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Abstract 
 

Hierarchically structured models provide the basis for an entirely different 

approach in data analysis. It originated in an attempt at using conceptual 

model and has been applied to a wide variety of statistical problems. In this 

paper, emphasis is on exploring hierarchically structured modelling 

approach as an alternative model for predicting the distribution of insurance 

risks. The cardinal approach of the hierarchically structured model is to 

impose structures into state spaces and to work with subsets of states by 

partitioning the original state spaces into hierarchically organized subsets. 

Dynamics in the state space were approximated with advantage by random 

walk on trees. The result of the study on insurance risk shows that 

hierarchically structured model allows for the realization of estimated 

probability distribution which determines uniquely how the system evolves 

with time and provides a generalization of an ARIMA (1, 0, 0) models. 

 

 Keywords: State space, Dynamics, Binary Trees, Random Walk, Markov Processes 

 

1.0     Introduction 
Hierarchical structured models have gained wide spread use in statistics during the last few decades [1], and have proved to 

be useful tools for modeling dynamic behaviour in large dimensional state space [2,3] or exploring structures in complicated 

data [4].Hierarchical structured state space models are concerned with conceptual information modeling and it captures on 

how different real world object behaviors may be vied.  Hierarchical Modelsare central to many current analysis of 

environmental processes [4-7],and also for predicting the spread of ecological processes [8]. 

The notion of hierarchically structured model is extended to insurance claim data in this paper by looking at the profile of 

insurance risks. The profile conventionally assumed in insurance is usually that there is a high frequency of low severity 

incidents and a low frequency of high severity incidents.  The profile revealed basically that all estimates of the expected 

future claim costs involve a compounding of two functions: the number of claim in a given period and the amount of each 

claim. The pattern may be viewed, as the distributions of claims over possible type or categories over time. The profile of 

risks is a way of representing the frequency and severity of risks as leaves of a tree. This characteristics pattern has been used 

as the basis for algorithms for identifying the claims distributions. 

More generally the tree structure (that is, the set of contexts) is known and the problem is on how to estimate the conditional 

probabilities at the leaves.  The context (the path from the root of the tree) are possible and desirable, where there is no unit 

difference between successive members, but for this presentation a context is taken to be a suffix of the data string. In 

addition, the contexts may provide insight and define regions of state space which are interesting. 

Dynamics in this study is introduced by considering a two level binary tree.  Essentially the use of a binary tree structure 

provides a convenient way of representing the contexts as leaves of a tree.  In addition, the contexts may provide insight and 

define regions of state space which are interesting.    

 

2.0  Methodology:  Basic Hierarchical Approach 
The formal ideas of hierarchical modeling arise from simple probability rules. The  idea follow those in [4], and is based on 

the simple fact from probability that the joint distributions of a collection of random variables can be decomposed into a  

 

 

Corresponding author: Agwuegbo S.O.N, E-mail: Agwuegbo_son@yahoo.com, Tel.: +2348038004887 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 3, (January, 2017), 169 – 176 

mailto:Agwuegbo_son@yahoo.com


 

170 

 

Hierarchically Structured Model for…           Agwuegbo, Onugha and Ezepue    Trans. of NAMP 
 

series of conditional models.  The major advantage of modeling the conditional distribution of the data is due to the fact that 

substantial simplifications in model form are possible.  That is, if ZYX ., are random variables, then the joint distributions 

can be written in terms of factorizations as    

))(/)(,/(),,( XXYXYZZYX = .                              (1) 

This simple formula is the crux of hierarchical thinking.  However, it is often much easier to specify the distribution of the 

relevant conditional models by conditioning the process at the present time given the past.  In this case, the product of a series 

of relatively simple conditional models leads to a joint distribution that can be quite involving [4]. 

For complicated processes in the presence of data, the idea is to approach the problem as a conceptual information modeling. 

The hierarchical organization of subsets can be visualized as an inverted tree [2, 3, 9]. It is advantageous and useful to impose 

structures into state spaces and to work with subsets of states by partitioning the original state spaces into hierarchically 

organized subsets, where a subset on a level is further partitioned into a set of smaller subsets on the next level [2, 3].   A 

realization or time history on the structure of the state spaces is that not all of these numerous configurations are equally 

likely in equilibrium.  Presumably, since not all the states are equally accessible from the initial state in a given amount of 

time, a structural information or constraints is build into the model state spaces in order to classify states into clusters or 

subsets corresponding to some measure of similarity or distances. As the measure of distance is changed, a cluster can be 

further subdivided into a set of sub clusters, so that clusters and sub clusters, become partially nested, or form nodes of trees. 

Dynamics of symbol strings is achieved by the use of binary tree as shown in Fig. 1.0 below 
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Figure 1: A simple Binary Tree for Claim Process 

Essentially the use of a binary tree structure provides a convenient way of representing the claim process as leaves of a tree. 

To enumerate all possible system state an appropriate state description on the claim data is to classify the distribution into the 

following states: 

State 1   Low frequency  Low severity  1S  

State 2   High frequency  Low severity  2S  

State 3   Low frequency  High severity  3S  

State 4   High frequency  High severity  4S  

The classification formed was compared by order of fineness (i.e. by inclusion).  The order of fineness between the classes 

corresponds to the order relating to the node of a rooted tree. It is assumed that probabilities are independent when 

conditioned on context. The binary tree structure reproduced a system having finite memory nSSS ,......, 10 and the system 

defined as a causal model. By letting tX  be the claim amount at time ,Tt  the collection of random variables 

}4,3,.2,1,{ == tSS t  is a stochastic process in discrete time while the claim amounts 0, tX t   have a continuous range 

and continuous state space.   
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2.1  Stochastic Processes for Insurance Risk 

Instead of thinking of the process TtX t ,  as a sequence of random variable, one can visualize it as the random walks on a 

tree defined by the realization or sample path of the process denotedas )(tS .  Random walks are processes with 

independent increments and processes with independent increments are Markov processes. The study of random walks is the 

study of sum of random variables and the general practice in defining such structure of state space is by partitioning the 

observation into organized subsets. The defining condition of the random walk ,.......}2,1,0,{ =tSt  starting at zero is 

obtained by cumulatively summing or integrating independent identically distributed (i.i.d) random variables. Thus a random 

walk with zero mean is obtained by defining 00 =S and  

tt XXXS +++= .....21                 for ,........2,1=t                      (1) 

Where  }{ tX  is i.i.d noise. If  }{ tX  is the binary process, then ,.......}2,1,0,{ =tSt  is called a symmetric random walk. 

}{ tS  can be considered a Gaussian random walk by assuming identically, independently and normally distributed 

increments and is defined as  


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using the fact that  

tt ZZZS +++= ............,.........21         (3) 

and that the Z’s are jointly independent the mean and variance of the random walk can be computed as  
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In order to handle these processes within the framework of the classical time series analysis, the random walk is a martingale 

sequences. Since tS  is an independent increments random sequence defined for 0t , then  
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Then tS  in Equation (6) is a martingale, which can be show as  
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Viewing the conditional expectation as an estimate of the future value of the sequence based on the past, then for a 

martingale this estimate is just the most recent value. The random walk process in our study can be characterized as a series 

in which successive changes in level are determined by chance, in this case by a random drawing process from an )1,0(N  

population.  For our purpose, a random walk is any stochastic, non stationary process that can be defined by the relation 

)t(-                                1 += − ttt aSS     - - - -  (8) 

Where )( ta  is a white noise process with mean zero and variance σ2. 

 

If tS  denotes the position of a particle on the real line at time t , Equation (8) states that the position of the particle at time t  

is its position at time 1−t  plus a random displacement.  The particle may be said to perform a random walk. Equation (8) is 

identical with the equation satisfied by an )1(AR  process if the autoregressive parameter   is set equal to 1.  But the 

)1(AR process is a well defined. Equation (8) is non stationary and can be written as  

)t(-                                1 =− − ttt aSS                      (9) 

If one define the variables tZ  by 1−−= ttt SSZ , then Equation (9) is the first differences of a martingale and is called a 

martingale difference (MD) written as 

)(-                       = taZ tt        (10) 

Note that ( 10) is a martingale difference. Martingale difference has known linear second order properties 

2.2  The Difference Operator 
Using the backward shift operator B , one may rewrite Equation (9)through recursive substitution as 

tt aSB =− )1(  

tt aBS 1)1( −−=  

11 ..........aaaS ttt ++= −              (11) 

In order to handle this process within the framework of the classical time series analysis, the observed claim process must be 

transformed by differencing the process in order to get a stationary process.  The transform process is then 

t

d

t SBZ )1( −=                   (12) 

Such a model is called an integrated model because the stationary model that is fitted to the difference data has to be summed 

or integrated to provide a model for the original non stationary data.  Describing the dth  difference of tS  is said to be an

),,( qdpARIMA  process. In practice, the first differencing is often formal to be adequate to make a series stationary.  It 

may turn out that there is more than one plausible model and based on the use of Akaike information criterion( AIC ),   the 

goodness of fit of different models is to be compared by assuming that the data are normally distributed. The AIC  is 

defined as 

nlikelihoodimizedAIC 2log max2 +−−=  

,2ˆ  2 constnInT ++                                   (13) 

where T  is the length of the observed series after any differencing , n  is the number of fitted parameters and 
2̂  is the 

estimated white noise variance.The model with the smallest value of the AIC is judged to be the most appropriate [10]. 

3.0 Results 

The idea of dynamics on state spaces that are hierarchically structured is extended in our study to insurance risks as in Table 

1.        
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Table 1: Distribution of Insurance Claims 

Jan: 4469654, 991698, 1243344, 513000, 522473, 3800000, 744538, 610536, 900000,     573750, 2025000, 570978, 542400, 

2592000, 574536, 705682, 719059, 933038, 696173, 665766, 581487, 700000, 750000, 661000                

Feb: 684068, 750988, 3401510, 1389917, 1113524, 623396, 3036377, 2334479,  2208789, 1107032, 1050000, 691572, 

612716, 537750, 1072512, 1312500, 838080, 12831900, 10159375, 1516854, 500000, 7000000, 1682558, 1012500 

March: 1700000, 899965, 513000, 3000000, 1066400, 5772690, 629803, 819500, 1923000, 720000, 1624500, 2183298, 

1133930, 1680120, 1938070, 1163191 

April:   1091250,  1327784, 3066729, 17093431, 645188, 612000, 586528, 6277603,   864374, 3278926, 1260000, 738000 

May:    678000, 577776, 869660, 501785, 777600, 965037, 1260000, 1304394, 1800000, 1083598, 1177808, 1310143, 

1298097, 1968740, 760089, 2700000, 4302997, 1224172, 643204, 1344823, 2588500, 3165761. 

June:      532010, 1495237, 742808, 724693, 1176641, 7000000, 2109000, 810000, 699510, 531644, 966845, 2618136, 

1230618, 3162224, 1081947, 666750, 1500000, 652500, 529376, 4850000, 878500, 520600, 3298464, 1980000, 679115, 

632591, 540000. 

July:      627838, 723050, 504900, 2263523, 606000, 1729917, 1950000, 704660, 1000000, 2479351, 1417898, 500000, 

810000, 1408603, 1256584, 1620000, 540000, 522969, 717039, 982816, 4250000, 700000. 

Aug:       760000, 2353302, 546826, 531451, 823125, 515735, 1364993, 1030228, 1393273, 3244220, 1080000, 1044000, 

24400000, 1075284, 1070244, 1197000, 995663, 761846, 4254817, 1162800, 24579269. 

Sept:      1338750, 1338750, 6300000, 3179432, 800650, 891950, 4454095, 2307436, 559558, 559545, 2063844, 2685354, 

1246300, 1245983, 4884223, 857719, 566820, 631125, 1648438, 832733, 3254900, 2061216, 1085797. 

Oct:        5235988, 688500, 1411242, 2607147, 1530000, 800000, 1620000, 1067600, 826350, 1982973, 576000, 1381026, 

6697192, 3265331, 3222164, 1238226, 828800, 1657500, 14552619, 1121850, 842387, 728946, 3734997, 1341743, 546950, 

1134488, 544266, 1351500, 562002, 1851600, 1823018, 3054268. 

Nov:       1048478, 1625570, 3886258, 3910305, 1313125, 2900000, 600750, 800000, 1026667, 14490580, 563170, 705093, 

1792500, 2153730, 2920459, 643357, 7435587, 542500, 565213, 5178084, 5161160, 2207540, 513359, 746971, 1882850, 

2089548, 680400, 553248, 914973, 1080000, 1346386, 27311939. 

Dec:        500000, 1042321, 765000, 1344823, 746971, 1339595, 3134790, 540510, 661500, 671700, 1768000, 3587542, 

1051200, 1303154, 1298996, 544000, 1744652, 3017240, 3865360, 711461, 992062, 515800, 870795, 665000, 675000, 

1080000, 3451391, 524846. 

By using a binomial process, the study analyzed the distribution of claims as a random walk model. Examination of the time 

plot of Table 1 revealed greater variability of claims as shown in Fig 2. 

 
Fig. 2: Original series for the claim distribution 

 

With the use of hierarchical or tree structure, claims in Table 1 were partitioned in one of four possible states as in and the 

distribution as shown in Table 2.  
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Table 2: Distribution of the state spaces 

4, 3, 2, 1, 1, 4, 2, 2, 2, 1, 4, 1, 1, 4, 1, 2, 2, 2, 2, 2, 1, 2, 2,2, 2, 2, 4, 3, 3, 2, 4, 4, 4, 3, 3, 2, 2, 1, 3, 3, 2, 4, 4, 3, 1, 4, 3, 3, 3, 2, 

1, 4, 3, 4, 2, 2, 3, 2, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 2, 2, 1, 2, 2, 4, 3, 2, 2, 1, 2, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 4,  4, 3, 2, 3, 4, 4, 1, 3, 

2, 2, 3, 4, 4, 2, 2, 1, 2, 4, 3, 4, 3, 2, 3, 2, 1, 4, 2, 1, 4, 3, 2, 2, 1, 2, 2, 1, 4, 2, 3, 3, 2, 3, 4, 3, 1, 2, 3, 3, 3, 1, 1, 2, 2, 4, 2, 2, 4, 1, 

1, 2, 1, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 3, 2, 4, 3, 4, 3, 3, 4, 4, 2, 2, 4, 4, 1, 1, 4, 4, 3, 3, 4, 2, 1, 2, 3, 2, 4, 4, 3, 4,  2, 3, 4, 3, 2, 3,3, 2, 

3, 1, 3, 4, 4, 4, 3, 2, 3, 3, 3, 2, 2, 4, 3, 1, 3, 1, 3, 1, 3, 3, 4, 3, 3, 4, 4, 3, 4, 2, 2, 3, 4, 1, 2, 3, 4, 4, 2, 4, 1, 1, 4, 4, 4, 1, 2, 3,  4, 2, 

1, 2, 3, 3, 3, 4, 1, 3, 2, 3, 2, 3, 4, 1, 2, 2, 3, 4, 3, 3, 3, 1, 3, 4, 4, 2, 2, 1, 2, 2, 2, 3, 4, 1 

The study modeled the transition of one state to another, and arrived at the probability of each ensemble. If the actual 

distribution is to be assessed using binomial process over a small time interval, the Wiener process is then the ideal limiting 

distribution for the random walk model. 

The original path of the model as depicted in Fig 1 is more of a chaotic situation. There were lots of irregularities making it 

difficult to define the path of the process. These sudden structural changes can be reduced by the use of hierarchical 

structured state space model as in Fig  2. A hierarchical structural model sets out to capture the salient features of a time 

series.These are often apparent from the nature of the series. Hierarchical structural model contains several disturbance terms 

and can be reduced as an autoregressive integrated moving average (ARIMA) model. The relationship between the structural 

and  reduced forms gives considerable insight into the potential effectiveness of the different ARIMA models. 

The plot in Fig 3 is achieved through the use of the binary tree structure and depicts more of a random walk by using S-PLUS 

software.  

By adopting Box ~ Jenkins ARIMA (p,d,q) model approach to time series analysis, model identification, parameter 

estimation and diagnostic check were feasible.  

The model identification according to Box and Jenkins involved using differencing, acf and pacf. The Box and Jenkins 

ARIMA models can be shown to be optimal and provides a systematic approach to model selection, utilizing all the 

information contained in the sample autocorrelaion (ACF) and partial autocorrelation (PACF) functions. The ACF and PACF 

are meaningful only when applied to stationary series. The study adopted this approach using the S-PLUS package and the 

result indicated that the given series were generated by a particular ARIMA model.  The quality and amount of data available 

were sufficient for accurate model identification. The sample autocorrelations (ACF) function and the partial autocorrelation 

(PACF) function for the claim distribution using the first difference  is as in Table 3 while the ACF, PACF  and AIC for the 

structured state space models is as shown in Table 4. 

Table 3: Claims Distribution Using First Difference 

Lag 

K 

 

ACF 

 

PACF 

1 -0.456 -0.456 

2 -0.0928 -0.380 

3 0.0619 -0.250 

4 -0.0231 -0.151 

5 -0.049 -0.154 

6 -0.018 -0.177 

7 0.057 -0.110 

8 0.012 -0.040 

9 -0.056 -0.068 

10 -0.045 -0.168 

11 0.099 -0.087 

12 0.023 -0.016 

13 -0.115 -0.079 

14 0.064 -0.047 

15 0.028 -0.015 

16 -0.036 -0.010 

17 0.018 -0.045 

18 -0.054 -0.055 

19 0.066 -0.011 

20 -0.053 -0.056 
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Table 4: Claims Distribution Using Hierarchical Structured Model 

Lag K ACF PACF AIC 

1 0.1144 0.1144 0.000 

2 -0.0584 -0.0724 0.502 

3 -0.0010 0.0168 2.422 

4 -0.0415 -0.0488 3.743 

5 0.0637 0.0775 4.026 

6 0.0141 -0.0100 5.997 

7 0.0173 0.0284 7.767 

8 0.1354 0.1293 4.965 

9 -0.0315 -0.0575 6.021 

10 -0.0588 -0.0354 7.664 

11 0.0560 0.0722 8.177 

12 0.0069 -0.0213 10.048 

13 -0.0306 -0.0420 11.544 

14 0.0170 0.0255 13.360 

15 0.0190 0.0204 15.241 

16 -0.0365 -0.0707 15.0813 

17 -0.0052 0.0229 17.663 

18 -0.0185 -0.0092 19.639 

19 -0.0024 -0.0237 21.479 

20 0.0172 0.0193 23.372 
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The hierarchical tree played the role of the universal class formed from all the objects. The idea is that 

the tree is constructed by regarding components of the patterns as binary valued and associating 

martingales with nodes of the tree. Many tree based models focus on hierarchical structure. By 

martingale property, the tree classification collects into a node all configurations that have the same 

correlation coefficient between any of them. These martingale properties characterize ultrametric 

distance which can be thought of as Euclidean distance between two nodes. Hence any two random 

variables in a cluster have the same correlation. Conditional on the random variable associated with this 

commonly shared node, the random variable are assumed to be independent. 
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