 2 2 4

2 3

04 2 2 2 2

( , ) ( , ) ( , ) ( , )
(4 3 ) ( , )oY x t Y x t Y x t Y x t

EI N R K x x x Y x t
x x t x t

 
   

− + − − − +
      

2
2 2 3

0 0 2

( , ) ( , )
( 13 12 3 ) (12 13 6 )

Y x t Y x t
G x x G x x x

x x

 
+ − + − + − + −

 
 

2 2 2
2

2 2

( , )
( ) 2 ( , ) ( )

Y x t
MH x ct c c Y x t MgH x ct

t x t x

   
+ − + + = − 

    
    (6) 
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 Fig.1: Simply supported Beam with a distributed load  
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3.0  Operational Simplification 
Equation (6) is a fourth order partial differential equation. Evidently, a closed form solution does not exist and therefore,  an 

approximate solution is sought. In this section, use is made of the Generalized Galerkin’s method described in [11], to reduce 

the equation to a sequence of ordinary differential equation. Thus a solution of the form 

1

( , ) ( ) ( )n m m

m

Y x t Z t U x


=

=         (7) 

is sought. 

An appropriate selection of functions for beam problems are beam mode shapes. Thus, the mth normal mode of vibration of a 

uniform beam 

( ) m m m m
m m m m

x x x x
U x sin A cos B sinh C cosh

L L L L

   
= + + +     (8) 

is chosen such that the boundary conditions are satisfied. 
m is the mode frequency,

mA ,
mB ,

mC  are constants which are 

obtained by substituting (8) into the appropriate boundary conditions. In this paper, it is assumed that the beam has a simple 

supports at both end i.e 0x = and x L= . In this case, both the bending moment and the deflections vanish. Thus, for this 

case it can be shown in equation (8) that 

0m m mA B C= = =  and
m m =         (9) 

Using (9) in (7), one obtains 

1

( , ) ( )sinn m

m

m x
Y x t Z t

L



=

=         (10) 

Substituting (10) into equation (6) and using an appropriate expansion of Fourier series for the Heaviside step function,  after 

some simplification and arrangements, we obtain 

1

( , ) ( ) ( , ) ( )
n

A m B m

m

Q m k Z t Q m k ZV t
=

+

0 1 2 3
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2 ( , ) ( , ) ( , , ) ( )

2 1 2 1
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2 1 2 1
E E E m
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= =

+ +  
+ + −  

+ +  
 

 

( 1) cosm

m

PL m ct

L





 
= − − 

 
        (11) 

Where 

0

M

L



=           (12) 

Equation (11) represents the transformed equation governing the motion of a uniform prestressed  simply supported uniform 

Rayleigh beam on variable bi-parametric elastic subgrade subjected to moving distributed loads. To this end, we consider two 

special cases of equation (11) namely: The moving distributed force (MDF)and the moving distributed mass problem 

(MDM). 

 

3.1  Simply Supported Uniform Rayleigh Beam Traversed by MDF 

Considering only the force effect of the moving distributed loads in equation (11) above, i.e. setting
0 0 = then the entire 

equation (11) now reduces to 
2

2
( ) ( ) ( 1)s m

m ss m

mn

d PL m ct
Z t Z t Cos

dt H L

 
+ = − − + 

 
     (13) 
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Where 
24 4 2 2

2 0

3 2 2 2

1 1

2 2 ( ) ( )
ss

K L pEIm p Nm p

L L m k m k

 

  

   
 = − − − 

+ − 
3 3 2 2 2

0 0 0 0

2 2 2 3 3 2 2

6 12 26 61 1

( ) ( ) ( ) ( )
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m k m k m k k m L



   

    
− − + + − 

− + − − 
2 3 4 4

0 0 0

2 2 3 4 4 2

12 4 61 1 ( ) ( ) 1

( ) ( ) ( ) ( ) ( ) ( )

G mLp m LG p G L p m k m k m

m k m k m k k m k m m k



  

      + − −
− − + − −  

+ − − − + −   
 

2 2

0 0

2 2 2 2

3 121 1 1 1

( ) ( ) ( ) ( )

m G p m LG p

m k m k m k m k 

    
+ − − −   

+ − − +   
  (14) 

2 2 2

2
o

L
p

L R m 

 =
−

,  

2 2 2( )

2

o

mn

m L R m
H

L

  −
=      (15) 

Further arrangements and simplification of equation (13) using Laplace method defined by 

0
( ) ( ) ste dt


− =           (16) 

and when solved in conjunction with initial conditions, one obtains an expression for ( )mZ t . Thus, 

2 2 2

(1 )2
( )

( )

m ss ss
m o

ss m ss

cosq t cos t cos tPL
Z t

m L R m q 

 −  − 
= + 

−  −  
    (17) 

which on inversion yields, 

2 2 2
1

(1 )2
( , )

( )

n
m ss ss

n o
m ss m ss

cosq t cos t cos tPL sinmx
Y x t

m L R m q L =

 −  − 
= +  

−  −  
   (18)  

Equation (18) represents the transverse displacement response of distributed force moving at a constant velocity of a simply 

supported beam resting on variable bi-parametric elastic foundation. 

 

3.2  Simply Supported Uniform Rayleigh Beam Traversed by MDM 
If the force effect and the inertia effects are considered, the solution to the entire equation (11) is sought and we term this 

moving distributed mass (MDM) problem. To this end, use is made of the asymptotic method of Struble extensively 

discussed in [4]. It requires that the asymptotic solution of the homogeneous part of equation (11) be written in the form 

  2

1 1 1( ) ( , ) ( , ) ( ) 0( )m ssZ t B m t cos t m t ZV t  =  − + +
    

  (19) 

where ( , )B m t and ( , )m t are slowly varying functions. 

To obtain the modified frequency, equation (19) and its derivatives are substituted into the homogeneous part of equation 

(11). The resulting variational equations describing the behavior of ( , )B m t and ( , )m t during the motion of the mass 

determined by the modified frequency gives 

   2 ( , ) ( , ) 2 ( , ) ( , ) ( , )ss ss ss ssB m t sin t m t B m t m t cos t m t  −   − +   −
 

   
2

1 1

2 2 2 2
( , ) ( , ) ( , ) cos ( , )

( ) 8 ( )
ss ss ss ss

mm mm

m c L
B m t sin t m t B m t t m t

H m k H m k

 
 +   − −   −

− −
 

 
2 2 2

1

2 2
( , )cos ( , ) 0

8 ( )
ss

mm

m c
B m t t m t

LH m k

 
−  − =

−
     (20) 

Where terms higher than
2

10( ) have been neglected. 

Therefore, where the effect of the mass of the particle is considered, the first approximation to the homogeneous system is 

 ( ) ( , ) ( , )m mZ t B m t cos t m t = −
       

(21) 
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Where 

2 2 2

1

2
1

16
m ss

mm ss

c m
L

H

 


  
=  − −  

  
       (22) 

is the modified frequency representing the frequency of the free system due to the presence of the moving distributed mass. 

Hence, the entire equation (11) reduces to  
2

2

2

1

( ) ( ) ( 1)
(1 ( , , ))

m

m m m

mm m

d PL m ct
Z t Z t cos

dt H H n m t L




 
+ = − − + +  

   (23) 

which when solve with the initial conditions leads to 
3

1

2 0 2 2 2 2

(1 )
( )

( )

m m m
m

m m m

cosq t cos t cos tL g
Z t

m L R m q

 

   

 − −
= + 

− − 
    (24) 

which on inversion yields 
3

1

2 0 2 2 2 2
1

(1 )
( , )

( )

n
m m m

n

m ss m m

cosq t cos t cos tL g sinmx
Y x t

m L R m q L

 

   =

 − −
= +  

− − 
   (25) 

Equation (25) represents the transverse displacement response of moving distributed mass moving at a constant velocity of a 

simply supported uniform Rayleigh beam resting on variable bi-parametric elastic foundation. 

 

4.0    Comments on Closed Form Solutions 
In this section, it is pertinent to establish the conditions under which the phenomenon of resonance occurs.  This has a great 

interest for Structural engineers as it is the root cause of cracks and deformation of structures. Equation (18) clearly shows 

that the simply supported beam resting on a variable bi-parametric elastic foundation and traversed by a moving distributed 

force reaches a state of resonance whenever 

ss

m c

L


 =           (26) 

While equation (25) shows that the same beam under the action of moving mass will experience resonance effect whenever  

m

m c

L


 =           (27) 

From equation (22) 

2 2 2

1

2
1

16
mm ss

mm ss

m c
L

H

 


  
=  − −  

  
       (28) 

which implies  

2 2 2

1

2
1

16
mm ss

ss

m c m c
L

L

  


•

  
=  − − =  

   
      (29) 

It is therefore evident that, for the same natural frequency, the critical speed for the system consisting of a simply supported 

Rayleigh beam resting on a variable bi-parametric elastic foundation and traversed by moving distributed force with uniform 

speed is greater than that of distributed mass problem. Thus for the same natural frequency, resonance is reached earlier in 

the moving distributed mass system than in the moving distributed force system. 

 

5.0          Numerical Results and Discussion 
Numerical results obtained from the analyses in this present study are presented by considering a homogenous beam of 

modulus of elasticity
10 23.1 10 /E N m=  , the moment of inertia

3 42.87698 10I m−=  , velocity 8.123m/s, the beam 

span L=12.192m and the mass per unit length of the beam 2758.291 /Kg m = . The dynamic behaviour of the simply 

supported uniform Rayleigh beam are calculated and graphs are plotted for beam response against time for values of rotatory 

inertia correction factor Ro ,axial force N, mass ratio Eo, shear modulus
0G  and foundation stiffness 

0K . For the simply 

supported uniform Rayleigh beam resting on variable bi-parametric elastic foundation, the results are presented on the 

various graphs below. 
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Figures 2 and 3displays the effects of axial force N on the flexural vibrations of a simply supported uniform Rayleigh beam 

on variable bi-parametric elastic foundation at constant velocity in both cases of moving distributed force and moving 

distributed mass respectively. The graphs show that the response amplitude decreases as the value of the axial force 

increases. 

 
 

 

 

 

 

Figures 4 and 5 shows the effect of rotatory inertia Ro on the transverse displacement of the simply supported Rayleigh beam 

in both cases of moving distributed force and moving distributed mass respectively. The curves show that the response 

amplitude decreases as the value of the rotatory inertia correction factor increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 and 7 display the effects of shear modulus Go on deflection amplitude of the simply supported Rayleigh beam 

transverse by moving distributed force and moving distributed mass for Ko=10000N/m2, N=2000 N/m2 and Ro=0.2 

respectively. It can be seen from the graphs that the response amplitude decreases as the value of the Go increases. 
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traversed by moving distributed force for Go=30000, 

Ko=10000, Ro=0.2 and various values of No. 

Fig. 3: Dispacement response of a Simply supported 

uniform Rayleigh beam on variable Pasternak foundation 

and traversed by moving distributed mass for Go=30000, 
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Figure 8 and 9 displays the deflection of the foundation stiffness Ko for the uniform Rayleigh beam traversed by moving 

distributed force and moving distributed mass. As the value of Ko increases, the response amplitude of the beam for moving 

distributed force and moving distributed mass decreases.  

 
 

 

 

 

 

Figure 10 displays the deflection profile of the mass ratio for the uniform Rayleigh beam for N=2000N/m2, Ro=0.2, Go=3000 

N/m2, Ko=1000 N/m2. As the value of E0 increases, response amplitude of the beam for the moving distributed mass 

decreases. 
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traversed by moving distributed force for N=2000, 

Go=30000, Ro=0.2 and various values of Ko. 

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 0.5 1 1.5 2
Y

(L
/

2
,t

) 
(m

) 
 

Time (sec) 

Ko=0

Ko=4000

Ko=40000
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Fig. 10: Transverse displacement of a Simply supported 

uniform Rayleigh beam on variable Pasternak foundation 

and traversed by moving distributed mass for N=10000, 

Go=30000, Ko=2000, Ro=0.2 and various values of Eo. 

Fig. 11: Comparison of the displacement response of moving  

distributed force and moving distributed mass for Simply 
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foundation for fixed values of Ko=10000, Go=30000, N=2000, 
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Figure 11 compares the displacement curves of the moving distributed force and moving distributed mass for a simply 

supported Rayleigh beam with Ko=10000N/m2. N=2000N/m2, Ro=0.2 and Go=30000N/m2. Clearly, the response amplitude 

of a moving distributed mass is greater than that of a moving distributed force pattern.  

 

6.0 Concluding Remarks 
In this study, a simply supported uniform Rayleigh beam on a variable Pasternak elastic subgrade subjected to mobile 

distributed mass is investigated by generalized Galerkin’s method, an expansion of Heaviside function in series form and 

Struble’s asymptotic method. The dynamic responses of the thick beam are obtained in closed forms and the conditions under 

which the finite system may experience resonance phenomenon are established. The effects of rotator inertia, foundation 

stiffness, axial force and shear modulli on the beam deflections are presented. Also, for the same natural frequency, the 

critical speed for moving distributed mass (mdm) problem is smaller than that of the moving distributed force (mdf) problem 

of the simply supported thick beam considered which show that the moving distributed force solution is not always an upper 

bound for an accurate solution of the moving distributed mass problem. 
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