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Abstract 
 

The statistical power of the likelihood ratio (LR) test for testing the 

parameter (𝝀) of the exponential distribution under different parameter 

considerations and sample sizes was investigated. Up till now, 

considerations had only been on the effect and sample sizeswhile 

determining the power of statistical hypothesis tests, especially those that 

involve the parameters of exponential distributions of the form H0: 𝝀 = 𝝀𝟎 

vs. H1: 𝝀 = 𝝀𝟏. Thus, literature is apparently silent on the impact of the 

sizes of the parameter pair (𝝀𝟎, 𝝀𝟏) being tested on the power of the test. 

This was investigated in this study in addition to some other situations 

considered for determining power of LR test for exponential distributions 

through detail Monte Carlo studies. Part of the novel resultsobtained from 

this study showed that the power of the test is highly sensitive to the sizes of 

parameter pair ( 𝝀𝟎, 𝝀𝟏 ) being tested irrespective the effect size ∆ =
|𝝀𝟎 − 𝝀𝟏|.In other words, at any given sample size, small values of the 

parameter pair (𝝀𝟎, 𝝀𝟏) yielded appreciable power than the large values of 

the parameter pair (𝝀𝟎, 𝝀𝟏) of the exponential distributions being tested 

even under equal effect sizes. Therefore, increasing the sample size at any 

point may only be desirable as a corrective measure to increase the power 

of the LR test whenever the power provided by the test is considered small, 

the situation that can possibly occur when the parameter pair (𝝀𝟎, 𝝀𝟏) of 

the exponential distributions being tested is relatively large. The 

implication of these results is that fewer samples would be required to 

attain an appreciable power with small values of the parameter pair 

(𝝀𝟎, 𝝀𝟏) while large samples would be needed to attain a similar feat of 

power size under large values of the parameter pair (𝝀𝟎, 𝝀𝟏) even if the 

effect size is the same under the two test problems. Further results from 

this study indicated that fewer samples would be required by the LR test to 

achieve appreciable power as the chosen size 𝜶 level of the test increases. 

Empirical illustrations are provided to validate the results from Monte 

Carlo experiments. It is therefore recommended that more attention should 

be given to the size of the parameters being tested in any statistical 

significant test if the prime interest is to achieve appreciable power. 
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1.0     Introduction 
The concept of power in statistical hypothesis testing has received prominent discussion in the literature. Statistical 

hypothesis testing is a scientific process to examine if a proposition is plausible or not. The power of a statistical test 

therefore is the probability that the test will correctly lead to the rejection of a false proposition. A statistical power is the 

ability of a test to detect an effect, if the effect actually exists [1,2]. A statistical power analysis may be retrospective (post  
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hoc) or prospective (a priori). A prospective analysis is often used to determine the required sample size to achieve target 

statistical power prior to analysis, while a retrospective analysis computes the statistical power of a test given a sample size 

and effect size [3]. 

Power can be determined for a number of statistical test procedureswhich include the significance tests[4]and the likelihood 

ratio tests[5,6]among others. This has been very useful in many practical life applications[7-10]. 

The likelihood ratio (LR) is the ratio of two likelihood functions by varying the parameters over two different sets in the 

numerator and denominator. A likelihood ratio testtherefore is a statistical test that compares the maximum value of the 

likelihood of the null hypothesis against the maximum value of the likelihood of the alternative hypothesisin order to make a 

decision between the two hypotheses. The procedure of this test has been widely discussed in the literature [5,11,12]and its 

use has been demonstratedon many statistical hypothesis testing problems [13-15]. 

Despite manybenefits of the LR test over some of its counterparts[13,16], the determinationof the sampling distribution of the 

LR statistic in any  given test hypothesis problem and its associated rigorous computational tasks constitute major constraints 

on the flexibility and usage of the LR tests. As a result of these challenges, few discussions on power analysis of the LR tests 

have been reported in the literature especially forstatistical test problems on data that emanated from population with 

underlining exponential distribution(s)[17]. 

Not only this, up till the present moment to the best of our knowledge, researchers had only focused on the effect sizes and 

sample sizes while discussing issues relating to the power of statistical hypothesis tests, especially those that involve the 

parameters of exponential distributions. Thus, literature is apparently silent on the impact of the sizes of the parameter pair, 

for instance(𝜆0, 𝜆1) being tested on the power of the test for the hypothesis H0: 𝜆 = 𝜆0 vs. H1: 𝜆 = 𝜆1. 

The work here is therefore intended to examine the behaviour of power of the likelihood ratio test on data sets with 

underlining exponential distributions. Various conditions under which appreciable power of the likelihood ratio test can be 

achieved given this distribution function shall be investigated. More importantly, the impact of the size of the parameters 

being tested under the null and alternative hypotheses forms on the power of the LR test shall be investigated. However, our 

choice of exponential distribution in this study is premised on the importance of this distribution as the distribution of 

survival time of some events with constant rate of occurrence[18-21]. 

 

2.0  Theoretical Formulations 

Suppose a random variable 𝑋follows an exponential process with parameter 𝜆. Then, the density function of 𝑋is given by  

𝑓(𝑥) = {
𝜆𝑒− 𝜆𝑥 ,          𝑥 > 0, 𝜆 > 0.
0,                𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

        (2.1) 

with𝜆 being the rate parameter that indexes the average rate of occurrence of an event over 𝑋duration of time[14]. In this 

context, random variable 𝑋 may represent the duration of time that a given biological or mechanical system manages to 

survive before it fails. Hence, 𝐸(𝑋) =
1

𝜆
would represent the expected duration of survival per unit with a corresponding 

variance of 
1

𝜆2. 

Conversely, the exponential probability density function (pdf) in (2.1) can be re-parameterized as 

𝑓(𝑥) = {
1

𝑚
𝑒− 

1

𝑚
𝑥,           𝑥 > 0, 𝑚 > 0.

0,                     𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
       (2.2) 

where 𝑚 is the scale parameter with 𝜆 =
1

𝑚
 establishing the link between the two density functions(2.1) and (2.2).Here also, 

𝐸(𝑋) = 𝑚is the expected durationof time to failure with a variance, 𝑉𝑎𝑟(𝑋) = 𝑚2.In density function (2.2), 
1

𝑚
 represents the 

constant failure rate per unit time.  

For simplicity, the representationof exponential density in (2.1) shall be employed for our subsequent discussions in this 

study since the representations(2.1) and (2.2) would essentially lead to similar conclusions. 

Consider a set of 𝑛 random samples 𝑥1, … , 𝑥𝑛drawn from the population having an underline exponential distribution of the 

type in (2.1) with an unknown parameter 𝜆. If it is desirable to test the hypothesis that these𝑛 samples are drawn from an 

exponential population with parameter 𝜆0 in the parameter space 𝝀 , the hypothesis of interest would bea simple null 

hypothesis versus acomposite alternative of the form 

H0: 𝜆 = 𝜆0versus H1: 𝜆 ≠ 𝜆0        (2.3) 

More specifically, if the alternative side of this hypothesis set is true, it simply shows that the true value of parameter 𝜆 of the 

exponential population where the data come actually from is another value, say  𝜆1 in the parameter space 𝝀with 𝜆1 ≠ 𝜆0. 

Therefore, the working hypothesis from (2.3) then becomes 

H0: 𝜆 = 𝜆0 versus H1: 𝜆 = 𝜆1,𝜆0 ≠ 𝜆1,𝜆0, 𝜆1 ∈ 𝝀       (2.4) 

which can be simply expressed in term of the density function in (2.1) as  

 H0:𝑓(𝑥|𝜆 = 𝜆0) versus H1: 𝑓(𝑥|𝜆 = 𝜆1),𝜆0 ≠ 𝜆1      (2.5) 
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given that 𝑥~𝑒𝑥𝑝 (𝜆). 

To test the hypothesis set (2.5) through the procedure of the likelihood ratio (LR) test, the test statistic is of the form[5,22], 

𝛬 =
𝑚𝑎𝑥𝜆𝜖𝐻0 

𝐿(𝜆|𝑥)

𝑚𝑎𝑥𝜆𝜖𝐻0∪𝐻1𝐿(𝜆|𝑥)
=  

∏ 𝜆0 𝑒
−𝜆0𝑥𝑖𝑛

𝑖=1

∏ 𝜆1 𝑒
−𝜆1𝑥𝑖𝑛

𝑖=1

       (2.6) 

Clearly, 𝛬 > 0. In many instances, it is much convenient to work with the log of the likelihood ratio statistic in (2.6). This is 

given by 

𝛬∗ = 𝑙𝑛 (𝛬) =  𝑙𝑛 (
∏ 𝜆0 𝑒

−𝜆0𝑥𝑖𝑛
𝑖=1

∏ 𝜆1 𝑒
−𝜆1𝑥𝑖𝑛

𝑖=1

)        (2.7) 

which simply becomes 

𝛬∗ = ∑ 𝑙𝑛(𝜆0 𝑒
−𝜆0𝑥𝑖) − ∑ 𝑙𝑛(𝜆1 𝑒

−𝜆1𝑥𝑖)𝑛
𝑖=1

𝑛
𝑖=1       (2.8) 

The value of 𝜆0 is known but that of 𝜆1 is not and can be obtained from the sample data through its maximum likelihood 

estimator (MLE)�̂�1 =
1

�̅�
 given that the alternative hypothesis set H1 is true. 

For any value �̂�∗of the log-likelihood ratio (LLR) statistic 𝛬∗estimated from the sample data, the null hypothesis set in (2.5) 

would be rejected if the value of �̂�∗is very small at any given Type I error 𝛼.Explicitly, the LR test would reject the null 

that𝜆 = 𝜆0in favour of the alternative that 𝜆 = 𝜆1if  

�̂�∗ < 𝑘𝛼           (2.9) 

where the value of 𝑘𝛼 depends on the sampling distribution of �̂�∗. 

The same results and conclusions would be obtained if the ratio in the LR statistic (2.6) is interchanged to give another 

representation 

𝛬𝑐 =
𝑚𝑎𝑥𝜆𝜖𝐻0∪𝐻1𝐿(𝜆|𝑥)

𝑚𝑎𝑥𝜆𝜖𝐻0 𝐿(𝜆|𝑥)
=  

∏ 𝜆1 𝑒
−𝜆1𝑥𝑖𝑛

𝑖=1

∏ 𝜆0 𝑒
−𝜆0𝑥𝑖𝑛

𝑖=1

       (2.10) 

of the LR statistic. Under this representation, the null hypothesis would be rejected in favour of the alternative set if  

�̂�𝑐 > 𝑘𝛼           (2.11) 

 where �̂�𝑐 is the point estimate of 𝛬𝑐 fromthe data. 

2.1 The Power of the Likelihood Ratio Test 
If the probability that the LR test (2.6) or (2.10)accepts falsely, the null hypothesis set (2.5) is 𝛽 (the Type II error), then,the 

power of the test, which is the probability that the test would reject a false null hypothesis[9,23]in (2.5)is defined by 𝑃𝑤 =
𝑝(𝛬∗𝑟𝑒𝑗𝑒𝑐𝑡𝑠𝐻0|𝐻1𝑖𝑠𝑡𝑟𝑢𝑒) = 1 − 𝛽.This is theprobability that the LR test would reject the null hypothesis H0:𝑓(𝑥|𝜆 = 𝜆0) 

given that the alternative set H1: 𝑓(𝑥|𝜆 = 𝜆1) is true. This statement can be expressed in term of the LLR test statistic 

𝛬∗(using (2.8) and (2.9)) as  

𝑃𝑤 = 𝑝(�̂�∗ < 𝑘𝛼|𝐻1: 𝑓(𝑥|𝜆 = 𝜆1)) = 1 − 𝛽       (2.12) 

where the value of 𝑃𝑤 depends on the sampling distribution of LLR statistic 𝛬∗ in (2.8). 

2.2 The Sampling Distribution of the LLR Test statistic Λ∗ 
As a review, the sampling distribution of the log-likelihood ratio statistic of the type in (2.7) is determined through the 

following derivations.  

Suppose the parameter 𝜆1of the exponential distribution in the likelihood ratio statistic (2.6) is replaced by its MLE �̂�1 =
1

�̅�
, 

then, the LR statistic (2.6) becomes  

𝛬 =  (𝜆0�̅�)𝑛𝑒−𝑛𝜆0�̅�+𝑛                                    (2.13) 

If the log of 𝛬 in (2.13) is taken,an equivalent of the log-likelihood ratio statistic 𝛬∗given in (2.7) shall be obtained as  

𝛬∗ = 𝑙𝑜𝑔 𝛬 = 𝑛 𝑙𝑜𝑔(𝜆0�̅�) − 𝑛𝜆0�̅� + 𝑛 

Hence, we have the log-likelihood ratio test statistic  

𝛬∗ = 𝑛{𝑙𝑜𝑔(𝜆0�̅�) − (𝜆0�̅� − 1)}        (2.14) 

Suppose we define a function  

𝑔(𝑦) = 𝑙𝑜𝑔(𝜆0𝑦) − (𝜆0𝑦 − 1)                                               (2.15) 

from (2.11) with 𝑦 = �̅�, then (2.14) reduces to 

𝛬∗ = 𝑛𝑔(𝑦).          (2.16) 

Obviously, the first and second derivatives of 𝑔(𝑦)in (2.15) are 𝑔′(𝑦) =
1

𝑦
− 𝜆0 and 𝑔′′(𝑦) = −

1

𝑦2 respectively.  

Now, expansion of the function 𝑔(𝑦)  about the mean �̅� = 𝐸0(𝑋) =
1

𝜆0
 under the assumption that the null hypothesis 

holdsusing the Taylor’s series expansion up to second degree yield 

 𝑔(𝑦) ≈ 𝑔(𝑦0) + 𝑔′(𝑦0)(𝑦 − 𝑦0) +
1

2!
𝑔′′(𝑦0)(𝑦 − 𝑦0)2 

With 𝑦0 =
1

𝜆0
 this becomes, 
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𝑔(𝑦) ≈ 𝑔 (
1

𝜆0
) + 𝑔′ (

1

𝜆0
) (𝑦 −

1

𝜆0
) +

1

2!
𝑔′′ (

1

𝜆0
) (𝑦 −

1

𝜆0
)

2

.                   (2.17) 

Direct substitution of 
1

𝜆0
 for 𝑦 in 𝑔(𝑦),𝑔′(𝑦) and 𝑔′′(𝑦) in (2.15)yield𝑔 (

1

𝜆0
) = 0,𝑔′ (

1

𝜆0
) = 0and 𝑔′′ (

1

𝜆0
) = −𝜆0

2respectively. 

Therefore, the series expansion𝑔(𝑦)in (2.17)reduces to  

𝑔(𝑦) ≈ −
1

2
𝜆0

2(𝑦 −
1

𝜆0
)2                                  (2.18) 

If (2.18) is substituted back into (2.16) we have 

𝛬∗(𝑦) ≈ −
1

2
𝑛𝜆0

2(𝑦 −
1

𝜆0

)2 

which can be expressed further as 

−2𝛬∗(𝑦) ≈ 𝑛𝜆0
2(𝑦 −

1

𝜆0
)2                                                      (2.19) 

Since 𝑦 = �̅� from our representations in (2.14) and (2.15), equation (2.19) becomes  

−2𝛬∗(�̅�) ≈ 𝑛𝜆0
2(�̅� −

1

𝜆0

)2 

with a final form  

−2𝛬∗(�̅�) ≈ (√𝑛
(�̅�−

1

𝜆0
)

1
𝜆0

⁄
)

2

~𝜒1
2                                 (2.20) 

This implies that statistic −2𝛬∗(�̅�)or simply −2𝛬∗has the chi-square distribution with 1 degree of freedom. Obviously, the 

statistic √𝑛
(�̅�−

1

𝜆0
)

1
𝜆0

⁄
 in (2.20) is distributed N(0,1), hence the result. 

2.3 Parameterization of the LR Test Statistic 
It is important to note that the log-likelihood ratio statistic 𝛬∗in (2.7) can be re-parameterized in terms of the effect size 𝜆1 −

𝜆0 and the ratio 𝑅 =
𝜆0

𝜆1
 of the parameters 𝜆0 and 𝜆1of the exponential population being tested under the null and alternative 

hypotheses as stated in (2.5).  

Let the LR test statistic 𝛬 in (2.6) be re-expressed as  

𝛬 = (
𝜆0 

𝜆1 
)

𝑛

(
𝑒−𝜆0𝑛�̅�

𝑒−𝜆1𝑛�̅�
)                                                       (2.21) 

Taken the logarithm of (2.21) to have 

𝑙𝑜𝑔 (𝛬) =  𝑛 (𝑙𝑜𝑔 (
𝜆0 

𝜆1 
) + �̅�(𝜆1 − 𝜆0 ))                                       (2.22) 

Since the MLE of 𝜆1 is 1/�̅� under H1, a direct substitution of 1/𝜆1for �̅� in (2.22) yields an equivalent form of the log-

likelihood ratio test statistic 𝛬∗in (2.7) given by 

𝛬∗ =  𝑛 (𝑙𝑜𝑔 (
𝜆0 

𝜆1 
) +

𝜆1 −𝜆0 

𝜆1 
)                                                   (2.23) 

Similarly, the LR test statistic 𝛬𝑐 in (2.10)can be re-expressed in terms of 𝜆0  and 𝜆1 as in (2.23)to yield 

𝛬∗𝑐 =  𝑛 (𝑙𝑜𝑔 (
𝜆1 

𝜆0 
) +

𝜆0 −𝜆1 

𝜆1 
)                                                   (2.24) 

Thus, under the power consideration of the LR test on the parameter of an exponential population, the form of the log-

likelihood ratio test statistic in (2.23) or (2.24) shows that the power of the LR test is related to both the effect size and the 

ratio of the parameters of the exponential population being tested as stated under the null and alternative hypotheses set (2.5). 

Therefore, apart from the effect size, the effects of the parameter ratios,𝑅 =
𝜆0 

𝜆1 
 on the power of the LR tests areequally 

examined in this work. 

 

3.0 Simulation Studies 
To compute the power of the LR test for the hypothesis set (2.5), considerations were given to the choice of different possible 

values of the parameters of a classical exponential distributionon which statistical hypothesis test may be required, the 

various sample sizes and the desirable number of iterations for Monte-Carlo studies. 

Random samples of sizes between 1 and 250 were drawn from exponential distributions of the type given by (2.1) at different 

values of parameter 𝜆. For a given sample sizen, the LR statistic (2.8)was computed for each hypothesis set (2.4) or (2.5)at 

specified 𝜆0values under H0 and 𝜆1valuesunder H1and at r = 50, 100, 250, 500, and 1000 iterations.At each sample size n 

considered, the power of theLR test was computed forsomeType I error rate𝛼 ∈ (0,1).  

However, for each hypothesis set of the form (2.5) tested in this context, the power of the LR test is simply determined by 

estimating the proportion of cases, out of the rLR tests constructed (iterations),in which the LR tests rejected the  
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nullhypothesis (H0: 𝜆 = 𝜆0) given that the true value of the parameter of the distribution is 𝜆1(i.e. H1: 𝜆 = 𝜆1is true) at some 

significancelevels𝛼 ∈ (0,1).We later examined the behaviours of the power of the LR test at some reasonable values of 𝛼 

within the interval (0,1) in this study. 

Basically, two different hypotheses schemes were employedto examine the behaviour of the power of the LR test under 

different parameter considerations of the exponential density. The two schemes areas follows: 

a.) In the first scheme, wedetermine the power of the LR test at a fixed𝜆0 = 0.2under H0but at different values 0.3, 0.4, 

0.5 and 0.6 of𝜆1 under H1. Thus, the following four hypothesis sets  

i. H0: 𝜆 = 0.2 versus H1: 𝜆 = 0.3,  effect size 𝛥 = |𝜆0 − 𝜆1| = 0.1, ratio  𝑅 =
𝜆0 

𝜆1 
=

2

3
 

ii. H0: 𝜆 = 0.2 versus H1: 𝜆 = 0.4,  effect size 𝛥 = |𝜆0 − 𝜆1| = 0.2,ratio  𝑅 =
𝜆0 

𝜆1 
=

1

2
 

iii. H0: 𝜆 = 0.2 versus H1: 𝜆 = 0.5,  effect size 𝛥 = |𝜆0 − 𝜆1| = 0.3,ratio  𝑅 =
𝜆0 

𝜆1 
=

2

5
 

iv. H0: 𝜆 = 0.2 versus H1: 𝜆 = 0.6,  effect size 𝛥 = |𝜆0 − 𝜆1| = 0.4, ratio  𝑅 =
𝜆0 

𝜆1 
=

1

3
 

Were considered under different effect sizes 𝛥 = |𝜆0 − 𝜆1| and ratios 𝑅 =
𝜆0 

𝜆1 
 of the two parameters 𝜆0 and 𝜆1. Here, only the 

values of 𝜆1underH1were varied and the parameter ratios 𝑅 were monotonically decreasing. 

b.) In the second scheme, we consider the power of the LR tests at different 𝜆0values 0.1, 0.2, 0.3, 0.4under H0 and at 

different 𝜆1values 0.3, 0.4, 0.5, 0.6, under H1 but with equal effect sizes𝛥 = |𝜆0 − 𝜆1| = 0.2. Thus, the following four 

hypothesis sets 

i. H0: 𝜆 = 0.1 versus H1: 𝜆 = 0.3,  effect size 𝛥 = |𝜆0 − 𝜆1| = 0.2, ratio  𝑅 =
𝜆0 

𝜆1 
=

1

3
 

ii. H0: 𝜆 = 0.2 versus H1: 𝜆 = 0.4,  effect size 𝛥 = |𝜆0 − 𝜆1| = 0.2, ratio  𝑅 =
𝜆0 

𝜆1 
=

1

2
 

iii. H0: 𝜆 = 0.3 versus H1: 𝜆 = 0.5,  effect size 𝛥 = |𝜆0 − 𝜆1| = 0.2, ratio  𝑅 =
𝜆0 

𝜆1 
=

3

5
 

iv. H0: 𝜆 = 0.4 versus H1: 𝜆 = 0.6,  effect size 𝛥 = |𝜆0 − 𝜆1| = 0.2, ratio  𝑅 =
𝜆0 

𝜆1 
=

2

3
 

were considered. Here, the values of both𝜆0and𝜆1 were increased simultaneously in the four hypotheses casesbut with equal 

effect size of 0.2. 

All the Monte-Carlo experimentswere performed using R statistical package (www.cran.org)[24].  

 

4.0 Results 
This section presents the results from our Monte Carlo experiments as well as the results ofsome empirical applications to 

validate the Monte Carlo results. 

4.1  Monte Carlo Results 

This section presents the results obtained from the Monte-Carlo studies to examine the behaviour of the power of LR test for 

exponential populations under different chosen levels of iterations, parameterizations and sample sizes. 

Table 3.1 presents the estimated powers of the LR tests under the five chosen iteration levels for the first hypothesis set 

H0: 𝜆 = 0.2 vs. H1: 𝜆 = 0.3 under the first Monte Carloscheme a.) in section 3. The effect size 𝛥 of the test is 0.1 with 

parameter ratio  𝑅 =
2

3
. This is intended to evaluate the quality of the Monte Carlo experiment as engaged here. 

Beginning from 50 to 1000 iterations, the estimated powers of the LR tests constructed at various sample sizes are very stable 

and consistent. The standard deviations of the estimated powers across the samples are almost zero while those across the 

levels of iteration are all below 1. This is an indication that the simulation experiment and its results are very stable.  

Consequently, the results in Table 3.1 indicated that the various LR tests across the five chosen iteration levels attained about 

the same level of power at each sample size irrespective of the number of iterations employed.  For instance, the LR tests 

attained about 95% power at around 80 sample size across all the levels of iterations as indicated in Table 3.1. Although, 

results of the LR tests at higher levels of iterations appeared more stable than those obtained at lower levels of iteration going 

by the estimated standard deviations of the powers of the tests across all the chosen sample sizes. However, these apparent 

differences in the estimated standard deviations are not actually significant (p = 0.215).  These results are clearly shown in 

Fig 3.1 by the plots of the powers of the LR tests against the various sample sizes between 1 and 250 and at 50, 100, 250 and 

1000 iterations.  
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Table 3.1: Table of the estimated powers of the likelihood ratio (LR) tests on the parameters of the exponential distribution 

for the hypothesis set H0:𝑓(𝑥|𝜆 = 0.2) vs. H1: 𝑓(𝑥|𝜆 = 0.3), 𝑥~𝑒𝑥𝑝 (𝜆), (parameter ratio = 2/3) at various sample sizes over 

50, 100, 250, 500 and 1000 fitted models (iterations). (*) indicates the sample size at which the LR test yielded about 95% 

power under each iteration. 

Sample size (n) Power of The LR Test H0:𝑓(𝑥|𝜆 = 0.2) vs. H1: 𝑓(𝑥|𝜆 = 0.3) Standard Deviation 

Number of Iterations (r) 

50 100 250 500 1000 

1 0.040 0.040 0.052 0.078 0.120 0.034 

6 0.180 0.120 0.124 0.164 0.140 0.026 

11 0.280 0.240 0.220 0.266 0.190 0.034 

16 0.320 0.260 0.348 0.324 0.340 0.035 

21 0.320 0.460 0.392 0.446 0.400 0.055 

26 0.560 0.550 0.556 0.510 0.510 0.025 

31 0.620 0.600 0.596 0.578 0.560 0.023 

36 0.620 0.670 0.648 0.654 0.610 0.025 

41 0.700 0.780 0.696 0.724 0.670 0.042 

46 0.780 0.820 0.760 0.774 0.770 0.023 

51 0.860 0.810 0.828 0.830 0.800 0.023 

56 0.880 0.820 0.844 0.852 0.840 0.022 

61 0.920 0.850 0.876 0.888 0.860 0.027 

66 0.940 0.880 0.896 0.912 0.930 0.024 

71 0.900 0.880 0.904 0.944 0.930 0.025 

76 0.940 0.910 0.944 0.949 0.941 0.015 

81 *0.960 *0.945 *0.948 *0.956 *0.955 0.006 

86 1.000 0.950 0.968 0.968 0.980 0.018 

91 0.960 1.000 0.968 0.972 0.980 0.015 

96 1.000 0.970 0.988 0.978 0.980 0.011 

101 0.960 1.000 0.988 0.988 0.990 0.015 

106 0.980 0.980 0.988 0.988 0.990 0.005 

111 0.980 0.990 1.000 0.972 0.980 0.011 

116 1.000 1.000 0.996 0.994 0.980 0.008 

121 0.980 0.990 0.996 0.996 0.990 0.007 

126 1.000 1.000 0.992 0.990 0.980 0.008 

131 1.000 1.000 0.992 0.998 0.980 0.008 

136 1.000 1.000 1.000 0.998 1.000 0.001 

141 1.000 1.000 1.000 0.998 1.000 0.001 

146 1.000 1.000 1.000 1.000 1.000 0.000 

151 1.000 1.000 0.996 1.000 1.000 0.002 

156 1.000 1.000 1.000 1.000 1.000 0.000 

161 0.980 1.000 1.000 0.998 1.000 0.009 

>160 1.000 1.000 1.000 1.000 1.000 0.000 

StandardDev. 0.244 0.246 0.246 0.239 0.241  
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Fig 3.1: The graphs of the estimated powers of the likelihood ratio tests for the hypothesis set H0:𝑓(𝑥|𝜆 = 0.2) vs. H1: 

𝑓(𝑥|𝜆 = 0.3), 𝑥~𝑒𝑥𝑝 (𝜆),at various sample sizes and at 50, 100, 250and 1000 iterations. The vertical line in all the graphs 

indicates the sample size (n = 80) at which the LR test achieves the same 95% power across the four levels of iterations. 

In the four graphs in Fig 3.1, the LR tests attained an appreciable power of 95% at 80 samples across all the chosen levels of 

iterations. Although, the power curves of the test at higher iteration levels (250 and 1000) are relatively smoother than those 

at the lower iteration levels (50 and 100) which simply justify the differences noticed in the estimated standard deviations of 

powers of the test in Table 3.1 as earlier remarked. The smoothness of these power curves notwithstanding, the same 

information is provided by the four curves as shown in Fig 3.1. Therefore, one can conclude that the number of iterations 

adopted for the construction of the LR test has no significant impact on the power of the test generally. Nonetheless, further 

results on the LR tests based on the hypothesis set (2.5) in this work shall be reported only for 1000 iterations.  
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Table 3.2: Table of the estimated powers of the likelihood ratio (LR) tests on the parameters of an exponential distribution at 

different sample sizes for LR Test 1 (H0:𝑓(𝑥|𝜆 = 0.2) vs. H1: 𝑓(𝑥|𝜆 = 0.3), effect sizeΔ = 0.1, parameter ratio R = 2/3), 

LR Test 2 (H0:𝑓(𝑥|𝜆 = 0.2) vs. H1: 𝑓(𝑥|𝜆 = 0.4), effect sizeΔ = 0.2, parameter ratio R =1/2), LR Test 3 (H0:𝑓(𝑥|𝜆 = 0.2) 

vs. H1: 𝑓(𝑥|𝜆 = 0.5), effect sizeΔ = 0.3, parameter ratio R = 2/5) and LR Test 4 (H0:𝑓(𝑥|𝜆 = 0.2) vs. H1: 𝑓(𝑥|𝜆 = 0.6), 

effect sizeΔ = 0.4, parameter ratio R = 1/3) over 1000 fitted models (iterations), 𝑥~𝑒𝑥𝑝 (𝜆). (*) indicates the sample size at 

which the LR test yielded about 95% power under each hypothesis set. 

Sample size (n) LR Test 1 LR Test 2 LR Test 3 LR Test 4 

Δ = 0.1, R = 2/3 Δ = 0.2, R = 1/2 Δ = 0.3, R = 2/5 Δ = 0.4, R = 1/3 

1 0.086 0.122 0.160 0.168 

6 0.162 0.338 0.516 0.698 

11 0.260 0.600 0.840 *0.955 

16 0.333 0.774 *0.950 0.989 

21 0.418 0.881 0.987 1.000 

26 0.521 0.941 0.999 1.000 

28 0.536 *0.950 0.999 1.000 

31 0.580 0.981 0.999 1.000 

36 0.662 0.990 1.000 1.000 

41 0.704 0.996 1.000 1.000 

46 0.789 0.996 1.000 1.000 

51 0.804 0.999 1.000 1.000 

56 0.852 1.000 1.000 1.000 

61 0.886 1.000 1.000 1.000 

66 0.910 1.000 1.000 1.000 

71 0.934 1.000 1.000 1.000 

76 0.948 1.000 1.000 1.000 

81 *0.949 1.000 1.000 1.000 

86 0.965 1.000 1.000 1.000 

91 0.976 1.000 1.000 1.000 

96 0.981 1.000 1.000 1.000 

101 0.981 1.000 1.000 1.000 

106 0.980 1.000 1.000 1.000 

111 0.993 1.000 1.000 1.000 

116 0.988 1.000 1.000 1.000 

121 0.995 1.000 1.000 1.000 

126 0.995 1.000 1.000 1.000 

131 1.000 1.000 1.000 1.000 

136 0.999 1.000 1.000 1.000 

141 0.996 1.000 1.000 1.000 

146 0.998 1.000 1.000 1.000 

151 0.998 1.000 1.000 1.000 

156 0.999 1.000 1.000 1.000 

160 1.000 1.000 1.000 1.000 

>160 1.000 1.000 1.000 1.000 

Table 3.2 presents the results of the likelihood ratio tests for testing the hypotheses i. to iv. under the first simulation scheme 

as highlighted in Section 3. The table presented thepowersof the LR tests for each of the hypotheses at various sample sizes 

over 1000iterations. The number of cases in which the tests rejected the false null hypothesis H0 out of 1000 LR tests 

constructed are equally determined (results not shown). Thus, at each sample size, the power of the LR test for each 

hypothesis set was determined by the proportion of cases, out of 1000 LR testsconstructed, in which the testscorrectly 

rejected the null hypothesis H0. 
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Fig 3.2: The graphs of the estimated power of the likelihood ratio tests at various sample sizes underdifferent effect sizes 𝛥 =

|𝜆0 − 𝜆1| and parameter ratios 𝑅 =
𝜆0 

𝜆1 
over 1000 iterations (tests). The sample size required (indicated by vertical line in each 

graph) by the LR test to achieve 95% power decreases  i.) as the value of the parameter ratio 𝑅decreases and ii.) as the effect 

size 𝛥increases. 

It can be generally observed from the results in Table 3.2 that the power of the LR test increases as the sample size increases. 

However, the effect size  𝛥 =  |𝜆0 − 𝜆1| also plays prominent roles on the behaviour of the power of the LR tests. It can be 

observed from Table 3.2 that very few samples are required to attain a reasonable power at large effect sizes while relatively 

large samples are needed to attain a similar level of power at smaller effect sizes. For instance, from Table 3.2, while about 

80 samples are required by the LR test to attain 95% power when the effect size Δ of the test is 0.1 (LR Test 1), only 28, 16 

and 11 samples are required to attain the same fit of power when the effect size of the test increases to 0.2, 0.3 and 0.4 

respectively. 

In terms of the ratio of the two parameters 𝜆0 under H0 and 𝜆1under H1 being tested, that is  𝑅 =
𝜆0

𝜆1
 with 𝜆0 < 𝜆1, the above 

results equally showed that more samples would be needed to attain a reasonable power at higher value of parameter ratio 𝑅 

(i.e. as 𝑅 → 1) while relatively fewer samples would be required to attain a similar fit as the value of 𝑅 gets smaller (i.e. as 

𝑅 → 0) as evident from the results in Table 3.2. 

The results above are clearly presented in Fig 3.2 by the plots of the estimated power of the LR test at different sample sizes 

for the four test hypotheses i. to iv. under the first Monte Carlo scheme a.). The behaviours of the powers of the LR tests at 

different sample sizes, effect sizes and parameter ratios are clearly shown on the four graphs over 1000 iterations. 

It is evident from the graphs in Fig 3.2 that, with 𝜆0 < 𝜆1, the sample size required by the LR test to attain an appreciable 

power of about 95% reduces from 80 to 11 as the parameter ratio reduces from 2/3 to 1/3 or as the effect size of the test 

increases from 0.1 to 0.4. Another important consideration that is crucial to this work is on the effects of the magnitude of 

both 𝜆0(under H0) and 𝜆1(under H1) on the behaviour of power of the LR tests as captured by the second simulation scheme 

b.).  

Interestingly, the results in Table 3.3 showed that the size of the parameters 𝜆0 and 𝜆1 of the exponential distributions being 

tested play significant role on the power of the test. For instance, the LR test with small values of exponential parameters 𝜆0  
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and 𝜆1  attains reasonable power faster (with fewer samples) than the oneswith relatively large values of both 𝜆0  and 

𝜆1irrespective of the effect sizesas shown in Table 3.3.In other words, fewer samples are needed by the LR test to achieve 

reasonable power in anhypothesis test that involves small values of 𝜆0 and 𝜆1relative to the ones that involve relatively large 

values of both 𝜆0 and 𝜆1even under equal effect sizes. These results are clearly presented in Fig 3.3 by plotting the estimated 

powers of the four LR tests all with equal effect size of 0.2 against the various sample sizes.  The performance of the LR tests 

at different sizes of 𝜆0 and 𝜆1showed clearly that more samples would be required by the test to attain a reasonable power as 

the sizes of both 𝜆0 and 𝜆1 become larger, even with equal effect size. 

More specifically, the results from Table 3.3 and Fig 3.3showed that  only about 10 samples are needed by the LR test to 

attain 95% power for the hypothesis test when 𝜆0 = 0.1 and 𝜆1 = 0.3(LR Test 1) with the effect size 0.2whereas, up to 30, 

50 and 80 samples arerequired  by  the  LR tests toattainthe samefit of 95% powerwhen 𝜆0 = 0.2 and 𝜆1 = 0.4(LR Test 2), 

𝜆0 = 0.3 and 𝜆1 = 0.5(LR Test 3) and 𝜆0 = 0.4 and 𝜆1 = 0.6(LR Test 4) respectively, with all of them having equal effect 

size 𝛥 = 0.2. 

Table 3.3: Table of the estimated powers of the likelihood ratio (LR) tests on the parameters of an exponential distribution at 

different sample sizes for LR Test 1(H0:𝑓(𝑥|𝜆 = 0.1) vs. H1: 𝑓(𝑥|𝜆 = 0.3), effect sizeΔ = 0.2, parameter ratio R = 1/3), LR 

Test 2 (H0:𝑓(𝑥|𝜆 = 0.2) vs. H1: 𝑓(𝑥|𝜆 = 0.4),  effect sizeΔ = 0.2, parameter ratio R = 1/2), LR Test 3(H0:𝑓(𝑥|𝜆 = 0.3) vs. 

H1: 𝑓(𝑥|𝜆 = 0.5), effect sizeΔ = 0.2, parameter ratio R = 3/5) and LR Test 4(H0:𝑓(𝑥|𝜆 = 0.4) vs. H1: 𝑓(𝑥|𝜆 = 0.6), effect 

sizeΔ = 0.2, parameter ratio R = 2/3)over 1000 fitted models (iterations). (*) indicates the sample size at which the LR test 

yielded 95% power under each hypothesis set. 
Sample size (n) LR Test 1 

𝜆0 = 0.1, 𝜆1 = 0.3 

LR Test2 

𝜆0 = 0.2, 𝜆1 = 0.4 

LR Test3 

𝜆0 = 0.3, 𝜆1 = 0.5 

LR Test4 

𝜆0 = 0.4, 𝜆1 = 0.6 

Δ = 0.2, R = 1/3 Δ = 0.2, R = 1/2 Δ = 0.2, R = 3/5 Δ = 0.2, R = 2/3 

1 0.145 0.108 0.087 0.076 

6 0.731 0.336 0.222 0.138 

11 *0.955 0.597 0.364 0.241 

16 0.991 0.750 0.474 0.362 

21 0.999 0.866 0.603 0.431 

26 1.000 0.929 0.709 0.521 

30 1.000 *0.950 0.768 0.557 

31 1.000 0.972 0.795 0.586 

36 1.000 0.989 0.872 0.685 

41 1.000 0.993 0.914 0.718 

46 1.000 0.997 0.939 0.776 

51 1.000 1.000 *0.954 0.828 

56 1.000 0.999 0.964 0.844 

61 1.000 1.000 0.985 0.873 

66 1.000 1.000 0.990 0.904 

71 1.000 1.000 0.997 0.912 

76 1.000 1.000 0.997 0.936 

80 1.000 1.000 0.997 *0.950 

81 1.000 1.000 0.997 0.959 

86 1.000 1.000 0.999 0.958 

91 1.000 1.000 1.000 0.964 

96 1.000 1.000 1.000 0.98 

101 1.000 1.000 0.998 0.98 

106 1.000 1.000 1.000 0.991 

111 1.000 1.000 1.000 0.993 

116 1.000 1.000 1.000 0.989 

121 1.000 1.000 1.000 0.996 

126 1.000 1.000 1.000 0.998 

131 1.000 1.000 1.000 0.999 

136 1.000 1.000 1.000 0.994 

141 1.000 1.000 1.000 0.999 

146 1.000 1.000 1.000 1.000 

150 1.000 1.000 1.000 1.000 

>150 1.000 1.000 1.000 1.000 
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Fig 3.3: The graphs of estimated power of the likelihood ratio tests at different sample sizes for four hypothesesset with equal 

effect size 𝛥 = |𝜆0 − 𝜆1| = 0.2but at varying parameter ratios 𝑅 =
𝜆0 

𝜆1 
 over 1000 iterations (LR tests). The vertical line in 

each graph indicates the sample size at which the LR test achieves about 95% power.The sample size required (indicated by 

vertical golden line in each graph) by the LR test to achieve 95% power increases as the value of the parameter ratio 

𝑅decreases even with equal effect size of 0.2 across the various tests. 

In term of the parameter ratios 𝑅 =
𝜆0

𝜆1
 with 𝜆0 < 𝜆1, the results above showed that more samples would be needed by the LR 

tests to attain a reasonable power as the parameter ratio 𝑅 increases (𝑅 → 1) while relatively fewer samples would be needed 

to attain a similar fit as 𝑅 gets smaller (𝑅 → 0), thus, confirming the earlier results in Table 3.2. 
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Table 3.4: The powers of the likelihood ratio (LR) tests on the parameters of the exponential distribution for the hypothesis 

set H0:𝑓(𝑥|𝜆 = 0.2) vs. H1: 𝑓(𝑥|𝜆 = 0.3), 𝑥~𝑒𝑥𝑝 (𝜆),at selected Type I error rates in the interval  𝛼 ∈ (0, 0.2] and at various 

sample sizes over1000 iterations. (*) indicates the sample size at which the LR test yielded about 95% power. 

Sample size (n) Type I Error rate (Significance Level) 𝛼 

0.01 0.03 0.05 0.07 0.10 0.15 0.2 

1 0.020 0.054 0.081 0.105 0.137 0.191 0.245 

6 0.043 0.106 0.148 0.199 0.249 0.335 0.403 

11 0.093 0.184 0.251 0.302 0.367 0.456 0.532 

16 0.136 0.266 0.348 0.432 0.507 0.605 0.67 

21 0.198 0.326 0.404 0.469 0.550 0.638 0.699 

26 0.280 0.428 0.510 0.576 0.649 0.737 0.792 

31 0.322 0.498 0.589 0.644 0.713 0.801 0.855 

36 0.385 0.594 0.675 0.735 0.798 0.852 0.888 

41 0.450 0.617 0.713 0.761 0.821 0.880 0.912 

46 0.521 0.71 0.778 0.821 0.870 0.924 0.949 

51 0.585 0.768 0.825 0.867 0.905 0.934 *0.952 

56 0.643 0.798 0.863 0.895 0.923 *0.955 0.969 

61 0.667 0.817 0.899 0.908 0.936 0.954 0.965 

66 0.725 0.853 0.904 0.927 *0.951 0.972 0.980 

71 0.769 0.889 0.932 *0.950 0.972 0.982 0.989 

76 0.799 0.903 0.938 0.953 0.972 0.983 0.989 

81 0.826 0.923 *0.954 0.962 0.974 0.992 0.995 

86 0.864 0.934 0.956 0.967 0.979 0.989 0.990 

91 0.898 *0.964 0.984 0.990 0.992 0.995 0.997 

96 0.923 0.969 0.980 0.986 0.992 0.997 0.998 

101 0.923 0.972 0.986 0.990 0.994 0.995 0.996 

106 *0.950 0.986 0.991 0.996 0.997 0.999 1.000 

111 0.943 0.981 0.989 0.993 0.993 0.993 0.998 

116 0.973 0.989 0.993 0.995 0.996 0.998 0.998 

121 0.968 0.988 0.996 0.996 0.997 0.999 1.000 

126 0.980 0.993 0.996 0.996 0.998 0.999 0.999 

131 0.980 0.998 0.999 1.000 1.000 1.000 1.000 

136 0.977 0.992 0.994 0.996 0.999 1.000 1.000 

141 0.985 0.998 1.000 1.000 1.000 1.000 1.000 

146 0.990 0.996 0.998 0.999 1.000 1.000 1.000 

151 0.994 0.999 0.999 1.000 1.000 1.000 1.000 

156 0.990 0.996 1.000 1.000 1.000 1.000 1.000 

161 0.992 0.998 0.999 0.999 1.000 1.000 1.000 

166 0.995 0.999 0.999 1.000 1.000 1.000 1.000 

171 0.998 0.999 0.999 1.000 1.000 1.000 1.000 

176 0.996 0.999 0.999 0.999 0.999 1.000 1.000 

181 0.995 0.998 0.999 1.000 1.000 1.000 1.000 

>181 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

The power analyses of the LR tests presented so far are based on 5% level of significance. In order to have a broader view of 

the behaviour of the power of the LR test under various values of 𝛼within the interval (0,1), we present in Table 3.4 the 

estimated powers of the LR tests for the hypothesis set H0:𝑓(𝑥|𝜆 = 0.2) vs. H1: 𝑓(𝑥|𝜆 = 0.3)at various values of 𝛼 ∈ (0,1) 

over 1000 iterations. However, only the results for selected values of 𝛼 within the interval (0, 0.2] are presented in Table 3.4 

due to space. 
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Fig 3.4: The plots of the estimated powers of the likelihood ratio tests at various sample sizes and at some selected Type I 

error rates 𝛼 within the interval (0,1) for testing the hypothesis set H0:𝑓(𝑥|𝜆 = 0.2) vs. H1: 𝑓(𝑥|𝜆 = 0.3)over 1000 iterations 

where 𝑥~𝑒𝑥𝑝 (𝜆). The vertical line in each graph indicates the sample size at which the LR test achieves 95% power. The 

four graphs showed that fewer samples are required by the LR test to achieve 95% power as the chosen significance level 

𝛼increases (from 0.01 to 0.2).  

It can be easily observed from Table 3.4 that the sample size required by the LR test to achieve a particular level of power 

differs depending on the size 𝛼 of the test. For instance, to attain about 95% power by the LR test for the hypothesis set 

H0:𝑓(𝑥|𝜆 = 0.2) vs. H1: 𝑓(𝑥|𝜆 = 0.3), more samples are employed by the test at small values of 𝛼 (i.e. as 𝛼 → 0) than at 

large values of 𝛼 (i.e. as 𝛼 → 1). This is so because, the strength of evidence required for the rejection of H0 given that the H1 

is correct is relatively less at small values of 𝛼 than at its higher values. Therefore, before a small shift in the hypothesized 

parameter values could be detected by the LR test, more samples would be required at lower values of 𝛼 than at higher values 

of 𝛼. The various sample sizes at which the LR tests attained 95% power at some selected values of 𝛼 within the interval (0, 

0.2] are clearly presented in Fig 3.4 in which it can be observed that the sample size required to attain 95% power reduces as 

the value of size 𝛼 of the LR test increases.   
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Fig 3.5: The plots of the estimated powers of the likelihood ratio tests at various sample sizes for some selected Type I error 

rates 𝛼= 0.01, 0.05, 0.1, 0.2 for testing the hypothesis set H0:𝑓(𝑥|𝜆 = 0.2) vs. H1: 𝑓(𝑥|𝜆 = 0.3)over 1000 iterations where 

𝑥~𝑒𝑥𝑝 (𝜆). The various graphs showed that the morethe size 𝛼of the LR test increases, the fewer the samples required by the 

test to achieve appreciable power. 

Also, in order to have a quick overview of the influence of different values of 𝛼 on the power and sample size of the LR test, 

we present in Fig 3.5 the plots of the power of the LR tests at four selected values of 𝛼 (0.01, 0.05, 0.1 and 0.2) against the 

sample sizes between 1 and 250. The yellow and purple dashed horizontal lines passed through 80% and 95% power of each 

of the LR tests at the four chosen  𝛼 values.  It is again clear from the power graphs in Fig 3.5 that at higher values of 𝛼 (𝛼 =
0.1, 0.2), the LR test requires fewer samples to attain reasonable power (80% or 95%) as indicated by dashed horizontal lines 

while at lower values of 𝛼 (𝛼 = 0.01, 0.05), more samples are needed by the test to attain the same fit of power. All these 

results revealed the impact of Type I error rates on the power and sample size requirements by the LR test on the parameter 

of an exponential distribution.   

Consequently, it can be established based on the results in Table 3.4 that atany given sample size n, the power of the LR test 

increases as the value of size 𝛼 of the test increases. For instance, at n≈ 100, the estimated power of the LR test is about 92% 

at smaller value of 𝛼 (𝛼 = 0.01) while at this same sample size, the power of the test increases to about 99% at higher values 

of 𝛼 (𝛼 ≥ 0.05) as shown in Table 3.4.  

Finally, we present in Table 3.5, the estimated powers of the LR tests for different (increasing) values of parameter𝜆1for 

some selected sample sizes. This is intended to show how sensitive the power of the LR test is to changes in the values 

ofparameter𝜆1under the alternative hypothesis H1 for a fixed value of parameter𝜆 (𝜆0)under the null hypothesis H0. It can be 

observed from the table thatat each selected sample size, the power of the LR test increases as the value of parameter 

𝜆1increases (from 0.3 to 0.6) with 𝜆0 fixed at 0.2.This` increment approaches 1 faster with further little increment in the value 

of 𝜆1. 

Table 3.5: Table of the powers of the LR tests at increasing values of parameter 𝜆1 under the alternative hypothesis H1 for a 

fixed value of parameter 𝜆0 under the null hypothesis H0 for different sample sizes (n) ranging from 10 to 100. 

LR Test 𝜆 = 𝜆0 (under H0) 𝜆 = 𝜆1 (under H1) 
𝑅 =

𝜆0

𝜆1

 
Sample Sizes 

10 20 30 50 80 100 

Power 

1 0.2 0.3 0.6667 0.2590 0.4170 0.5789 0.8038 0.9490 0.9810 

2 0.2 0.4 0.5000 0.5980 0.8804 0.9810 0.9989 1.0000 1.0000 

3 0.2 0.5 0.4000 0.8390 0.9868 0.9989 1.0000 1.0000 1.0000 

4 0.2 0.6 0.3333 0.9540 0.9990 1.0000 1.0000 1.0000 1.0000 
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Fig 3.6: Plots of the powers of different LR testsat increasing values of parameter 𝜆1 under the alternative hypothesis H1 for a 

fixed value of parameter 𝜆0 under the null hypothesis H0 for different sample sizes (n) ranging from 10 to 100. 

The sensitivity of the power of the LR test to changes in the size of parameter 𝜆 under H1 for exponential population at 

different sample sizes is clearly presented in Fig 3.6 based on the results in Table 3.5. From the various graphs, it can be 

observed that the power of the LR test increases with increase in the size of parameter 𝜆 under H1 at a fixed value of 𝜆 under 

H0 for all the selected sample sizes. Nonetheless, the power of each LR test approaches 1 as the sample sizes keep increasing.  

4.2 Empirical Results 
The section presents a few empirical results on the estimation of the asymptotic power of the LR test to validate the results 

from the Monte Carlo studies.  

Two cases are considered here. In the first case, we want to determine the power of the LR test for testing the hypothesis set  

H0:𝑓(𝑥|𝜆 = 0.2) vs. H1: 𝑓(𝑥|𝜆 = 0.3)                                          (4.1) 

with a sample size 𝑛 = 61 and Type I error rate 𝛼 = 0.01, where 𝑥~𝑒𝑥𝑝 (𝜆) as earlier defined. 

In the second case, the power of the LR test for the same hypothesis set (4.1) is desired using the same sample size 𝑛 =
61but at an increased Type I error rate 𝛼 = 0.05. 

The test statistic of the LR test as given in (2.20) is  

𝜓 = (√𝑛
(�̅�  − 

1

𝜆0
)

1
𝜆0

⁄
)

2

~𝜒1
2 

This implies that statistic 𝑍 = √𝜓~𝑁(0,1). Therefore, the decision rule for the hypothesis set (4.1), according to (2.9), is to 

reject the null hypothesis H0 if  

𝑍 =  √𝑛
(�̅� − 

1

𝜆0
)

1
𝜆0

⁄
<  −𝑍1−𝛼         (4.2) 

where 𝜆0 = 0.2 where 𝑍1−𝛼 is the quantile of the standard normal distribution at Type I error rate 𝛼. 

Power computations: 

Case 1: 𝑛 = 61,  𝛼 = 0.01. 

The decision rule (4.2) simply implies that the null hypothesis H0 is rejected if �̅� <
1

0.2
−

𝑍0.99

0.2√61
. That is, the LR test rejects H0 

when �̅� < 3.5107. The power of this test is therefore computed, using (2.12),as 

𝑃(�̅� < 3.5107|𝜆 = 0.3)                                                 (4.3) 

 i.e.                                             𝑃 (√61
(�̅� − 

1

0.3
)

1
0.3⁄

< √61
(3.5107 − 

1

0.3
)

1
0.3⁄

) 

→ 𝑃(𝑍 < 0.4156) = 0.6611                                                     (4.4) 

where 𝑍 = √61
(�̅� − 

1

0.3
)

1
0.3⁄

 in (4.4). Hence, the power of the LR test for the hypothesis set (4.1) using 61 samples at Type I error 

rate of 1% is about 66%. This is a good agreement with66.7%power of the LR testfor this same hypothesis set which was 

obtained from our Monte Carlo experiment as presented in Table 3.4 with𝑛 = 61 and 𝛼 = 0.01.  

Case2:𝑛 = 61,  𝛼 = 0.05. 
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Under this second case, the value of 𝛼was increased from 0.01 to 0.05. Therefore, the value of𝑍1−𝛼at 𝛼 = 0.05is 1.6448 and 

by decision rule in (4.2), it implies that H0 is rejected only if �̅� < 3.9470. 

Here again, the power of the LR test for the hypothesis set (4.1) is computed as  

𝑃(�̅� < 3.9470|𝜆 = 0.3)                                                        (4.5) 

→ 𝑃(𝑍 < 1.4379) = 0.9248                                                     (4.6) 

This equally shows that the empirical power of the LR test for hypothesis (4.1) using 61 samples at 5% Type I error rate is 

about 90%. This value also agreed reasonably with Monte Carlo estimate of 89.9% power of the LR test for this same 

hypothesis at 5% significant level using 61 samples.  

The above empirical results simply show that various Monte Carlo experiments performed in this study are quite efficient and 

reliable. 

 

5.0  Discussions and Conclusion 

This paper presents power analysis of the likelihood ratio test to compare the parameters of exponential distributions. As 

reported in some earlier works, it is equally established in this study that the number of samples employed in statistical 

hypothesis testing has a crucial role at influencing the power of such a test. More importantly, the results of this work 

indicated that the power of the likelihood ratio test for testing the parameters of exponential distributions is sensitive to effect 

sizes and the ratios of the parameters being tested under the null and alternative hypothesis sets.  

 
Fig 5.1: The graph showing the sample size requirements by the likelihood ratio test to achieve 95% power as the effect size 

of the test (𝛥 = |𝜆0 − 𝜆1|) increases for the hypothesis set H0:𝜆 = 𝜆0 vs. H1: 𝜆 = 𝜆1. In the four hypotheses considered, the 

value of parameter 𝜆0 of the exponential density under H0 was set at 0.2 while that of 𝜆1under H1were varied.Thus, the 

parameter pairs (𝜆0, 𝜆1) = (0.2, 0.3), (𝜆0, 𝜆1) = (0.2, 0.4), (𝜆0, 𝜆1) = (0.2, 0.5) and (𝜆0, 𝜆1) = (0.2, 0.6) with the respective 

effect sizes 0.1, 0.2, 0.3 and 0.4 were tested. 

For a given value of the parameter of the exponential distribution 𝜆0 under the null hypothesis, any shift in the value of 𝜆0 as 

indexed by the effect size 𝛥 = |𝜆0 − 𝜆1| can be detected faster with a small sample size when the effect size 𝛥 is large while 

relatively large samples would be required to detect such a shift when 𝛥 is small (i.e. when 𝜆1 under H1 is closer to𝜆0 under 

H0).  For instance, at a value of 𝜆0 = 0.2 under H0, the number of samples required to attain 95% power by the LR test as 

shown in Fig 3.2 reduces from 80 to 11 as the value of 𝜆1under H1 progressively increases from 0.3 to 0.6 with corresponding 

increase in their effect sizes from 0.1 to 0.4 respectively. The influence of the effect sizes on the power behaviour of the LR 

tests at different sample sizes is clearly apparent in Fig 5.1. It can be observed from the graph that the number of samples 

required by the LR test to achieve 95% power decreases monotonically as the effect size of the tests increases. 

Also, in term of the ratio 𝜆0/𝜆1of the two parameters being tested, 𝜆0 < 𝜆1, the Monte Carlo results in Tables 3.2 and 3.3 

generally showed that the LR test would require more samples to attain a reasonable power as the value of the ratio 𝜆0/𝜆1 

becomes large. 
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Fig 5.2: The graph of sample size requirements by the likelihood ratio test to achieve 95% power as the values of the 

parameter pair (𝜆0, 𝜆1) being tested increasesbut with equal effect size of 0.2. In the four hypothesesof the form H0:𝜆 = 𝜆0 vs. 

H1: 𝜆 = 𝜆1 considered, the parameter pairs (𝜆0, 𝜆1) = (0.1, 0.3), (𝜆0, 𝜆1) = (0.2, 0.4), (𝜆0, 𝜆1) = (0.3, 0.5) and (𝜆0, 𝜆1) = (0.4, 

0.6) with equal effect size of 0.2in the four cases were tested. It is observed that the sample size required by the test to 

achieve 95% power increases as the values of parameter pair (𝜆0, 𝜆1) being tested increase even with equal effect size of 0.2 

in all cases.  

A novel result obtained from this study isthat the power of a statistical test is not only determined by the effect and sample 

sizes, but also by the sizes of the parameters of the distribution being tested under the null and the alternative hypotheses. 

This is evident from the results of the Monte-Carlo study provided in Table 3.3. The results in Table 3.3showed the power of 

the LR tests1, 2, 3, and 4 under different values of parameter pairs (𝜆0, 𝜆1) = (0.1, 0.3), (0.2, 0.4), (0.3, 0.5) and (0.4, 0.6) 

respectively all of equal effect size of 0.2. The graphical representation of these results is provided by Fig 5.2. 

It can be observed from the results in Table 3.3 that at sample size of 21, the LR Test 1 with the smallest values of the 

parameters (𝜆0, 𝜆1) = (0.1, 0.3) yielded 99.9% power while LR Tests 2 and 3 with relatively large parameter values (𝜆0, 𝜆1) = 

(0.2, 0.4) and (𝜆0, 𝜆1) = (0.3, 0.5) with the same effect size of 0.2 provided about 87% and 60% powers respectively at this 

same sample size.Surprisingly, the LR Test 4 with the largest parameter values (𝜆0, 𝜆1) = (0.4, 0.6) but with the same effect 

size of 0.2 like others only yielded about 40% power at 21 sample size. This clearly showed the significant effect of the sizes 

of the parameters of the distributions being tested on the power of the LR test. Therefore, it can be concluded from these 

results that, the smaller the values of the parameters of the (exponential) distributions being tested under the null and 

alternative hypothesis, the higher the power of the LR tests irrespective the effect sizes.  

Hence, forLR tests with relatively large values of the parameters of the (exponential) distributions to achieve reasonable 

power, more samples would be required. This is clearly evident from the results in Table 3.3. For instance, while only 11 

samples are required by the LR Test 1 to achieve 95% power for testing the parameter pair (𝜆0, 𝜆1) = (0.1, 0.3) with the least 

parameter ratio of 1/3, sample sizes 30, 50 and 80 were needed by LR Tests2, 3 and 4 to achieve the same fit of 95% power 

for testing the parameter pairs (𝜆0, 𝜆1) = (0.2, 0.4), (𝜆0, 𝜆1) = (0.3, 0.5) and (𝜆0, 𝜆1) = (0.4, 0.6) respectively all at equal effect 

size of 0.2 but with a monotonic increase in the sizes of both 𝜆0 and 𝜆1 as well as their parameter ratios 𝜆0/𝜆1. 

As general conclusions, this present work re-affirms the general position in the literature that appreciable power of a 

statistical test can be achieved much more faster (with fewer samples) if the effective size of the test is fairly large. More 

importantly, results from this study established that, for test hypothesis regarding the parameter of an exponential 

distribution, the power of the test is majorly affected by the size of the parameter pair (𝜆0, 𝜆1) being tested.Therefore, small 

values of parameter pair (𝜆0, 𝜆1) would yield appreciable power than the large values of the parameter pair (𝜆0, 𝜆1) of the 

exponential distributions. However, sample size increase may only be desirable as a corrective measure to increase the power 

of the LR test whenever small power of the test is obtained at possibly large values of the parameters of the exponential 

distributions being tested as can be observed from the results in Table 3.3. 

The small and large values of parameter 𝜆 of the exponential distribution are of practical importance in real life situations. As 

a distribution of time to the occurrence of event[14], an exponential distribution of relatively small value of parameter  
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𝜆represents the distribution of a fairly long period of time before the occurrence of an event of interest could be recorded 

such as time to death of persons. The results of this work therefore shows that, among the populations of individuals or 

objects with a known longer life span before death, fewernumber of samples would be needed before a shift in the death rate 

from 𝜆0 to 𝜆1 could be detected as shown,for instance, by the results of the LR test for the hypothesis set H0: 𝜆 = 0.1 vs. H1: 

𝜆 = 0.3in Table 3.3. For this hypothesis, the LR test employs only 10 samples to achieve 95% power as shown by the graph 

in Fig 5.2. Here, the value of the parameter ratio 𝜆0/𝜆1 is 1/3 which is relatively small compared to other parameter ratios in 

Table 3.3. 

On the other hand,an exponential distribution with moderately large value of parameter 𝜆describes the distribution of short 

time period before an event of interest could occur such as the life span of an electric component.Therefore, among the 

populations of individuals or objects with a known short life span, it will require a fairly large number of samples from this 

group before a small shift in the death rate from 𝜆0 to 𝜆1 could be reasonably detected (with appreciable power). This is the 

scenario captured by the results of the LR test for the hypothesis set H0: 𝜆 = 0.4 vs. H1: 𝜆 = 0.6 in Table 3.3.For this 

hypothesis set (with a relatively large parameter ratio 𝜆0/𝜆1  of 2/3) and in contrast to the earlier results, the LR test 

requiresup to 80 samples to achieve the same 95% power as determined under hypothesis test (H0: 𝜆 = 0.1 vs. H1: 𝜆 = 0.3) 

shown in Fig 4.3. 

The simple conclusion from the above two resultsis that, whenever the LR test is to be constructed around a large values of 

parameter 𝜆 of the exponential distribution, a large sample size might be desirable to achieve appreciable power. However, if 

a relatively small values of 𝜆 are involved, a small samplesize might be sufficient. 

However, it is quite instructive to add that whenever the values of the parameters under the null and the alternative 

hypotheses to be tested are specified, it is desirable to determine the sample size requirement of the test that would yield a 

reasonable power as desired by the investigator prior to the commencement of the experiment and the hypothesis testing 

proper.  

This study focused discussions on power considerations of the LR test for exponential distributions. In future works, the 

behaviours of powers of the LR tests under some other forms of probability distributions shall be investigated within the 

framework of the current study. 
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