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Abstract 
 

We formulate and analyze the dynamics of a Syphilis model with the 

introduction of two controls: u1(t) and u2(t). The two time independent 

controls represent strategies for the improvement of the treatment and cure 

of the Syphilis disease.  Optimal control theory allows us to find the optimal 

way to implement the strategies, reducing the number of infectious person 

and minimizing the cost of implementation as much as possible. This is 

aimed to assist the policy maker in making a right decision. 
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1.0     Introduction 
Efforts have been made since the late 1950s, by the public health officials making effort to control and eliminate the 

organisms that causes infectious diseases.  The introduction of antibiotics sanitation and vaccination brought a positive 

perspective of disease eradication[1].  Hence, factors such as resistance to the medicine by the micro-organisms, demographic 

evolution, accelerated urbanization and increased travelling, led to new infectious diseases and the reemergence of existing 

diseases.  Some of newly identified diseases are Lyme disease(1975), Legionneires disease(1976), HepatiticE(1989),etc[1].  

The evolution of Human Immuno deficiency Virus (HIV) in 1981 suddenly became a significant sexually transmitted disease 

throught the world.  Malaria, dengue fever, Syphilis among others have also reemerged and are spreading.   

Syphilis is resurgent in many high-income countries, disproportionately affecting urban men who have sex with men (MSM) 

into new regions because of climate change[2].  Syphilis is a multistage disease that progresses, when untreated, from 

primary to secondary, latent and finally to tertiary infection. The primary stage symptoms of syphilis involves the presents of 

a single chancre (a firm, painless, non-itchy ulceration). The primary mode of transmission is by direct sexual contact with 

lesions of individuals with primary or secondary syphilis. Infection rates patterns of known cases ranged from 20-85% in 

contact tracing studies. Secondary syphilis with a diffuse rash which involves the palms of the hands and soles of the feet. 

Latent syphilis with a Plittle to no symptoms and the tertiary syphilis with gummas, neurological or cardiac symptoms. As its 

name implies, latent syphilis has no clinical manifestations. Early latent syphilis is infection of less than two years duration. 

An infection of more than two years duration without clinical evidence of treponemal infection is referred to as last latent 

syphilis. WHO has based this division on the infectiousness of syphilis and its response to therapy. Syphilis is thought to have 

infected 12 million additional people worldwide in 1999, with greater than 90% of cases in the developing world. After 

decreasing dramatically since the widespread availability of penicillin in the 1940s, rates of infection have increased since the 

turn of the millennium in many countries, often in combination with human immunodeficiency virus (HIV). This has been 

attributed partly to increased promiscuity, prostitution, decreasing use of condoms, and unsafe sexual practices among men 

who have sex with men. 

Modeling of epidemiological phenomenon has a very long story with the first model for small pox formulated by Daniel 

Bernoulli in 1760.  Mathematical modeling of the population models continues to provide vital insights into population 

behaviour and control[3].  Over the years, it has also become an important tool in understanding the dynamics of diseases, 

and the decision making process regarding intervention programs for controlling population and disease problems in many 

countries[4]. 

In the past years this has become an essential tool in understanding  the dynamics of diseases, and the decision which has to 

do with process regarding intervention programs for controlling population and disease problems . 

Similarly, different strategies and techniques have been employed to study vital optimal control problem related to  

dynamical systems[5] applied optimal control theory to model malaria disease that include vaccinations and  treatment[6]. 
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Hence, the successful eradication of any diseases does not depend only on the ability to understand the transmission 

dynamics of a particular disease and the application of optimal control strategies and the implementation of logistic 

policies[7]. 

 

2.0   The Model and its Analysis 
The model sub-divides the total human population at time t denoted by N(t) into six compartments of susceptible male 𝑆𝑚(𝑡), 
susceptible female 𝑆𝑓(𝑡), infected male 𝐼𝑚(𝑡), infected female 𝐼𝑓(𝑡), complications C(t) and Treated T(t), where N(t) is given as 

N(t) = 𝑆𝑚(𝑡) + 𝑆𝑓(𝑡) + 𝐼𝑚(𝑡) + 𝐼𝑓(𝑡) + C(t) + T(t)            (1) 

The susceptibles are individuals that have not contracted the infection but may be infected through sexual contacts. The population 

recruits into the susceptible classes at the rate 𝜋𝑚 for susceptible male and 𝜋𝑓 for the susceptible female. Infected individuals are 

those with the infection and can transmit the infection by sexual act to the susceptibles, 𝛼1represent contact rate at which susceptible 

male move to infected male, similarly 𝛼2 is the contact rate of movement of susceptible female into infected female class. The 

complications are individuals in the population with the infection at the latent stage that can leads to other diseases or death, 𝛽1, 𝛽2 

are the rate of progression of infected male and female into the complications class respectively. Treated are people in the 

population that have recovered due to treatment,𝑟1, 𝑟2 reprsent the recovery / treated rate of infected male and infected female while 

𝑣 is the treated rate of complications class. We assume that the death rate is not negligible and so the nature death rate is represented 

by µ and due to untreated syphilis which can lead to death, we represent the syphilis induced death rate by 𝛿. 

The model equation is given as: 
𝑑𝑆𝑚

𝑑𝑡
 = 𝜋𝑚- 𝛼1𝐼𝑓𝑆𝑚 - µ𝑆𝑚         (2a) 

𝑑𝑆𝑓

𝑑𝑡
 = 𝜋𝑓- 𝛼2𝐼𝑚𝑆𝑓  - µ𝑆𝑓         (2b) 

𝑑𝐼𝑚

𝑑𝑡
 = 𝛼1𝐼𝑓𝑆𝑚 – (𝑟1 +  𝛽1 +  µ)𝐼𝑚        (2c) 

𝑑𝐼𝑓

𝑑𝑡
 = 𝛼2𝐼𝑚𝑆𝑓 – (𝑟2 + 𝛽2 +  µ)𝐼𝑓        (2d) 

𝑑𝐶

𝑑𝑡
 = 𝛽1𝐼𝑚 + 𝛽2𝐼𝑓– (𝑣 +  µ+  𝛿)C         (2e) 

𝑑𝑇

𝑑𝑡
 = 𝑟1𝐼𝑚  + 𝑟2𝐼𝑓+ 𝑣𝐶 +  µT         (2f) 

 

3.0 Analysis of Optimal Control 
We extend model (2a) – (2f) to include some controls.  Our state system is the following system of six ordinary differential 

equations   
𝑑𝑆𝑚

𝑑𝑡
 = 𝜋𝑚- (1 − 𝑢1)𝛼1𝐼𝑓𝑆𝑚 - µ𝑆𝑚        (2g) 

𝑑𝑆𝑓

𝑑𝑡
 = 𝜋𝑓- (1 − 𝑢2)𝛼2𝐼𝑚𝑆𝑓 - µ𝑆𝑓        (2h) 

    𝑑𝐼𝑚

𝑑𝑡
 =(1 − 𝑢1)𝛼1𝐼𝑓𝑆𝑚 – (𝑟1 + 𝛽1 +  µ)𝐼𝑚       (2i) 

𝑑𝐼𝑓

𝑑𝑡
 = (1 − 𝑢2)𝛼2𝐼𝑚𝑆𝑓 – (𝑟2 +  𝛽2 +  µ)𝐼𝑓       (2j) 

𝑑𝐶

𝑑𝑡
 = 𝛽1𝐼𝑚 + 𝛽2𝐼𝑓– (𝑣 +  µ+  𝛿)C         (2k) 

𝑑𝑇

𝑑𝑡
 = 𝑟1𝐼𝑚  + 𝑟2𝐼𝑓+ 𝑣𝐶 +  µT         (2l) 

The control u1,where 0 ≤u1≤1 deals with reducing the exposure of susceptible (male and female) humans to those infected.  T

he control u2for 0 ≤u2≤1, models the efforts needed in bringing down the infection. 

The objective is to minimize the number of infected humans in the population while maintaining the cost associated to contro

l u1 and u2 as much as possible.  Therefore, we seek to minimize the number  of infected individual hosts and cost of employi

ng mass treatment .  Our optimal control problem with objectives is expressed as 

𝐽(𝑢1, 𝑢2) = ∫ [𝐼𝑚 + 𝐼𝑓 + 𝐵1
2

𝑢1
2 + 𝐵2

2

2
] 𝑑𝑡

𝑡𝑓

0
                                        (3) 

Where 𝐵1 and 𝐵2are the weighing constants for the treatment of human host and mass treatment for infectious individuals. 

We therefore seek an optimal control 𝑢1
∗𝑎𝑛𝑑 𝑢2

∗  such that  

𝐽(𝑢1
∗, 𝑢2

∗) = min
𝛺

𝐽(𝑢1, 𝑢2)        (4) 

(𝐼𝑚 , 𝐼𝑓 , 𝑈)ℜ 0  

Where Ω= {(𝑢1
∗, 𝑢2

∗) ∈ 𝐿1(0, 𝑡𝑓)|𝑑1 ≤ 𝑢𝑗 ≤ 𝑒𝑗,𝑖 = 1,2}     (5) 

We analyze model (2g) – (2l), in other words model of the spread of Syphilis in population applying optimal perspectives.  W

e take into account the objective function (3) to model (2g) – (2l).  Pontryagins Maximum Principle will be employed to deter

mine the optimal control 𝑢1
∗  𝑎𝑛𝑑 𝑢2

∗  with necessary conditions.  The necessary conditions to establish optimal control 𝑢1
∗, 𝑢2

∗  t

hat meet   
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condition (4) and its constraints model (2g) – (2l) will be determined by applying  Pontryagins Maximum Principle[8].  The P

rinciple changes (2.2), (3) and (4) into a problem of minimizing point wise a Hamiltoniaan, H, with respect to ((𝑢1, 𝑢2), simp

ly 

H(𝑆𝑚, 𝑆𝑓 , 𝐼𝑚, 𝐼𝑓 , 𝐶, 𝑇, 𝑢1, 𝑢2, 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6) 

= 𝐼𝑓(𝑡) + 𝐼𝑚(𝑡) + 𝐵1
2

𝑢1
2(𝑡)+

𝐵2
2

𝑢2
2(𝑡) + ∑ 𝜆𝑖𝑔𝑖

6
𝑖=1                                             (6) 

Where 𝑔𝑖is the right hand side of the difference equations of the ith state variable.  By using Pontryagin’s Maximum Principle

 and the existence of results obtained for optimal control, we have 

Theorem 1: There exists an optimal control 𝑢1
∗,𝑢2

∗  and corresponding solution, 𝑆𝑚
∗ ,𝑆𝑓

∗, 𝐼𝑚
∗ ,𝐼𝑓

∗, 𝐶, 𝑇 , that minimizes 𝐽(𝑢1, 𝑢2) ov

er Ω.  Moreso, there exist adjoint function, 𝜆1(𝑡) … , 𝜆6(𝑡),such that 
𝑑𝜆1

𝑑𝑡
= 𝜆1 ((1 − 𝑢1)𝛼1𝐼𝑓 − 𝜇) − 𝜆3((1 − 𝑢2)𝛼1𝐼𝑓) 

𝑑𝜆2

𝑑𝑡
= 𝜆2((1-𝑢1) 𝛼2𝐼𝑚 − 𝜇)) − 𝜆4((1 − 𝑢2)𝛼2𝐼𝑚) 

𝑑𝜆3

𝑑𝑡
= 𝜆2 ((1 − 𝑢1)𝛼2𝑆𝑓) + 𝜆3(𝑟1 + 𝛽1 + 𝜇)) − 𝜆4((1 − 𝑢2)𝛼2𝑆𝑓 − 𝜆5𝛽1 − 𝜆6𝑟1 − 1 

𝑑𝜆4

𝑑𝑡
= −1 + 𝜆1((1 − 𝑢1)𝛼1𝑆𝑚) − 𝜆3(1 − 𝑢2)𝛼1𝑆𝑚 + 𝜆4(𝑟2 + 𝛽2 + 𝜇) − 𝜆5𝛽2 − 𝜆6𝑟 2  

𝑑𝜆5

𝑑𝑡
= 𝜆5(ʋ + µ + 𝛿)) − 𝜆6ʋ 

𝑑𝜆6

𝑑𝑡
= −𝜆6𝑇          (7) 

With tranversality con 

𝜆𝑖(𝑡𝑓) = 0, 𝑖 = 1 … ,6         (8) 

 And 𝑁 = 𝑆𝑚
∗ + 𝑆𝑓

∗ + 𝐼𝑚
∗ + 𝐼𝑓

∗ + 𝐶∗ + 𝑇∗       (9) 

Theorem2: The optimal control (𝑢1
∗, 𝑢2

∗) that minimizes 𝐽(𝑢1
∗, 𝑢2

∗) over Ω is expressed as  

𝑢1
∗ = 𝑚𝑎𝑥 {0, 𝑚𝑖𝑛 {1, −

(𝛼1𝐼𝑓𝑆𝑚𝜆1 + 𝛼2𝐼𝑚𝑆𝑓𝜆2)

𝐵1

}} 

And 

𝑢2
∗ = 𝑚𝑎𝑥 {0, 𝑚𝑖𝑛 {1,

𝛼1𝐼𝑓𝑆𝑚𝜆3+𝛼2𝐼𝑚𝑆𝑓𝜆4

𝐵2
}}       (10) 

Proof: (8) gives the existence of an optimal control due to the convexity of integrand J with respect to (𝑢1
∗, 𝑢2

∗), 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 bou

ndedness of the state solutions, and the Lipschitz property of the state system with respect to the state variables.  Employing 

Pontryagin’s Maximum Principle, we have  
𝑑𝜆1

𝑑𝑡
= −

𝜕𝐻

𝑆𝑚

, 𝜆1(𝑡𝑓) = 0, 

𝑑𝜆6

𝑑𝑡
= −

𝜕𝐻

𝑇
, 𝜆6(𝑡𝑓) = 0.         (11) 

Computed at the optimal control pair and respective corresponding states, which leads to the stated adjoint system (7) and (8).

Considering the optimality conditions 
𝜕𝐻

𝑢1

= 0,
𝜕𝐻

𝑢2

= 0 

And determine the values for 𝑢1
∗, 𝑢2

∗ , subject to the constraints, the characterization (10) can be obtained.   

 

4.0  Conclusion 
The optimality system is the state and adjoint systems coupled with the optimal control characterization.  In this study, we der

ived and analyzed a deterministic model for the spread of Syphilis that include mass treatment  and mass education.  Applyin

g optimal control strategy, we find a solution to the eradication of Syphilis disease in a finite time.  We hope to carry out the n

umerical analysis in future work for proper analysis and advice. 
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