
 

195 

 

Transactions of the Nigerian Association of Mathematical Physics 

Volume 3, (January, 2017), pp 195 – 214 

© Trans. of NAMP 
 

Flexural Analysis of Isotropic Rectangular Plate Resting On Variable Bi-Parametric 

Elastic Foundation at Uniform Speed 
 

Oni S.T and S.N. Ogunyebi 
  

Federal University of Technology, Akure. Department of Mathematics, 

Ekiti State University, Ado Ekiti, Nigeria. 

 

Abstract 
 

In this paper, the influence of bi-parametric elastic subgrade on the dynamic 

response of a rectangular plate is investigated analytically and numerically. 

The fourth order partial differential equation governing the system is solved 

using Shadnam et al method, Struble’s asymptotic technique and method of 

integral transformation. The effects of the parameters namely; rotatory 

inertia, correction factor, shear modulus and foundation stiffness are 

investigated for all the boundary conditions considered. Numerical results in 

plotted curves show that all the above-mentioned parameters actually have 

significant effects on the dynamic response of rectangular plate resting on 

variable bi-parametric elastic subgrade under moving distributed masses. 

Finally, we deduced that the critical speed for the moving distributed mass 

problem is reached prior to that of moving distributed force problem for the 

system under consideration. 
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1.0     Introduction 
Beams and plates of various sizes are widely found in various structural engineering applications such as satellites, tanks, 

bridges etc. The dynamic behaviour of such structures resting on elastic foundation has attracted numerous authors in the area 

of transport and civil engineering practices. This present study is sequel to an earlier one [1] that considered the dynamic 

response of simply supported rectangular plate under moving distributed mass. In particular, this paper is a generalization of 

the theory advanced in paper [1]. 

The problem of the dynamic response of elastic plates to moving loads neglecting the moving mass effect of the load has 

been addressed by several authors. However, in comparison plates subjected to moving loads have been the attraction of few 

authors. Holl [2] was among the earliest researchers into this area. He solved the problem of a rectangular plate carrying 

uniformly loads and concluded that the critical velocity exerted for each mode of vibration. Willis et al [3] examined the 

effects of eccentricity, span length, acceleration and initial velocity of the moving load by using the finite element method to 

study the dynamic response under moving loads. 

Most of the previous works concerned plate flexures not resting on an elastic foundation. Meanwhile, for practical purposes, 

it is useful to consider plate supported by an elastic foundation. Therefore, the simplest mechanical foundation model was 

proposed by Winkler [4]. This model provides a simplified model to approximate the reaction of the foundation without 

much mathematical complexity. It expresses the relation between the pressure and the deflection of the surface. It also 

provides a simplified model to approximate the reaction of the foundation without much mathematical complexity, for this 

and other reasons, majority of the studies have been denoted to Winkler type foundation. Several authors have worked in this 

area, [5,6,7] to mention few ones. 

Furthermore, the dynamical problems of elastic plate under moving load resting on an elastic foundation are cumbersome to 

handle especially if the foundation stiffness varies along the structures. Oni and Awodola [8] investigated the dynamic 

response to moving masses of rectangular plate resting on an elastic foundation with stiffness variations. The results show 

that an increase in the rotatory inertia correction factor and foundation modulus decreases the displacements response of the 

plate. 
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However, most of these investigations have been on moving concentrated load which act at a point on the structure along a 

single line in space. Loads in real sense are disturbed over a small segment. And for more practical purpose, it is better to 

model moving load problem as moving distributed load as against concentrated moving load. The works of Oni and 

Ogunyebi [9], Esmailzadeh and Gorashi [10], Gbadeyan and Dada [11] treated the moving distributed load extensively. But 

in all these, the foundations are of constant type. Therefore, this paper presents the dynamic behavior of isotropic rectangular 

plate subjected to moving distributed masses and resting on variable bi-parametric elastic foundation at constant speed. 

 

2.0 Theoretical Analysis 
(a) Model Equation 

The dynamic behaviour of a rectangular plate incorporating the effects of rotatory inertia correction factor to moving 

distributed load on variable bi-parametric elastic foundation is governed by the fourth order partial differential equation 
2 2

2 2 2

2 2
( , , ) ( , , ) ( , , ) ( , , ) ( , , )o

kD V x y t V x y t F V x y t R V x y t P x y t
t t

 
 

  + + =  +
 

 (2.1) 

where E is the Young modulus, D  is the bending rigidity of the plate, h  is thePlate’s thickness,   is themass per unit area 

of the plate, v  is the poisson’s ratio, x  is the position co-ordinate in x − direction, t is time, y is theposition co-ordinate in 

y − direction,
oR is therotatory inertia correction factor, ( , , )P x y t is themoving distributed load and 

2

12(1 )

Eh
D

V
=

−
          (2.2) 

The relation between the foundation reaction and the lateral deflection ( , , )V x y t  is 

( , , ) ( ) ( , , ) [ ( ) ( , , )] [ ( ) ( , , )]kF x y t S x V x y t K x V x y t K x V x y t
x x y y

   
= − −

       

(2.3) 

where ( )S x  and ( )K x  are the two variable parameters of the elastic foundation. Specifically, ( )S x  is the variable 

foundation stiffness and ( )K x  is the variable shear modulus. 

For the constant foundation stiffness and constant shear modulus, we have 
2( , , ) ( , , ) ( , , )kF x y t SV x y t K V x y t= −        (2.4) 

Since we are concerned with the dynamical system when the foundation parameter vary along x , equation (2.3) is rewritten 

to take the form 

2( , , ) ( ) ( , , ) ( ) ( , , ) ( ) ( , , )kF x y t S x V x y t K x V x y t K x V x y t
x


= − − 

  

  (2.5) 

where  

( )K x  implies ( )
d

K x
dx

and
2  is the two-dimensional Laplace operator. 

where the effect of the moving load on the response of the plate is taken into consideration, the external moving surface load 

takes on the form 

( , , )P x y t =
*

( , , )[1 ( , , )]fP x y t V x y t
g


−       (2.6) 

where ( , , )fP x y t  is the continuous moving force, 
* is the substance acceleration operator and g is the acceleration due to 

gravity. 

The end-support for the plate are arbitrary and the structure under consideration is assumed to be carrying an arbitrary 

number say ( )N  of distributed masses iM  moving with constant velocities  , 1,2,3...ic i N=  along a straight line parallel 

to x − axis (no difficulty arises by assuming that masses travel in an arbitrary path) issuing from point 1y y= on the y-axis. 

Therefore, the moving force acting on the plate is defined as 

( , , )fP x y t = 1

1

( ) ( )
N

i i

i

m gH x c t H y y
=

− −       (2.7) 

where ( )H   is the Heaviside function. The operator 
* used in above for masses travelling in an arbitrary path in the x y−  

plane is defined as 
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* =
2

2t


+



2 2
2

2
2 i ic c

x t x

 
+

  
        (2.8) 

 As an example in this problem, a variable elastic foundation stiffness of the form [1] 
2 3

0( ) (4 3 )S x S x x x= − +         (2.9) 

where 0S  is the foundation stiffness, and a variable shear modulus of the form [1] 

2 3

0( ) (12 13 6 )K x K x x x= − + −
 

      (2.10) 

where 0K are constants are considered. 

Substituting (2.2), (2.3), (2.4), (2.6), (2.7), (2.8), (2.9), and (2.10) into (2.1), one obtains 
2

2 2

2
( , , ) ( , , )D V x y t V x y t

t



  + =


oR
 

4 4
2 3

02 2 2 2
( , , ) (4 3 ) ( , , )V x y t S x x x V x y t

t x t y

  
+ − − + 

    

2 2
2 2 3

0 0 2 2
( 13 12 3 ) ( , , ) (12 13 6 )K x x V x y t K x x x

x x y

   
+ − + − + − + − + 

   
( , , )V x y t  1

1

( ) ( )
N

i i

i

M gH x c t H y y
=

+ − −

2 2 2
2

12 2
2 ( , , ) ( ) ( )i i i iM c c V x y t H x c t H y y

t x t x

   
− + + − −  

          

(2.11) 

The boundary conditions are arbitrary and the initial conditions, without loss of generality is taken as 

( , , ) 0 ( , , )V x y t V x y t
t


= =


        (2.12) 

(b)   Solution Procedures 

We first express Heaviside function as a Fourier series and due to the variable foundation term, the elegant method of the 

generalized integral transform breaks down while the generalized Galerkin’s method used in one-dimensional structural 

problems (Beam problem) fails to handle the two-dimensional structural problem (plate problems). 

Hence, the technique of Shadnam et al [12] is used to reduce the fourth order partial differential equation governing the 

motion of the plate to a set of second order ordinary differential equations. The resulting equation is then simplified by the 

modified asymptotic method of Struble. Finally, the method of convolution theory is then employed to obtain the closed form 

solution of the two-dimensional dynamical problems under moving distributed loads. 

To solve equation (2.11), let the deflection be written in the form [12] 

1

( , , ) ( , ) ( )m m

m

V x y t x y t


=

=          (2.13) 

where m  are the known eigenfunctions of the plate with the same boundary conditions. Also m  have the form of  

4 4 0m m m   − =
 

        (2.14) 

where 
2

4 m
m

D





=           (2.15) 

and , 1,2,3,...,m m =  are the natural frequencies of the dynamical system and ( )m t  are amplitude functions which have 

to be calculated. 

Therefore eqn. (2.11) is written in the form 
4 2 4 4

2 30

2 2 2 2 2
( , , ) ( , , ) ( , , ) (4 3 ) ( , , )o SD

V x y t V x y t R V x y t x x x V x y t
t t x t y 

    
+ = + − − + 
     

20 ( 13 12 3 ) ( , , )
k

x x V x y t
x


+ − + −

  
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2 2

2 30

2 2
(12 13 6 ) ( , , )

k
x x x V x y t

x y

  
+ − + − + 

  

2 2 2
2

1 2 2
1

( ) ( ) 2
N

i i
i i i

i

M g M
H x c t H y y c c

t x t t =

    
+ − − − + + 

     
 ( , , )V x y t

1( ) ( )iH x c t H y y− −           (2.16) 

Re-written the right hand side of the eqn. (2.16) in the form of a series, one obtains 
4 4

2 3 20 0

2 2 2 2
( , , ) (4 3 ) ( , , ) ( 13 12 3 ) ( , , )o S k

R V x y t x x x V x y t x x V x y t
t x t y x



  

  
+ − − + + − + − 

    
2 2

2 30

2 2
(12 13 6 ) ( , , )

k
x x x V x y t

x y

  
+ − + − + 

  

2 2 2
2

1 2 2
1

( )( ) 2
N

i i
i i i

i

M g M
H x c t y y c c

t x t x =

    
+ − − − + + 

     


 

1( , , ) ( ) ( )iV x y t H x c t H y y− −
1

( , ) ( )m m

m

x y t


=

=        (2.17) 

When equation (2.13) is substituted into equation (2.17) one obtains, 

0 2 30 0
, , , ,

1

( , ) ( ) ( , ) ( ) 4 3 ( , ) ( )m xx m tt m yy m t m m

m

S k
R x y t x y t x x x x y t  

 



=


   +  − − +  +    




( )2 2 3

, , ,( 13 12 3 ) ( , ) ( ) (12 13 6 ) ( , ) ( ) ( , ) ( )m x m m xx m m yy mx x x y t x x x x y t x y t   − + −  + − + −  + 
   

2

1 , , , , ( , ) 1

1

( ) ( ) ( ( , ), ( ) 2 ( , ) ( ) ( , ) ( )( )
n

i i
i m m tt i m x m t i m xx m t i

i

M g M
H x c t H y y x y t c x y t c x y H x c t y y  

 =

 
− − −  +  +  − −  

 


1

( , ) ( )m m

m

x y G t


=

=
         (2.18)

 

Multiplying both sides of the equation (2.18) by ( , )p x y , then integrate on an area A of the plate and subsequently impose 

the orthogonality of ( , )m x y , one obtains 

 (0 2 3

, , 0

1

1 1
( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 4 3m m xx p tt m yy p tt

mm A

G t R x y x y m t x y x y m t S x x x   





=

  =  +  − − +   


2 2 3

0 ,( 13 12 3 ) ( , ) ( , ) ( , ) (12 13 6 )m x pk x x x y x y m t x x x + − + −  + − + −

( ) ), , 1

1

1
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( ) ( )

N

m xx p m yy p i p i

i

x y x y m t x y x y m t M g x y H x c t H y y    
 =

 +  + − −
 

2

, , 1

1
( ( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , ) ( , ) ( , ) ( ) ( )i m p tt i m x p t i m xx iM x y x y m t c x y x y m t c x y m t H x c t H y y dA    


−  +  +  − − 

(2.19) 

Where 
2

m p

A

dA =            (2.20)

 

Further simplification of equation (2.19) gives 


4

0

, , , ,

1

1
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )n

tt xx p tt yy p tt

m A

D
m t m t R x y x y m t x y x y m t   




   






=

  +  =  +  


( 2 3 2

0 , 0 ,

1
4 3 ( , ) ( , ) ( , ) ( 13 12 3 ) ( , ) ( , ) ( , )p tt x pS x x x x y x y m t k x x x y x y m t      


  − − +  + − + −   

( )2 3

, ,(12 13 6 ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )xx p yy px x x x y x y m t x y x y m t       + − + −  + 
  
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1 , , ,

1

1 1
( , ) ( ) ( ) ( ( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , )

N

i p i i p tt i x p t

i

M g x y H x c t H y y M x y x y m t c x y x y m t       
 =

+ − − −  + 

) 2

, 1( , ) ( , ) ( , ) ( ) ( )i xx p ic x y x y m t H x c t H y y dA   +  − −


    (2.21) 

Equation (2.21) is a set of coupled ordinary differential equation of our dynamical system. 

Expressing Heaviside function in equation (2.21) as a Fourier series i.e. 

( )

0

(2 1) ( )1 1
( )

4 2 1

i

i

n

Sin n x c t
H x c t

n







=

+ −
− = +

+


      (2.22) 

( )1

1

0

(2 1) ( )1 1
( )

4 2 1n

Sin n y y
H y y

n







=

+ −
− = +

+


      (2.23) 

Considering equations (2.23) and (2.23), equation (2.21) now becomes 

( )2 0

0 0

1 1

1 1 1 1
( , ) ( , ) ( , ) ( , )

16BB

N

m A BA CA

im

Z m t Z m t R Z m t S K Z m t 


   
 




= =

 
+ − − + −  

 
 

1 1 1

0 0 0

1 cos(2 1) 1 sin(2 1) 1 sin(2 1)

4 2 1 4 2 1 4 2 1
CB CC CD

m m n

m m n
y y y

m m n
     

  

  

= = =

+ + +
+ − +

+ + +
    

1 1 1 12
0 0 0 0

1 sin(2 1) 1 cos(2 1) sin(2 1) cos(2 1)

4 2 1 2 1 2 1 2 1
CE CE CD CB

n n n m

n n n m
y y y y

n n n m
       

 

   

= = = =

+ + + +
− + − 

+ + + +
     

1 1 1

0 0 0

sin(2 1) 1 1 cos(2 1) 1 sin(2 1)
( , ) 2

2 1 16 4 2 1 4 2 1
CC DA DB DC

m m m

m m m
y Z m t c y y

m m m
      

 

  

= = =

+ + + 
− + + − + + +
    

1 1 12
0 0 0

1 cos(2 1) 1 sin(2 1) 1 cos(2 1)

4 2 1 4 2 1 2 1
DD DE DD

n n n

n n n
y y y

n n n
     

  

  

= = =

+ + +
+ − + 

+ + +
    

1 1 1

0 0 0

sin(2 1) cos(2 1) sin(2 1)
( , )

2 1 2 1 2 1
DE DB DC

n m m

n m m
y y y Z m t

n m m
     

  

= = =

+ + + 
−  − 

+ + + 
    

2

1 1 1

0 0 0

1 1 cos(2 1) 1 sin(2 1) 1 sin(2 1)

16 4 2 1 4 2 1 4 2 1
EA EB EC ED

m m n

m m n
c y y y

m m n
      

  

  

= = =

+ + +
+ + − + + + +

    

1 1 12
0 0 0

1 cos(2 1) 1 cos(2 1) sin(2 1)

4 2 1 2 1 2 1
EE ED EE

n n n

n n n
y y y

n n n
     

 

  

= = =

+ + +
− + −

+ + +
    

1 1 1

0 0 1

cos(2 1) sin(2 1)
( , ) ( , )

2 1 2 1

N
i

EB EC p i

m m i m

M gm m
y y Z m t c t y

m m
    



 


= = =

+ +  
 − =

+ +  
    (2.24) 

Where 
4

2 n
m

D


 =           (2.25)

 
and 

, ,
0 0

( , ) ( , ) ( , )
Lx Ly

A m xx m yy px y x y x y dydx    = +   , 4BA a b cS S S = − +  

13 12 3 12( ) 13( ) 6( ) ( )BB d e f g h i j k l m nS S S S S S S S S S S = − + − + + − + + + − +  

0 0
( , ) ( , )

Lx Ly

CA m px y x y dydx  =     
1

0 0
sin(2 1) ( , ) ( , )

Lx Ly

CB m pm y x y x y dydx   = + 
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1
0 0

cos(2 1) ( , ) ( , )
Lx Ly

CC m pm y x y x y dydx   = +   

0 0
cos(2 1) ( , ) ( , )

Lx Ly

CD m pn x x y x y dydx   = +   

0 0
sin(2 1) ( , ) ( , )

Lx Ly

CE m pn x x y x y dydx   = +   

,
0 0

( , ) ( , )
Lx Ly

DA m x px y x y dydx  =    

1 ,
0 0

sin(2 1) ( , ) ( , )
Lx Ly

DB m x pm y x y x y dydx   = +   

1 ,
0 0

cos(2 1) ( , ) ( , )
Lx Ly

DC m x pm y x y x y dydx   = +   

,
0 0

sin(2 1) ( , ) ( , )
Lx Ly

DD m x pn x x y x y dydx   = +   

,
0 0

cos(2 1) ( , ) ( , )
Lx Ly

DE m x pn x x y x y dydx   = +   

,
0 0

( , ) ( , )
Lx Ly

EA m xx px y x y dydx  =    

1 ,
0 0

sin(2 1) ( , ) ( , )
Lx Ly

EB m xx pm y x y x y dydx   = +   

1 ,
0 0

cos(2 1) ( , ) ( , )
Lx Ly

EC m xx pm y x y x y dydx   = +   

,
0 0

sin(2 1) ( , ) ( , )
Lx Ly

ED m xx pn x x y x y dydx   = +   

,
0 0

cos(2 1) ( , ) ( , )
Lx Ly

EE m xx pn x x y x y dydx   = +   

and 

0 0
( , ) ( , )

Lx Ly

a m pS x x y x y dydx =   ,  2

0 0
( , ) ( , )

Lx Ly

b m pS x x y x y dydx =    

3

0 0
( , ) ( , )

Lx Ly

c m pS x x y x y dydx =   ,  
,

0 0
( , ) ( , )

Lx Ly

d m x pS x y x y dydx =    

,
0 0

( , ) ( , )
Lx Ly

e m x pS x x y x y dydx =   ,  2

,
0 0

( , ) ( , )
Lx Ly

f m x pS x x y x y dydx =    

,
0 0

( , ) ( , )
Lx Ly

g m xx pS x y x y dydx =   ,  
,

0 0
( , ) ( , )

Lx Ly

h m yy pS x y x y dydx =    

,
0 0

( , ) ( , )
Lx Ly

i m xx pS x x y x y dydx =   ,  
,

0 0
( , ) ( , )

Lx Ly

j m yy pS x x y x y dydx =    

2

,
0 0

( , ) ( , )
Lx Ly

k m xx pS x x y x y dydx =   , 2

,
0 0

( , ) ( , )
Lx Ly

l m yy pS x x y x y dydx =    

3

,
0 0

( , ) ( , )
Lx Ly

m m xx pS x x y x y dydx =   , 3

,
0 0

( , ) ( , )
Lx Ly

n m yy pS x x y x y dydx =    

(2.26) 

The second order coupled differential equation (2.24) is the transformed equation governing the problem of a rectangular 

plate on a variable bi-parametric elastic foundation. This differential equation holds for all variants of the classical boundary 

conditions. 

In order to solve equation (2.24) we shall consider only one mass with uniform velocity c along the line y=y1. Thus for single 

mass M, equation (2.24) reduces to 

( )2 0

0 0

1 1

1 1 1
( , ) ( , ) ( , ) ( , )

16BB

N
o

m A BA CA

im

Z m t Z m t R Z m t S K Z m t 


    





= =

 
+ − − + −  

 
  

1 1 1

0 0 0

1 cos(2 1) 1 sin(2 1) 1 sin(2 1)

4 2 1 4 2 1 4 2 1
CB CC CD

m m n

m m n
y y y

m m n
     

  

  

= = =

+ + +
+ − +

+ + +
  

 
 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 3, (January, 2017), 195 – 214 



 

201 

 

Flexural Analysis of Isotropic…           Oni and Ogunyebi    Trans. of NAMP 
 

1 1 1 12
0 0 0 0

1 sin(2 1) 1 cos(2 1) sin(2 1) cos(2 1)

4 2 1 2 1 2 1 2 1
CE CE CD CB

n n n m

n n n m
y y y y

n n n m
       

 

   

= = = =

+ + + +
− + − 

+ + + +
     

1 1 1

0 0 0

sin(2 1) 1 1 cos(2 1) 1 sin(2 1)
( , ) 2

2 1 16 4 2 1 4 2 1
CC DA DB DC

m m m

m m m
y Z m t c y y

m m m
      

 

  

= = =

+ + + 
− + + − + + +
    

1 1 12
0 0 0

1 cos(2 1) 1 sin(2 1) 1 cos(2 1)

4 2 1 4 2 1 2 1
DD DE DD

n n n

n n n
y y y

n n n
     

  

  

= = =

+ + +
+ − + 

+ + +
    

1 1 1

0 0 0

sin(2 1) cos(2 1) sin(2 1)
( , )

2 1 2 1 2 1
DE DB DC

n m m

n m m
y y y Z m t

n m m
     

  

= = =

+ + + 
−  − 

+ + + 
    

2

1 1 1

0 0 0

1 1 cos(2 1) 1 sin(2 1) 1 sin(2 1)

16 4 2 1 4 2 1 4 2 1
EA EB EC ED

m m n

m m n
c y y y

m m n
      

  

  

= = =

+ + +
+ + − + + + +

    

1 1 12
0 0 0

1 cos(2 1) 1 cos(2 1) sin(2 1)

4 2 1 2 1 2 1
EE ED EE

n n n

n n n
y y y

n n n
     

 

  

= = =

+ + +
− + −

+ + +
    

(1 1 *
0 0

cos(2 1) sin(2 1)
( , )

2 1 2 1

g x
EB EC mi mi mi

m m m

m Lm m
y y Z m t Cosb A Sinb

m m mi
   



 

= =

+ +   
 − = − + 

+ +   
 

(yi i i i
mi mi mi mi mi mi mi mi mi mi mi mj

x x x x

Lc t c t c t c t
B Coshb C Sinhb Cosb A Sinb B Coshb C Sinhb Cosb

L L L L mj


+ + + − − −  −



1 1 1 1
mj mj mj mj mj mj mj mj mj mj mj mj mj

y y y y

y y y y
A Sinb B Coshb C Sinb Coshb A Sinb B Coshb C Sinhb

L L L L


+ + + + − − − 



  

           (2.27) 

Where 

o

x y

M

L L



=           (2.28) 

Equation (2.27) is now the fundamental equation of our dynamical problem when the rectangular plate on variable bi-

parametric elastic foundation has arbitrary end conditions. In what follows, we shall discuss two special cases of the equation 

(2.27) namely; the moving distributed force and the moving distributed mass problems respectively.  

2.1 Rectangular Plate on Variable Foundation Traversed by a Moving  Distributed Force 

In this section, an approximate model which assumes the inertia effect of the moving distributed mass M as negligible is 

obtained when the mass ratio 0o = is set to zero in equation (2.27). Thus, setting 0o = , equation (2.27) reduces to 

2 2
2 0 0 0

12 * 2 * *
1 1 0

( , ) 1
( , ) ( , ) ( , ) ( ) ( )

gA
m A i j

m m m

MS Kd Z m t d
Z m t R Z m t Z m t a ct a y

dt dt S
 

 


 

 

 

= =

  
+ − − − =       

   (2.29) 

This is an approximate model which assumes the inertia effect of the moving mass as negligible. 

Evidently, an exact analytical solution to this equation is not possible. Consequently, the approximate analytical solution 

technique, which is a modification of the asymptotic method of Struble shall be used. 

To solve equation (2.29), first, we neglect the rotatory inertia term and rearrange the equation to take the form  
2

2 0 0
12 *

10 0
1

( , )
( , ) ( , ) ( ) ( )

go oBB BB
m BA BA i j

m

MK Kd Z m t
Z m t Z m t a ct a y

dt S S
   




 
    





=


    
+ + − − − =    

    


 

(2.30) 
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Where 

0

*

o

m

S



=


          (2.31) 

By means of the Strubles’ technique, one seeks the modified frequency corresponding to the frequency of the free system due 

to the presence of the shear modulus 0S . An equivalent free system operator defined by the modified frequency then replaces 

equation (2.30). Thus, consider a parameter
o for any arbitrary ratio defined by 

1

o

m o




 =

+
                   (2.32) 

20( )o

m m = + 
         

(2.33) 

Substituting equation (2.33) into the homogenous part of equation (2.30) yields 

2
2 0 0

2
10 0
1

( , )
( , ) ( , ) 0BB BB

m m BA m BA

K Kd Z m t
Z m t Z m t

dt S S
 




 
 



=


    
+  − − − − =     

    
   (2.34) 

When 0m = in (2.34), a situation corresponding to the case in which the effect of the foundation reaction is regarded as 

negligible is obtained. In such a case the solution is of the form 

 ( , ) cosm m oZ m t D t = −
 

       (2.35) 

where mD and o are constants. 

since 0m = for any arbitrary constants mass ratio, Struble’s technique requires that the asymptotic solution of the 

homogeneous part of equation (2.34) be of the form 

  2( , ) ( )cos (1, ) 0( )m m m m mZ m t t t Z t =  − + +       (2.36) 

where m and m are slowly varying functions of time or equivalently 

2
2

2

( ) ( )
0( )     ;     0( )m m

m m

d t d t

dt dt

 
→  → 

      

(2.37) 

2
2

2
0( )     ;     0( )m m

m m

d t d t

dt dt

 
→  →        (2.38) 

Where→ implies “is of ”. 

To obtain the modified frequency equation (2.36) and its derivatives are substituted into the homogeneous part of equation 

(2.34) where terms higher than m are neglected. The variational equations are obtained by equating the coefficients of

 sin m mt  − and  cos m mt  − terms on both sides of the resulting equation to zero. The resulting variational equations 

describing the behaviour of ( )m t and ( )m t during the motion of the system is determine by the modified frequency. In 

particular, the variational equations are 

2 ( ) 0m mt t−  =          (2.39) 

and 

0

0

2 ( ) ( ) ( ) 0m m m m BA m m BB m

K
t t t t

S
    −  +  =      (2.40) 

Solving equation (2.39) and (2.40) respectively, one obtains 

( )m mt K =           (2.41) 

and 

0

0

2

BA
m BA

m m

m

K
t

S




 


 
 − 

 = +         (2.42) 
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Where ( )m t and m are constant. 

Then equation (2.36) becomes 

  2( , ) cos (1, ) 0( )o m o mZ m t D t Z t = − + +        (2.43) 

where 

0

0

2

BB
m BA

m m

m

K

S




 


 
 − 

 = −         (2.44) 

Is called the modified frequency due to the effect of the shear modulus of the foundation. Thus, equation (2.44) now becomes 
2

2

2

( , )
( , ) 0m

d Z m t
Z m t

dt
+ =         (2.45)  

Using (2.45), equation (2.29) can be written as 
2 2

2

12 * 2 *
1

( , ) ( , )
( , ) ( ) ( )

0

o
g

m A i j

m m

Md Z m t R d Z m t
Z m t a ct a y

dt dt
 



 




=

+ − =
 

    (2.46) 

In what follows, we seek the modified frequency corresponding to the frequency of the free system due to the presence of the 

effect of rotatory inertia correction factor
0R . An equivalent free system operator defined by the modified frequency then 

replaces equation (2.46). To this end, the homogeneous part of equation (2.46) is rearranged to take the form 

( ) ( )

22 2

2 2
1
1

( , )( , ) ( , )
0

1 1

m m A

m A m A

Z m t Ad Z m t d Z m t

dt A A dt


 

 



=


+ − =
− −

     (2.47) 

Where 
0

*m

m

R
A =


          (2.48) 

Now consider the parameter
0R for any arbitrary ratio defined as 

1

m
o

m

A

A
 =

+
          (2.49) 

It can be shown that 
20( )m o oA  = +          (2.50) 

and 

21
1 0( )

1
o A o

o

  


= + +
−

        (2.51) 

where 

1o A             (2.52) 

Substituting equations (2.49) and (2.50) into equation (2.47), one obtains 
2 2

2 2

2 2
1
1

( , ) ( , )
( , ) ( , ) 0m o A m o A

d Z m t d Z m t
Z m t Z m t

dt dt


     


=


+ + − =    (2.53) 

to o only. 

Since 0 1  , an asymptotic solution of the homogeneous part of equation (2.45)  

can be written in the form 

  2

0 0 0( , ) ( )cos (1, ) 0( )m mZ m t B t t Z t   = − + +      (2.54) 

where 0 ( )B t and m are slowly varying function of time. 

Similarly, therefore, when the effects of the rotatory inertia is considered, the first approximation to the homogenous system 

is 
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 ( , ) coso mm oZ m t f t = −         (2.55) 

where 

1
2

o A
mm m

 
 

 
= + 

 
         (2.56) 

Equation (2.56) is the modified frequency corresponding to the frequency of the free system due to the presence of the 

rotatory inertia. 

 

In order to solve the non-homogeneous equation (2.53), the differential operator which acts on ( , )Z m t is replaced by the 

equivalent free system operator defined by the modified frequency mm . Thus, 


2

2

2
( , ) ( , ) cos sin sinh cosh

x y

mm m mi m mi m mi m mi

L Ld
Z m t Z m t H b A b B b C b

dt mimj
+ = − + + +  

1cos sin cosh sin ( )i i i i
mi m mi m mi m mi m

c t c t c t c t
b A b B b C b E y

L L L L


+ − − − 

   

 (2.57) 

where 

1( ) cos sin sinh coshm mj m mj m mj m mjE y b A b B b C b= − + + +  

cos sin cosh sini i i i
mj m mj m mj m mj

c t c t c t c t
b A b B b C b

L L L L
+ − − −     (2.58) 

   and 

mi

x

i c
b

L


=           (2.59) 

The ordinary differential equation, when solved using Laplace transformation and convolution theory, it can be shown that 

1 2 2 2 2

sin sin cos cos1
( , ) ( ) sin

m x y o mi mm mi mm
m m mm

i j mm mm mi mm mi

H L L b t t b t t
Z m t E y E t

m m b b

 


  

 + +
=  − − −

− −
 

2 2 2

4 4 4 4 4 4

2 sin 2 cosh cos 2 sin sinmi mm mi mm mi mi mi mm mi mi mm mi

mm mi mm mi mm mi

B b t b t B b t b t B b t

b b b

   

  
− − +

− − −
 

2 2 2 2

4 4 4 4 4 4

sin ( ) 2 sin 2 sinh cos 2 cosmi mi mm mi mm mi mm mi mm mi mi mi mm mi

mm mi mm mi mm mi

B b t b C b t b t C b t hb t

b b b

    

  

−
+ − +

− − −

2 2 2

4 4 4 4

cosh ( )mi mm mi mi mi mm

mm mi mm mi

C b t C b

b b

 

 

−
+ + 

− − 
 

      (2.60) 

where 

cos sin cosh sinho

m mi mi mi mi mi mi miE b A b B b C b= − − + +     (2.61) 

and in view of equation (2.13),one obtains  

1 2 2 2 2
1 1

sin sin cos cos1
( , , ) ( ) sin

m x y o mi mm mi mm
m m mm

mi mj mm mm mi mm mi

H L L b t t b t t
V x y t E y E t

mimj b b

 


  

 

= =

 + +
=  − − −

− −
  

2 2 2

4 4 4 4 4 4

2 sin 2 cosh cos 2 sin sinmi mm mi mm mi mi mi mm mi mi mm mi

mm mi mm mi mm mi

B b t b t B b t b t B b t

b b b

   

  
− − +

− − −
 

2 2 2 2

4 4 4 4 4 4

sin ( ) 2 sin 2 sinh cos 2 cosmi mi mm mi mm mi mm mi mm mi mi mi mm mi

mm mi mm mi mm mi

B b t b C b t b t C b t hb t

b b b

    

  

−
+ − +

− − −
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2 2 2

4 4 4 4

cosh ( )
sin cos sinhmi mm mi mi mi mm mi mi mi

mi mi

mm mi mm mi x x x

C b t C b b x b x b x
A B

b b L L L

 

 

 −
+ +  + +

− −  

 

1 1 1 1
cosh sin cos sinh cosh

mj mj mj mjmi
mi mj mj mj

x y y y y

b y b y b y b yb x
C A B C

L L L L L

 
+  − − +    

    

(2.62) 

Equation (2.62) represents the transverse displacement response to a moving distributed force of a rectangular plate resting 

on a variable bi-parametric elastic foundation with constant velocity. 

 

2.2 Rectangular Plate on Variable Foundation Traversed by Moving Distributed Mass 

In this section, one is required to solve the entire equation (2.24) when no term of the coupled differential equation is 

neglected. This is termed the moving distributed mass problem. 

To this end, the approximate analytical solution method of Struble that has been used to solve this form of coupled 

differential equation in the previous section shall be employed to obtain its closed form solution.

 

Thus equation (2.24) after arrangements can be rewritten in the form 
2

2 3

1 1

( , , ) ( , , )
( , ) ( , ) ( , )

1 ( , , ) 1 ( , , )

mf a mm mf a

mf a mf a

H n m t H n m t
Z m t Z m t Z m t

H n m t H n m t

  

 

+
+ +
   + +   

 

1 2

11
1

( , , ) ( , ) ( , , ) ( , )
1 ( , , )

mf

a a

mf a

H n m t Z m t H n m t Z m t
H n m t

 









=


+ + + 
  

3 1*

1

( , , ) ( , ) ( ) ( )
1 ( , , )

mf x y

a i j

mf a m

gL L
H n m t Z m t a ct a y

H n m t
  




+ =

 +  

   (2.63) 

Where 

mf

x y

M

L L



=           (2.64) 

1 1 1*
0 0

1 1 cos(2 1) 1 sin(2 1)
( , , )

16 4 2 1 4 2 1

mf

a CA CB CC

m mm

m m
H n m t y y

m m


    

 

 

= =

 + +
= + − + +

   

1 1 12
0 0 0

1 sin(2 1) 1 cos(2 1) 1 cos(2 1)

4 2 1 4 2 1 2 1
CD CE CE

n n n

n n n
y y y

n n n
     

  

  

= = =

+ + +
+ − + 

+ + +
    

1 1 1

0 0 0

sin(2 1) cos(2 1) sin(2 1)

2 1 2 1 2 1
CD CB CC

n m m

n m m
y y y

n m m
     

  

= = =

+ + + 
−  − 

+ + + 
  

  

(2.65) 

2 1 1*
0 0

2 1 1 cos(2 1) 1 sin(2 1)
( , , )

16 4 2 1 4 2 1

mf

a DA DB DC

m mm

c m m
H n m t y y

m m


    

 

 

= =

+ +
= + − + +

   

1 1 12
0 0 0

1 cos(2 1) 1 sin(2 1) 1 cos(2 1)

4 2 1 4 2 1 2 1
DD DE DD

n n n

n n n
y y y

n n n
     

  

  

= = =

+ + +
+ − + 

+ + +
    

1 1 1

0 0 0

sin(2 1) cos(2 1) sin(2 1)

2 1 2 1 2 1
DE DB DC

n m m

n m m
y y y

n m m
     

  

= = =

+ + + 
−  − 

+ + + 
  

  

(2.66) 

and 
2

3 1 1*
0 0

1 1 cos(2 1) 1 sin(2 1)
( , , )

16 4 2 1 4 2 1

mf

a EA EB EC

m mm

c m m
H n m t y y

m m


    

 

 

= =

+ +
= + − + +

 
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1 1 12
0 0 0

1 sin(2 1) 1 sin(2 1) 1 cos(2 1)

4 2 1 4 2 1 2 1
ED EE ED

m n n

m n n
y y y

m n n
     

  

  

= = =

+ + +
+ − + 

+ + +
    

1 1 1

0 0 0

sin(2 1) cos(2 1) sin(2 1)

2 1 2 1 2 1
EE EB EC

n m m

n m m
y y y

n m m
     

  

= = =

+ + + 
−  − 

+ + + 
  

  

(2.67) 

In what follows, we shall first consider the homogenous part of equation (2.63) and obtain a modified frequency 

corresponding to the frequency of the free system due to the presence of the moving mass M. An equivalent free system 

operator defined by the modified frequency then replaces equation (2.63). To this end, we set as before

 

2

1 10( )mf  = +          (2.68) 

setting 1 0 = , we obtain a case corresponding to the case when the inertia effect of the mass of the moving system is 

neglected. The solution of the homogeneous part of equation (2.24) can be written as 

 1( , ) cosmm mmZ m t C t = −         (2.69) 

where mmC and 1 are constants. 

setting 1 0  , an asymptotic solution of the homogeneous part of equation (2.24) can be written in the form 

2

1( , ) ( ) os (1, ) 0( )m mm mZ m t A t c t Z t   = − + +       (2.70) 

where ( )mA t and
m  are slowly varying function of time. 

Substituting equation (2.70) and its derivatives into the homogenous part of equation (2.24), we note the following in oder to 

obtain variational equations  

  ( )1
1

(2 1) 1
( ) (2 1) ( ) 2 1

2 1 2(2 1)
mm m mm m

cos m y
sin t sin m y t m

m m


    

+
− = + + − +  + +

 

( )1

1
(2 1) ( ) 2 1

2(2 1)
mm msin m y t m

m
  − + − − +  +      

(2.71) 

  ( )1
1

sin(2 1) 1
( ) (2 1) ( ) 2 1

2 1 2(2 1)
mm m mm m

m y
sin t sin m y t m

m m


    

+
− = + − − +  + +

 

( )1

1
cos (2 1) ( ) 2 1

2(2 1)
mm mm y t m

m
  − + + − +  +      

(2.72)

 

  ( )1
1

(2 1) 1
( ) (2 1) ( ) 2 1

2 1 2(2 1)
mm m mm m

cos m y
cos t sin m y t m

m m


    

+
− = + + − +  + +

 

( )1

1
cos (2 1) ( ) 2 1

2(2 1)
mm mm y t m

m
  + + − − +  +      

(2.73)

 

and 

  ( )1
1

sin(2 1) 1
cos ( ) (2 1) ( ) 2 1

2 1 2(2 1)
mm m mm m

m y
t sin m y t m

m m


    

+
− = + + − +  + +  

( )1

1
sin (2 1) ( ) 2 1

2(2 1)
mm mm y t m

m
  + + − − +  +      

(2.74) 

Similarly, the same results are obtained when m n= in equations (2.71) to (2.72) above. 

Therefore when the effect of the mass of the load is considered, the first approximation to the homogeneous system is 

 1( , ) cosmt

mk mZ m t Ae t
  −

= −        (2.75) 

 

 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 3, (January, 2017), 195 – 214 



 

207 

 

Flexural Analysis of Isotropic…           Oni and Ogunyebi    Trans. of NAMP 
 

Where 

2

11
8

EA
mk mm CA

mm

c 
  



  
= − −  

  

       (2.76) 

is the modified frequency corresponding to the frequency of the free system due to the presence of moving distributed mass. 

 

us to solve the non-homogeneous equation (2.24), the differential operator which acts on ( , )Z m t and ( , )Z m t , is replaced 

by the equivalent free system operator defined by the modified frequency mk . That is 

12

1*
( , ) ( , ) ( ) ( )

x y

mk mi mj

m

gL L
Z m t Z m t a ct a y


+ =


      (2.77) 

It is noticed that equation (2.77) is prototype of equation (2.70) with mk replacing mm  respectively. Therefore the solution to 

the entire equation (2.77) when inverted is given by 

1 2 2 2 2
1 1

sin sin cos cos1
( , , ) ( ) sin

m x y o mi mk mi mk
m m mk

mi mj i j mk mk mi mk mi

H L L b t t b t t
V x y t E y E t

m m b b

 


  

 

= =

 + +
=  − − −

− −
  

2 2 2

4 4 4 4 4 4

2 sin 2 cosh cos 2 sin sinmi mk mi mk mi mi mi mk mi mi mk mi

mk mi mk mi mk mi

B b t b t B b t b t B b t

b b b

   

  
− − +

− − −
 

2 2 2 2

4 4 4 4 4 4

sin ( ) 2 sin 2 sinh cos 2 cosmi mi mk mi mk mi mk mi mk mi mi mi mk mi

mk mi mk mi mk mi

B b t b C b t b t C b t hb t

b b b

    

  

−
+ − +

− − −

2 2 2

4 4 4 4

cosh ( )
sin cos sinhmi mk mi mi mi mk mi mi mi

mi mi

mk mi mk mi x x x

C b t C b b x b x b x
A B

b b L L L

 

 

 −
+ +  + +

− −  
 

cosh mi
mi

x

b x
C

L


+ 



1 1 1 1
sin cos sinh cosh

mj mj mj mj

mj mj mj

y y y y

b y b y b y b y
A B C

L L L L

 
− − +   

 

 (2.78) 

Equation (2.78) represents displacement response to a moving distributed mass of a rectangular plate resting on variable bi-

parametric elastic foundation with constant velocity. 

 

3.0 Application 
We shall now illustrate the foregoing analysis by practical example. Particularly, we shall consider plates clamped at edges

0, xx x L= = with simple supports at edges 0, yy y L= = and plates clamped at all edges. 

 

3.1 Rectangular Plate Clamped at Edges 0, xx x L= = With Simple Supports At Egdes

 0, yy y L= = .  

In this section, a rectangular plate clamped at edges 0, xx x L= = with simple support at edges 0, yy y L= = , the boundary 

conditions at such opposite edges are 

(0, , ) 0V y t = ,    ( , , ) 0xV L y t =              (3.1) 

( , , ) 0V x y t = ,    ( , , ) 0yV x L t =      (3.2) 

(0, , )
0

V y t

x


=


,   

( , , )
0xV L y t

x


=


    (3.3) 

2

2

( , , )
0

V x y t

y


=


,   

2

2

( , , )
0

yV x L t

y


=


    (3.4) 

and hence for the normal modes, one obtains 

( )0 0,miU =      ( ) 0mi xU L =     (3.5) 
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( )0 0,mjU =      ( ) 0mj yU L =     (3.6) 

( )0
0,

miU

x


=


     

( )
0

mi xU L

x


=

  

   (3.7) 

( )2

2

0
0,

mjU

y


=


     

( )2

2
0

mj yU L

y


=


   (3.8) 

For simplicity, the initial conditions is of the form 

( , ,0)
( , ,0) 0

U x y
U x y

t


= =


        (3.9) 

Using the boundary conditions (3.1) to (3.4) and (3.5) and(3.6)in Beam functions. Hence, the following values of the 

constants are obtained for the clamped edges 

sinh sinsinh sin

cosh cos cosh cos

pi pimi mi
mi pi

mi mi pi pi

A A
  

   

−−
= −  = −

− −
    (3.10) 

1        1mj piB B= −  = −       (3.11) 

        Cmj mi pi piC A A= −  = −       (3.12) 

Where 

mi mib =           (3.13) 

The frequency equation of the clamped edges is given by the following determinant equation 

cos cosh sin sinh
0

sin sinh cos cosh

mi mi mi mi

mi mi mi mi

   

   

− −
=

+ − −
    (3.14) 

Which when simplified yields 

cosh cos 1 0mi mi  − =       (3.15) 

such that 

1 2 34.73004, 7.85320, 10.99561i i i  = = =    (3.16) 

and  ( )2 2 2 2 20 1 1
1 2 2 1 sin 2 2 sin

2 2

x
pi pi pi pi pi pi pi pi pi pi pi pi pi

pi

L
U A B C C A B B C A A


 


= + − + + − − − − +  

( ) ( ) ( )2 2 sinh cosh 2 cosh sin 2 sinh cospi pi pi pi pi pi pi pi pi pi pi pi pi piB C B A C B A C     + + + + + − +  

( ) ( ) 2 sinh sin 2 cosh cos coshpi pi pi pi pi pi pi pi pi pi pi pi piC A B C A B B C     + + + − + +


   
(3.17) 

pjU is obtained by replacing subscript i with j in equation (3.17). For the simple edges, it is 

0        0mj pjA A=  =       (3.18) 

0        0mj pjB B=  =       (3.19) 

0        0mj pjC C=  =      (3.20) 

while the corresponding frequency equation is  

        mj pjmj pj   =  =      (3.21) 

and 

0

2

y

pj

L
U


=       (3.22) 

Thus, the general solutions of the associated moving distributed force and moving distributed mass problems of the simple-

clamped rectangular plate are obtained by substituting the above results in (3.10) to (3.22)into equations (2.62) and (2.78). 

3.2 Rectangular Plate Clamped at All Edges 
For a rectangular plate clamped at all edges, both the deflection and the slope vanish at such ends. Thus the following 

boundary conditions pertains  
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(0, , ) 0V y t = ,    ( , , ) 0xV L y t =      (3.23) 

( ,0, ) 0V x t = ,     ( , , ) 0xV x L t =     (3.24) 

(0, , )
0

V y t

x


=


,   

( , , )
0xV L y t

x


=


    (3.25) 

( ,0, )
0

U x t

y


=


,   

( , , )
0

yU x L t

y


=


    (3.26) 

And hence for the normal modes, one obtains 

( )0 0,miU =     ( ) 0mi xU L =      (3.27) 

( )0 0,mjU =     ( ) 0mj yU L =      (3.28) 

( )0
0,

miU

x


=


    

( )
0

mi xU L

x


=

  

    (3.29) 

(0)
0

mjU

y


=


    

( )
0

mj yU L

y


=


     (3.30) 

The initial conditions are taken to be of the form given by the equation (2.12). Using the boundary conditions (3.23) to (3.26) 

and (3.27) to (3.28) in Beam functions, one obtains the following values of the constants and the frequency equations for the 

clamped edge 0x = sand xx L=  

sinh sinsinh sin

cosh cos cosh cos

pi pimi mi
mi pi

mi mi pi pi

A A
  

   

−−
= −  = −

− −
    (3.31) 

1        1mj pjB B= −  = −       (3.32) 

        Cmj mj pj pjC A A= −  = −       (3.33) 

The frequency equation of the clamped edges is given by the following determinant equation 

cos cosh sin sinh
0

sin sinh cos cosh

mi mi mi mj

mi mj mi mi

   

   

− −
=

+ − −
    (3.34) 

Which when simplified yields 

cosh cos 1 0mi mi  − =       (3.35) 

Such that 

1 2 34.73004, 7.85320, 10.99561i i i  = = =    (3.36) 

It follows that for the pjth mode of vibration 

cosh cos 1 0pj pj  − =
     

(3.37) 

Similarly, for the clamped edges, 0y = and
yy L= the same process is followed to obtain 

sinh sin sinh sin

cosh cos cosh cos

mj mj pj pj

mj pi

mj mj pj pj

A A
   

   

− −
= −  = −

− −
    (3.38) 

1        1mj pjB B= −  = −       (3.39) 

        Cmj mj pj pjC A A= −  = −       (3.40) 

The frequency equation of the clamped edges is given by the following determinant equation 

cos cosh sin sinh
0

sin sinh cos cosh

pj pj pj pi

pj pi pj pj

   

   

− −
=

+ − −
    (3.41) 

which when simplified yields 

cosh cos 1 0pj pj  − =       (3.42) 
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Similarly, for pith mode of vibration, we have 

cosh cos 1 0pi pi  − =      (3.43) 

Using arguments similar to the previous ones, Upi is given by the equation (3.17) when the values of constants,
pjA ,

pjB ,
pjC

and
pj and are approximately substituted into the equation. 

mjU is obtained by replacing subscript pi by mj in equation 

(3.17). 

Thus, the general solutions of the associated moving distributed force and moving distributed mass problems of the clamped-

clamped rectangular plate are obtained by substituting the above results in (3.31) to (3.43) into equations (2.62) and (2.78). 

 

4.0 Comments on Closed form Solutions 
In studying the undamped system such as this, it is desirable to examine the phenomenon of resonance. Equation (2.62) 

clearly shows that the isotropic rectangular plate traversed by a moving distributed force at constant velocity reaches a state 

of resonance whenever 

i
mm

x

c

L

 =        (4.1) 

while equation (2.78) shows that the same plate under the action of a moving distributed mass experiences resonance effect 

whenever 

i
mk

x

c

L

 =       (4.2) 

Where 

2

11
8

EA
mk mm CA

mm

c 
  



  
= − −  

        

(4.3) 

 Equations (4.2) and (4.3) imply 

2

11
8

iEA
mk mm CA

mm x

cc

L

 
  



  
= − − =  

       

 (4.4) 

Therefore, it can be deduced from equations (4.4) that, for the same natural frequency, the critical speed (and the natural 

frequency) for the system traversed by a moving distributed mass is smaller than that of the  system traversed by a moving 

distributed force. Thus, resonance is reached earlier in the moving distributed mass system than in the moving distributed 

force system. 

 

5.0          Numerical Results and Discussion  
In order to carry out the calculations of practical interests in the dynamics of structures and engineering design for all the 

illustrative examples considered in this section. A rectangular plate resting on variable bi-parametric elastic foundation of 

length 0.914yL m= ,and breath 0.457xL m= is considered. The mass is assumed to travel at the constant velocity 

8.123m/sc = . Furthermore, values for , ,E,mp  and 1y are chosen to be
9 22.109 10 /kg m , 0.5, 0.004 be and 0.4m 

respectively. The results are as presented on the various classes of boundary condition considered. 

The deflection profile of simple-clamped rectangular plate resting on variable bi-parametric elastic subgrade under the action 

of moving distributed force is given in figure 1 for various values of rotatory inertia correction factor and fixed values of 

foundation stiffness So=20000 and shear modulus Ko=40000. The result shows that as Ro increases, the deflection profile of 

the isotropic rectangular plate with constant velocity decreases. Similar results are obtained when the simple-clamped plate is 

subjected to a moving distributed mass as shown in figure 2. 
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Fig. 1: Deflection profile of simple-clamped 

rectangular plate on variable bi-parametric elastic 

foundation and traversed by moving distributed force 

for Ko=40000, So=20000 and various values of Ro. 

Fig. 2: Deflection profile of simple-clamped rectangular 

plate on variable bi-parametric elastic foundation and 

traversed by moving distributed mass for Ko=40000, 

So=20000 and various values of Ro. 

Fig. 3: Transverse displacement response of simple-

clamped rectangular plate on variable bi-parametric 

elastic foundation and traversed by moving distributed 

force for Ko=40000, Ro=0.4 and various values of So. 
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Fig. 4: Transverse displacement response of simple-

clamped rectangular plate on variable bi-parametric 

elastic foundation and traversed by moving distributed 

mass for Ko=40000, Ro=0.4 and various values of So. 

Fig. 5: Displacement response of simple-clamped 

rectangular plate on variable bi-parametric elastic 

foundation and traversed by moving distributed force 

for So=20000, Ro=0.4 and various values of Ko. 
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Fig. 6: Displacement response of simple-clamped 

rectangular plate on variable bi-parametric elastic 

foundation and traversed by moving distributed mass for 

So=20000, Ro=0.4 and various values of Ko. 
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In figure 3, the displacement response of a simple-clamped rectangular plate traversed by moving distributed force for 

various values of shear modulus Ko and for fixed values of rotatory inertia correction factor Ro=0.4 and foundation stiffness 

So=20000. It is observed that higher values of shear modulus Ko reduce the deflection profile of the rectangular plate. The 

same results are obtained for the simple-clamped rectangular plate under moving distributed mass at constant velocity for 

various value of shear modulus Ko as shown in figure 4. 

Figures 5 and 6 show the transverse displacement response of the simple-clamped rectangular plate to moving distributed 

forces and masses respectively for various values of foundation stiffness So and for fixed values of rotatory inertia correction 

factor Ro=0.4 and shear modulus Ko=40000. From the figures, it is observed that as the values of foundation stiffness 

increase, the deflection profile of the simple-clamped plate under the action of moving distributed forces and moving 

distributed masses decreases. 
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Also, figure 7 shows the comparison of the traverse displacement response of moving distributed force and moving 

distributed mass cases of the simple-clamped rectangular plate on variable bi-parametric elastic subgrade for fixed values of 

Ro=0.4, Ko=20000 and So=40000. 
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Fig. 7: Comparison of the displacement response of 

moving distributed force and moving distributed mass 

cases for simple-clamped rectangular plate on variable 

bi-parametric elastic foundation for So=20000, 

Ko=40000, and Ro=0.4. 
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Fig. 8: Deflection profile of clamped-clamped 

rectangular plate on variable bi-parametric elastic 

foundation and traversed by moving distributed force for 

Ko=40000, So=20000 and various values of Ro. 

Fig. 9: Deflection profile of clamped-clamped 

rectangular plate on variable bi-parametric elastic 

foundation and traversed by moving distributed mass 

for Ko=40000, So=20000 and various values of Ro. 
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Fig. 10: Transverse displacement response of clamped-

clamped rectangular plate on variable bi-parametric 

elastic foundation and traversed by moving distributed 

force for Ko=40000, Ro=0.4 and various values of So. 
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The displacement response of clamped-clamped rectangular plate resting on variable bi-parametric elastic subgrade under the 

action of moving distributed force is given in figure 8 for various values of rotatory inertia correction factor and fixed values 

of foundation stiffness So=20000 and shear modulus Ko=40000. The result shows that as Ro increases, the deflection profile 

of the isotropic rectangular plate with constant velocity decreases. Similar results are obtained when the clamped -clamped 

plate is subjected to a moving distributed mass as shown in figure9. 

In figure 10, the displacement response of a clamped -clamped rectangular plate traversed by moving distributed force for 

various values of shear modulus Ko and for fixed values of rotatory inertia correction factor Ro=0.4 and foundation stiffness 

So=40000. It is observed that higher values of foundation stiffness So reduce the deflection profile of the rectangular plate. 

While similar results are obtained for the clamped-clamped rectangular plate under moving distributed mass at constant 

velocity for various value of shear modulus Ko as shown in figure 11. 

Figures 12 and 13 show the transverse displacement response of the clamped-clamped rectangular plate to moving distributed 

forces and masses respectively for various values of foundation stiffness So and for fixed values of rotatory inertia correction 

factor Ro=0.4 and shear modulus Ko=40000. From the figures, it is observed that as the values of foundation stiffness 

increase, the deflection profile of the clamped-clamped plate under the action of moving distributed forces and moving 

distributed masses decreases. 

Also, figure 14 shows the comparison of the traverse displacement response of moving distributed force and moving 

distributed mass cases of the clamped-clamped rectangular plate on variable bi-parametric elastic subgrade for fixed values of 

Ro=0.4, Ko=20000 and So=40000. 
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Fig. 11: Transverse displacement response of 

clamped-clamped rectangular plate on variable bi-

parametric elastic foundation and traversed by moving 

distributed mass for Ko=40000, Ro=0.4 and various 

values of So. 
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Fig. 12: Displacement response of clamped-clamped 

rectangular plate on variable bi-parametric elastic 

foundation and traversed by moving distributed force for 

So=20000, Ro=0.4 and various values of Ko. 

 

Fig. 13: Displacement response of clamped-clamped 

rectangular plate on variable bi-parametric elastic 

foundation and traversed by moving distributed mass 

for So=20000, Ro=0.4 and various values of Ko. 
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Fig. 14: Comparison of the displacement response of 

moving distributed force and moving distributed mass 

cases for clamped-clamped rectangular plate on variable 

bi-parametric elastic foundation for So=20000, 

Ko=40000, and Ro=0.4. 
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6.0   Conclusion  
The problem of the dynamic behavior of a rectangular plate resting on variable bi-parametric elastic foundation and traversed 

by moving distributed masses moving at uniform velocity has been investigated. In this work, closed form solutions of the 

fourth order partial differential equation governing the system of two-dimensional structure are presented. The solution 

technique is based on the shadnam et al method [12],the expansion of Heaviside function in series form, a modification of 

Struble’s asymptotic technique and the use of Laplace transformation. 

For the illustrative examples considered, the solutions obtained are analyzed and the resonance conditions for all the 

problems investigated show that resonance is reached earlier in a system traversed by moving distributed mass than that 

under the action of a moving distributed force. Also, an increase in the values of rectangular plate parameters namely, 

foundation stiffness, shear modulus, rotatory inertia correction factor decrease the response amplitude of the plate. It is 

established that for all the illustrative examples considered, the moving distributed force solution is not an upper bound for 

the accurate solution of the moving distributed mass cases. Thereby established the non-reliability of the moving distributed 

force solution as a safe approximation to the moving distributed mass problem is confirmed. 
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