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Abstract 
 

Rabies is a dangerous disorderin humans and animals central nervous 

system leading to convulsions, inability to move from one place to another 

and untypical behavior.The present effort is to characterize the 

mathematical model of Rabiesand theeffect of vaccine distribution with 

application to Rabies and bats in a meta-population model. Three classes 

of population wereconsidered for the purpose of the study namely; 

Susceptible, Infected, and the Removed class (SIR). The optimality system 

for the model was established, existence and uniqueness results for the 

system was also derived in an attempt to minimize the number of 

individuals that will be infected. Finally, the optimality system for the 

model was solved numerically using Runge-kutta fourth order scheme in 

particular. The result obtained shows that vaccination is a very efficient 

factor in minimizing the outbreak of the Rabies among the population. 
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1.0     Introduction 
Rabies is transmitted viabites or scratches or close contact with infected saliva, its infection without post-exposure 

vaccination leads to death within short period. The symptoms include weakness, discomfort, headache andfever which later 

results in delirium, abnormal behavior and insomnia.A literature reviewed showedthateffective post-exposure prophylaxis 

exists but is very expensive (often scarce), [1-6].  

Vaccination can be refers to as the administration of antigenic material to stimulate an individual's immune system to develop 

adaptive immunity to a pathogenwhichis the most effective method of preventing infectious diseases. For example, vaccine 

for influenza, vaccine for the HPV,vaccine for chicken pox to mention a few[7].  

Bats are numerous and found in distant as well as close proximity to humans in Nigeria. The handling, processing and 

consumption of bats of various species by children and adults may pose some danger to the public. Presently very few studies 

on zoonotic viral pathogens in bats have been documented in Nigeria, among these are the lyssaviruses and coronaviruses, [1, 

2]. 

Research interest in bats has increased substantially following the identification of bats as important reservoirs of pathogens 

of both zoonotic and veterinary importance.  Rabies models with variation control on their spread had been written detail in 

many papers. Studies conducted in Ibadan detected rabies virus (RABV) and LBV neutralizing antibodies in the sera of fruit 

bats,[3].The presence of numerous lyssaviruses in bat species has led to increasing research efforts towards search for 

lyssaviruses in bat populations globally. In Nigeria there is the need to establish an understanding of the epidemiology of 

rabies. 

The factors responsible for the spread and the control strategies of rabiesusing mathematical model was considered in [8]. 

The mathematical model of rabies with similar controlling strategies in china was studied in [9]. The applicationof the 

principle of the optimal control theory to the study of Rabies was carried out in [10]. In addition the system of differential 

equations that modelled optimal control in SEIR model of rabies between dogs and humans with vaccination effect was 

studied in [11]. 

However, the present effort is to consider the application of optimal control theory to the vaccine distribution in a rabies 

metapopulation. For  the purpose of this work the control result was illustrated by considering a population consisting of 8 

subpopulation (a case study of Plateau State, Nigeria). 
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2.0 Mathematical Formulation 
Mathematical models is used in transforming world problem into mathematical programming problem that is solvable using 

mathematical packages. The population considered consisting of 𝑛 sub populations which are connected together, see Figure 

1. Sub population 𝑖 is divided into three classes; the susceptible, 𝑆𝑖, that can be infected with rabies virus: the infected,𝐼𝑖 , 
individual bats that are currently infected with rabies and can transmit the virus, and 𝑅𝑖, corresponding to individuals that are 

vaccinated and become immune to infection by rabies virus. 

Individuals in class 𝑅𝑖are removed from the system when they die, while𝜇𝑅  is the mortality rate, and after the waning period 

of the vaccine, they return to the susceptible class. For the purpose of this work mortality due to rabies for class 𝐼𝑖  is included 

and since there is little evidence for naturally formed immune class of animals. Hence, once individual are infected, they die 

and are removed from the system. Where𝑎𝑖𝑗is the rate of geographic movement of uninfected individuals and𝑐𝑖𝑗is the rate of 

geographical movement of infected individuial. Note  that𝑎𝑖𝑗  may not be the same as 𝑎𝑗𝑖  and similarly for 𝑐𝑖𝑗and 𝑐𝑗𝑖 because 

of the variation  in the spatial orientation of sub populations.The movement coefficient for infected to be different or the same 

as for susceptible is allowed because of the controversy on whether infected animals change their character or movement. On 

the other hand, there are no reported alterations in behavior associated with vaccination. We assume that there is no 

significant change in the behavior of bats before the consumption of baits and after consumption, [10].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flow diagram of the Model 
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Figure 2: Rate of Geographic Movement 

Figures 2 shows two examples of possible spatial configurations of four subpopulation from the viewpoint of subpopulation 

1. In 2(a), the subpopulation 1 is located at the same distance from the other subpopulation 2, 3, and 4. In this case, the rates 

of geographic movement from 𝑆1 to the other three, 𝑆2,  𝑆3  and 𝑆4  are the same. However, if the distance between 

subpopulation 3 and subpopulation 1 is the largest, as shown in Figure 2(b), then the rate𝑎13is the smallest. 
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Table 1: Nomenclature 

Symbol Definition 

𝑎𝑖𝑗  The rate of geographic movement  of noninfected from subpopulation 𝑖 to subpopulation 𝑗 

𝑐𝑖𝑗  The rate of geographic movement of infected from sub-population 𝑖 to subpopulation 𝑗 

𝛽𝑖 The rate of transmission in subpopulation 

𝜇𝑆, 𝜇𝐼,𝜇𝑅 The mortality rate in each class: 𝑆, 𝐼 and 𝑅 

𝜎 The rate of vaccine bait distribution (control) 

𝛾 The efficacy of vaccine bait distribution 

ŋ The warning rate of the vaccination 

𝑆𝑖 The number of susceptible in subpopulation 𝑖 
𝐼𝑖  The number of infected in subpopulation  𝑖 
𝑅𝑖 The number of individuals immune to the disease in subpopulation 𝑖 

The state system is given as 

𝑑𝑆𝑖

𝑑𝑡
=  𝛽𝑖𝑆𝑖𝐼𝑖  − 𝛾 ∝𝑖 𝑆𝑖  + ∑ 𝑎𝑗𝑖𝑆𝑗 − ∑ 𝑎𝑖𝑗𝑆𝑖 −  𝜇𝑆𝑆𝑖

𝑛

𝑗=1,𝑗 ≠𝑖

𝑛

𝑗=1,𝑗 ≠𝑖

+ ŋ𝑖𝑅𝑖 

𝑑𝐼𝑖

𝑑𝑡
= 𝛽𝑖𝑆𝑖𝐼𝑖   + ∑ 𝑐𝑗𝑖𝐼𝑗 − ∑ 𝑐𝑖𝑗𝐼𝑖 −  𝜇𝐼𝐼𝑖

𝑛
𝑗=1,𝑗 ≠𝑖

𝑛
𝑗=1,𝑗 ≠𝑖       (1) 

 𝑑𝑅𝑖

𝑑𝑡
=  𝛾𝛼𝑖𝑆𝑖   + ∑ 𝑎𝑗𝑖𝑅𝑗 − ∑ 𝑎𝑖𝑗𝑅𝑖 −  𝜇𝑅𝑅𝑖

𝑛

𝑗=1,𝑗 ≠𝑖

𝑛

𝑗=1,𝑗 ≠𝑖

 − ŋ𝑖𝑅𝑖 

𝑆(0) =  𝑆0,             𝐼 (0) =   𝐼0,              𝑅(0) =  𝑅0. 

Assumptions 

i. The mortality rates for susceptible and immune classes are the same, i.e.,  

ii. 𝜇𝑆 = 𝜇𝑅 =  𝜇 

iii. The magnitude of the rates of geographic movement, 𝑎𝑖𝑗  and 𝑐𝑖𝑗 , reflects the distance between the subpopulations 𝑖 

and 𝑗  
iv. If bats consume the baits containing the vaccine, they instantly become immune to the disease. 

v. The vaccine has a waning period, after which the vaccinated bats return to the susceptible class.  

 

2.1 Existence and Uniqueness of Solution 
Theorem 1(See [12]) 

Let 𝐷′ denote the region 

|𝑡 − 𝑡0| ≤, ‖𝑥 − 𝑥0‖ ≤ 𝑏,   𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑛), 𝑥0 = (𝑥10, 𝑥20, … . , 𝑥𝑛0)                                        (2) 

and suppose 𝑓(𝑡, 𝑥) satisfies  

‖𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)‖ ≤ 𝑘‖𝑥1 − 𝑥2‖                                                                                                                  (3) 

Whenever the pair (𝑡, 𝑥1) and (𝑡, 𝑥2) in𝐷,𝑘is a positive constants. Then,  𝛿 > 0 :   a unique continuous vector solution 

𝑥(𝑡) in|𝑡 − 𝑡0| ≤  𝛿. 

 since (3) is satisfied by  
𝜕𝑓𝑖

𝜕𝑥𝑗
 , 𝑖, 𝑗 = 1,2, … 𝑛 . 

We now return to our model equations (1). We are interested in the region 

0 ≤ 𝛼 ≤ 𝑅                                                                                                                                                               (4) 

whose partial derivations satisfy 𝛿 < 𝛼 <  0, where, 𝛼 and 𝛿 are positive constants. 

Theorem 2 

Let 𝐷′ denote the region0 ≤ 𝛼 ≤  𝑅. Then equation (1) has a unique solution.  

Proof 

Let    𝑓1 = ŋ1𝑅1 + 𝑎21𝑆2 − (𝛾𝜎1 + 𝐼1𝛽1 + 𝜇 + 𝑎12)𝑆1 

   𝑓2 = (𝑆1𝛽1 − 𝑐12 − 𝜇1)𝐼1 + 𝑐21𝐼2 

   𝑓3 = 𝛾𝜎1𝑆1 + 𝑎21𝑅2 − (ŋ1 + 𝜇 + 𝑎12)𝑅1                                                       (5) 

   𝑓4 = ŋ2𝑅2 + 𝑎12𝑆1 − (𝛾𝜎1 + 𝐼2𝛽2 + 𝜇 + 𝑎21)𝑆2 

   𝑓5 = (𝑆2𝛽2 − 𝑐21 − 𝜇2)𝐼2 + 𝑐12𝐼1 

   𝑓6 = 𝛾𝜎2𝑆2 + 𝑎12𝑅1 − (ŋ2 + 𝜇 + 𝑎21)𝑅2 

Now, Let 𝐷′ denote the region 0 ≤ 𝛼 ≤  0.  
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Then equation (1) have a unique solution. We show that 
𝜕𝑓𝑖
𝜕𝑥𝑗

 , 𝑖, 𝑗 = 1,2,3,4,5,6                                                                                                                                           (6) 

are continuous and bounded in 𝐷′ . 

Differentiate (5) partially with respect to 𝑆1 ,  𝐼1, 𝑅1, 𝑆2,  𝐼2  and 𝑅2 respectivelywe have the following; 

|
𝜕𝑓1
𝜕𝑆1

| =  |−𝛾𝜎1 − 𝐼1𝛽1 −  𝜇 − 𝑎12| < ∞, |
𝜕𝑓1
𝜕𝐼1

| = |−𝑆1𝛽1| < ∞, 

|
𝜕𝑓1
𝜕𝑅1

| =  |ŋ1| < ∞, |
𝜕𝑓1
𝜕𝑆2

| = |𝑎21| < ∞, |
𝜕𝑓1
𝜕𝐼2

| = 0 < ∞,                                                                              (7) 

|
𝜕𝑓1
𝜕𝑅2

| =  0 < ∞ 

|
𝜕𝑓2
𝜕𝑆1

| =  |𝐼𝐼𝛽1| < ∞, |
𝜕𝑓2
𝜕𝐼1

| = |𝑆1𝛽1 − 𝑐12 − 𝜇1| < ∞, |
𝜕𝑓2
𝜕𝑅1

| = 0 < ∞,  

|
𝜕𝑓2
𝜕𝑆2

| = 0 < ∞, |
𝜕𝑓2
𝜕𝐼2

| = |𝑐21| < ∞, |
𝜕𝑓2
𝜕𝑅2

| = 0 < ∞,                                                                                    (8) 

|
𝜕𝑓3
𝜕𝑆1

| =  |𝛾𝜎1| < ∞, |
𝜕𝑓3
𝜕𝐼1

| = 0 < ∞, |
𝜕𝑓3
𝜕𝑅1

| = |−ŋ1 − 𝜇 − 𝑎12| < ∞, 

|
𝜕𝑓3
𝜕𝑆2

| =  0 < ∞, |
𝜕𝑓3
𝜕𝐼2

| = 0 < ∞, |
𝜕𝑓3
𝜕𝑅2

| = |𝑎12| < ∞,                                                                                    (9) 

|
𝜕𝑓4
𝜕𝑆1

| =  |𝑎12| < ∞, |
𝜕𝑓4
𝜕𝐼1

| = 0 < ∞, |
𝜕𝑓4
𝜕𝑅1

| = 0 < ∞,   

|
𝜕𝑓4
𝜕𝑆1

| =  |−𝛾 𝜎2 − 𝐼2𝛽2 − 𝜇 − 𝑎21| < ∞                                                                                                          (10) 

|
𝜕𝑓4
𝜕𝑆1

| =  |−𝑆2𝛽2| < ∞, |
𝜕𝑓4
𝜕𝑅2

| = |ŋ2| < ∞                   

|
𝜕𝑓5
𝜕𝑆1

| = 0, |
𝜕𝑓5
𝜕𝐼1

| = |𝑐12| < ∞ , |
𝜕𝑓5
𝜕𝑅1

| = 0 < ∞, |
𝜕𝑓5
𝜕𝑆2

|  =  |𝐼2𝛽2| < ∞ 

|
𝜕𝑓5

𝜕𝑆2
| =  |𝑆2𝛽2 − 𝑐21 − 𝜇2| < ∞, |

𝜕𝑓5

𝜕𝑅1
| = 0 < ∞                                                                                           (11)  

|
𝜕𝑓6
𝜕𝑆1

| = 0 < ∞, |
𝜕𝑓6
𝜕𝐼1

| = 0 < ∞, |
𝜕𝑓6
𝜕𝑅1

| = |𝑎12| < ∞,   |
𝜕𝑓6
𝜕𝑆2

|  =  |𝛾𝜎2| < ∞                                            

|
𝜕𝑓6

𝜕𝐼2
| = 0 < ∞, |

𝜕𝑓6

𝜕𝑅2
| = |−ŋ2 − 𝜇 − 𝑎21| < ∞      (12) 

Since the partial derivatives of the system equation (5) exists, finite and bounded. Hence, by the previous theorem, it has a 

unique solution. 

 

3.0 Optimal Control of the System 
In this section, the optimality condition of the model is established. 

The following assumptions in the form of lemma are used to establish the existence of an optimality system. 

Lemma 3.1 [12].  

Consider the cost function defined by  

𝐽(𝑢) = ∫ 𝐿[𝑡, 𝑥(𝑡), 𝑢(𝑡)]𝑑𝑡                                                                                                                              (13)
𝑡𝑓

𝑡0

 

Subject to 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡),… , 𝑓𝑛(𝑡, 𝑥, 𝑢)                                                                                                              (14) 

Where 𝑢 = (𝜎1, 𝜎2 ,   … , 𝜎𝑚) is the control system and  

𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), … . , 𝑥𝑛(𝑡)) 

is the state and measurable function. 

𝜎(𝑡) = (𝜎1(𝑡), 𝜎2(𝑡), … , 𝜎(𝑡))
𝑇

 

is called the control function. 

The following assumptions are imposed 

(i) The function 𝐿: [𝑡0, 𝑡𝑓] × 𝑅𝑛 × 𝑅𝑚 → 𝑅 is measurable in 𝑡, continuous in (𝑡, 𝜎) 

and𝜎 → 𝐿(𝑡, 𝑥, 𝜎)is convex for every (𝑡, 𝜎), (𝑡, 𝜎) ∈ [𝑡0, 𝑡𝑓] × 𝑅𝑛 , 𝑈(𝑡) = 𝑈(𝑡) = 𝑈∁𝑅𝑚 is closed and convex. 
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(ii) The Hamiltonian function 𝐻(𝑡, 𝑥, 𝑝) =  𝑠𝑢𝑝𝑝 − 𝐿(𝑡, 𝑥, 𝑣)/𝑣 ∈ 𝑈 satisfies the growth condition 

𝐻(𝑡, 𝑥, 𝑝) ≤ 𝜇(𝑡, 𝑝) + ‖𝑥‖ (𝜎(𝑡) +  𝛾(𝑡)‖𝑝‖) 

∀𝑡 ∈ [𝑡0, 𝑡𝑓], 𝑥 ∈ 𝑅𝑛, 𝑝 ∈ 𝑅𝑚where 𝜎, 𝛾 ∈ 𝐿1[𝑡𝑜, 𝑡𝑓], 𝜇(𝑡, 𝑝) ∈ 𝐿1[𝑡𝑜, 𝑡𝑓], ∀𝑝 ∈ 𝑅𝑚 

And 𝑠𝑢𝑝𝑝(𝑡, 𝑝), ‖𝑝‖ ≤ 𝛿 ∈ 𝐿1[𝑡0, 𝑡𝑓]∀𝛿 > 0𝐿 ∶  𝑅𝑛 × 𝑅𝑚 → 𝑅 = (−∞, +∞) is lower semi-continuous, bounded from below 

on bounded subsets and 𝐿(𝑥1, 𝑥2) ≥ 𝑔1(𝑥1) +  
𝑔2(𝑥2)∀(𝑥1, 𝑥2) ∈ 𝑅𝑛 ∈ 𝑅𝑚 

(iii) 𝑓(𝑡, 𝑥, 𝑢) = 𝑓0(𝑡, 𝑥) +  𝑓1(𝑥, 𝑡)𝜎, ∀(𝑡, 𝑥, 𝜎) ∈ [𝑡0, 𝑡𝑓] × 𝑅𝑛 × 𝑅𝑚 

where 𝑓0, 𝑓1 are continuous in 𝑥measurable in𝑡and 

𝑓0(𝑡, �̅�). 𝑥 ≤ (ŋ
0
(𝑡)‖𝑡‖ + 𝛽0(𝑡)‖𝑡‖), 𝑡 ∈ [0, 𝑇], 𝑥 ∈ 𝑅𝑛, 

‖𝐹1(𝑡, �̅�)‖ ≤ 𝛼1(𝑡), ‖𝑓0(𝑡, �̅�)‖ ≤ 𝛼𝛿(𝑡), 𝑡 ∈ (𝑡0, 𝑡𝑓), ‖�̅�‖ ≤ 𝛿, 

where,𝛽0, 𝛼𝛿 ∈ 𝐿1[𝑡0, 𝑡𝑓]∀𝛿 > 0 

(iv)The Integrand of the functional is concave in the admissible control set and  

is bounded by𝑐2 − 𝑐1|𝑢|3, 𝑐1 > 0 and β > 1 .  
Thus, the assumptions above imply there exist an optimal control, 𝜎∗ = (𝜎∗

1, 𝜎
∗
2, … . . , 𝜎∗

𝑛) for above cost functional. 

Theorem 3.1 

Consider the control problem (13) with state equations (14). There exist 𝜎∗ = 𝜎∗
𝑖 ∈∪ such that𝑀𝑖𝑛𝐽(𝜎𝑖) = 𝐽(𝜎∗

𝑖). 

Proof 

Since 𝑈 is closed and convex, the state equation is bilinear in 𝑜𝑖and the RHS of (13) and (14) are continuous which can be 

rewritten as 𝑓(𝑡, 𝑃, 𝑈) =  𝛽𝑖
⃗⃗  ⃗(𝑡, 𝑃) + 𝛽𝑖

⃗⃗  ⃗(𝑡, 𝑃)𝑈, by lemma (3.1) and the boundedness of solution give   

|𝑓(𝑡, 𝑃, 𝑈)| ≤∝𝑖 (1 + ‖𝑃‖ + ‖𝑈‖)∀𝑡𝑜 ≤ 𝑡𝑓 , 𝑃 ∈ 𝑅𝑚, 𝑈 ∈ 𝑅𝑛 

Where 𝑃 =  (𝑆, 𝐼, 𝑅)𝑇𝑎𝑛𝑑𝑈 = (𝜎𝑖), 𝑖 = 1, 2, … . , 𝑛. 
For the convexity of the integrand of the objective functional to be verified, it is showed the  

𝐿(𝑡, 𝑃(1 − 𝜆)𝑈 + 𝜆𝑉 ≤ (1 − 𝜆)𝐿(𝑡, 𝑃, 𝑈) + 𝜆𝐿(𝑡, 𝑃, 𝑉) 

Where 

𝐿(𝑡, 𝑃, 𝑈) = [𝐼𝑖 + 
𝛼

2
𝜎𝑖

𝑇𝜎𝑖],0 < 𝜆1                                                                                                                 (15) 

𝐿(𝑡, 𝑃(1 − 𝜆)𝑈 + 𝜆𝑉) =  𝛿𝑖
𝑇𝐶𝑖 + 𝛼[(1 − 𝜆)𝜎𝑖 + 𝜆𝑣𝑖)

𝑇(1 − 𝜆)𝜎𝑖 + 𝜆𝑣𝑖]\ 

= 𝛿𝑖
𝑇𝛼 [((1 − 𝜆)𝜎𝑖

𝑇 + 𝑣𝑖
𝑇)(1 − 𝜆)𝜎𝑖 + 𝜆𝑣𝑖]                                                                                               (16) 

= 𝛿𝑖
𝑇𝐶𝑖+∝ [(1 − 𝜆)2𝜎𝑖

𝑇𝜎𝑖 + 𝜆(1 − 𝜆)𝜎𝑖
𝑇𝑣𝑖 + 𝜆𝑣𝑖

𝑇) + 𝜆2𝑣𝑖
𝑇] 

𝐿(𝑡, 𝑃(1 − 𝜆)𝑈 + 𝜆𝑉)  =  𝛿𝑖
𝑇𝐶𝑖+∝ 𝜎𝑖

𝑇𝜎𝑖 + 𝛼 [(𝜆2 − 2𝜆)𝜎𝑖
𝑇𝑜𝑖 

+𝜆2𝑣𝑖
𝑇𝑣𝑖 + 𝜆(𝜎𝑖

𝑇𝑣𝑖 + 𝑣𝑖
𝑇𝑜𝑖) − 𝜆2(𝜎𝑖

𝑇)]                   (17) 

And  

(1 − 𝜆)𝐿(𝑡, 𝑃, 𝑈) + 𝜆𝐿(𝑡, 𝑃𝑉) = 𝐼𝑖+∝ 𝜎𝑖
𝑇𝜎𝑖 − 𝜆(∝ 𝜎𝑖

𝑇𝜎𝑖−∝ 𝑣𝑖
𝑇𝑣𝑖                                                       (18) 

Thus, it is showed that  

𝛼[(𝜆2 − 2𝜆)𝜎𝑖
𝑇 + 𝜆2𝑣𝑖

𝑇 + 2𝜆(1 − 𝜆)𝜎𝑖
𝑇𝑣𝑖

𝑇] ≤ 𝜆(−∝ 𝜎𝑖
𝑇 + 𝛼𝑖

𝑇                  (19) 

Since 

 (𝜎𝑖
𝑇𝑣𝑖 = 𝜎𝑖

𝑇𝜎𝑖 , 𝜎𝑖
𝑇𝜎𝑖 = 𝜎𝑖

2,         𝑣𝑖
𝑇𝜎𝑖 = 𝑣𝑖

2) 

𝛼(𝜆2 − 𝜆)(𝜎𝑖
𝑇𝜎𝑖 + 𝑣𝑖

𝑇𝑣𝑖) + 2𝜆(1 − 𝜆)(∝ 𝜎𝑖
𝑇𝑣𝑖) ≤ 0                                                                               (20)  

≡ −∝ (√𝜆(1 − 𝜆)𝜎𝑖 − √𝜆(1 − 𝜆)𝑣𝑖)
𝑇 (𝜆(1 − 𝜆)𝜎𝑖 − √𝜆(1 − 𝜆)𝑣𝑖) ≤ 0 

This implies 

−∝ ‖(√𝜆(1 − 𝜆)𝜎𝑖 − √𝜆(1 − 𝜆)𝑣𝑖) ‖
2

≤ 0                                                                                           (21) 

Since 𝛼 > 0,the above inequality holds. Hence the theorem holds. 

In conclusion, it is showed that 

𝐿(𝑡, 𝑃, 𝑈) ≤ 𝑞2+ 𝑞1‖𝑈‖𝛽, 𝑞𝑖> 1, ∀𝐿(𝑡, 𝑃, 𝑈) = 𝛿𝑖
𝑇∁𝑖 + ∝ 𝜎𝑖

𝑇 ≤ 𝑞2 − 𝑞1‖𝑈‖2 

Where𝑞2 depends on the upper bound 𝑡2, 𝑞1> 0 and since ∝> 0. Hence by Lemma(3.1) there exist an optimal control for the 

model. 

We consider this system on the time interval [0,T]. The control set defined as 

𝑈 = {𝜎 = (𝜎𝑖….,𝜎𝑛)|𝜎𝑖 is Lebesgue measurable,  

0 =≤ 𝜎𝑖(𝑡) ≤ 𝜎𝑚𝑎𝑥𝑎 , 𝑒for  𝑖 = 1,2, .  .  . , 𝑛} 
We choose the upper bound for 𝜎 to be 1, to represent the amount of vaccine distribution resulting from the highest level of 

vaccine bait distribution currently used, roughly about 150 baits 𝑘𝑚2. The combined coefficient 𝛾 ∝𝑖 (𝑡) represents the rate 

of removal of susceptible from subpopulation 𝑖 due to vaccination. We wish to minimize the total number of infected and the 

cost associated with vaccination.  

 

Transactions of the Nigerian Association of Mathematical Physics Volume 3, (January, 2017), 99 – 110 



 

104 

 

Optimal Control of Rabiesin…           IssaI, Aderinto, Afolabi and Yisa    Trans. of NAMP 
 

We consider the problem, 

Minimize 𝐽(𝜎) =
𝑛
∑

𝑖 = 1
∫ (𝐼𝑖 +

∝

2

𝑇

0
𝜎𝑖

2)𝑑𝑡                                                                                           (22)  

Subject to  

𝑑𝑆𝑖

𝑑𝑡
=  −𝛽𝑖𝑆𝑖𝐼𝑖 − 𝛾𝛼𝑖𝑆𝑖 +

𝑛
∑

𝑗 = 1, 𝑗 ≠ 𝑖
𝑎𝑗𝑖𝑆𝑗 −

𝑛
∑

𝑗 = 1, 𝑗 ≠ 𝑖
𝑎𝑗𝑖𝑆𝑖 − 𝜇𝑆𝑆𝑖 + ŋ

𝑖
𝑅𝑖 

𝑑𝐼𝑖
𝑑𝑡

=  𝛽𝑖𝑆𝑖𝐼𝑖 +

𝑛
∑

𝑗 = 1, 𝑗 ≠ 𝑖
𝑐𝑗𝑖𝐼𝑗 −

𝑛
∑

𝑗 = 1, 𝑗 ≠ 𝑖
𝐶𝑗𝑖𝐼𝑗 − 𝜇𝐼𝐼𝑖 

𝑑𝑅𝑡

𝑑𝑡
=  𝛾𝛼𝑖𝑆𝑖 +

𝑛
∑

𝑗 = 1, 𝑗 ≠ 𝑖
𝑎𝑗𝑖𝑅𝑗 −

𝑛
∑

𝑗 = 1, 𝑗 ≠ 𝑖
𝑎𝑗𝑖𝑅𝑗 − 𝜇𝑅𝑅𝑖 − ŋ

𝑖
𝑅𝑖    (23) 

 𝑆(0) = 𝑆0𝐼(0) =  𝐼0,            𝑅(0) =  𝑅0,       𝜎 ∈ 𝑈. 
Where ∝> 0 is the weight factor in the cost of control. We choose a quadratic cost on the control for analysis convenience for 

this prototype problem. One can modify this to consider a combination of quadratic and linear cost or other convex functions, 

𝐴𝜎𝑖 + 𝐵𝜎𝑖
2 𝑤ℎ𝑒𝑟𝑒𝐴 >  0, 𝐵 >  0. 

3.1 Necessary Condition  
To obtain the necessary conditions we shall proof the following theorems 

Theorem 3.2 

There is an optimal control 𝜎𝑈that minimizes(22) subject  to (23). 

Using pontryagins’s Minimum/Maximum principle, the necessary condition for optimality is derived. The Hamitonian is 

established with adjoint variables 𝜆1𝑖 , 𝜆2𝑖, and 𝜆3𝑖 for 𝑖 = 1, 2, … . , 𝑛. 

𝐻(𝑡, 𝑆, 𝐼, 𝑅, 𝜎) =
𝑛
∑

𝑖 = 1
 (𝐼𝑖 +

∝

2
𝜎𝑖

2 + 𝜆1𝑖𝑆𝑖
′ + 𝜆2𝑖𝐼𝑖

′ + 𝜆3𝑖𝑅𝑖
′                                                                         (24) 

Where 𝜆1𝑖 is multiplied by the RHS of the 𝑆𝑖and similarly for 𝜆2𝑖 and 𝜆3𝑖. 

Theorem 3.3Given an optimal control 𝜎 = (𝜎1, 𝜎2 … , 𝜎𝑛) in 𝑈  and corresponding state solutions 𝑆 =  (𝑆1, 𝑆2 … , 𝑆𝑛), 𝐼 =
(𝐼1,  12 … , 1𝑛)  and 𝑅 = (𝑅1, 𝑅2 … , 𝑅𝑛 ), there exist  𝜆1 = (𝜆11, 𝜆12 … . , 𝜆1𝑛), 𝜆2 = (𝜆21, 𝜆22 … . , 𝜆2𝑛), 𝑎𝑛𝑑𝜆3 =
(𝜆31, 𝜆32 … . , 𝜆3𝑛)𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 

𝑡ℎ𝑒𝑎𝑑𝑗𝑜𝑖𝑛𝑡𝑠𝑦𝑠𝑡𝑒𝑚: 

𝜆1𝑖
′ =

𝜕𝐻

𝜕𝑆𝑖

= 𝜆1𝑖 (𝛽𝑖𝐼𝑖 + 𝛾𝜎𝑖 +

𝑛
∑

𝑘 = 1, 𝑘 ≠ 𝑖
𝑎𝑖𝑘 + 𝜇𝑆) − 𝜆2𝑖𝛽𝑖𝐼𝑖 − 𝜆3𝑖𝛾𝜎𝑖 −

𝑛
∑

𝑘 = 1, 𝑘 ≠ 𝑖
𝜆1𝑘𝑎𝑖𝑘 

𝜆2𝑖
′ =

𝜕𝐻

𝜕𝐼𝑖
= −1 + 𝜆2𝑖 (𝛽𝑖𝑆𝑖 +

𝑛
∑

𝑘 = 1, 𝑘 ≠ 𝑖
𝑐𝑖𝑘 + 𝜇𝐼) − 𝜆𝐼𝑖𝛽𝑖𝑆𝑗 −

𝑛
∑

𝑘 = 1, 𝑘 ≠ 𝑖
𝜆2𝑘𝑐𝑖𝑘                         (25) 

𝜆3𝑖
′ =

𝜕𝐻

𝜕𝑅𝑖

= 𝜆3𝑖 (

𝑛
∑

𝑘 = 1, 𝑘 ≠ 𝑖
𝑎𝑖𝑘 + 𝜇𝑅) −

𝑛
∑

𝑘 = 1, 𝑘 ≠ 𝑖
𝜆3𝑘𝑎𝑖𝑘 + ŋ

𝑖
 

and  

𝜆1𝑖(𝑇) = 𝜆2𝑖(𝑇) = 𝜆2𝑖(𝑇) = 0      𝑓𝑜𝑟𝑖 = 1, 2,   .  .  . , 𝑛                                                                               (26)   
Furthermore, the controls 

𝜎𝑖 = min  {max  {0,
𝛾𝑆𝑖(𝜆1𝑖 − 𝜆3𝑖

∝
} 𝜎max } 𝑓𝑜𝑟 𝑖 = 1, 2,   … , 𝑛                                                                (27)  

Proof: 

Suppose 𝜎 =  (𝜎1, 𝜎2 … , 𝜎𝑛) is an optimal control and 𝑆 =  (𝑆1, 𝑆2 … , 𝑆𝑛), 𝐼 = (𝐼1,  12 … , 1𝑛) 

and 𝑅 = (𝑅1, 𝑅2 … , 𝑅𝑛), are corresponding solutions. Using the result of Pontryagin’s Maximum  Principle, there exists 

adjoint variables(𝜆3𝑖, 𝜆2𝑖𝑎𝑛𝑑𝜆1𝑖) satisfying: 

𝜆1𝑖
′ = −

𝜕𝐻

𝜕𝑆𝑖

 

𝜆2𝑖
′ = −

𝜕𝐻

𝜕𝐼𝑖
           (28) 

𝜆3𝑖
′ =

𝜕𝐻

𝜕𝑅𝑖

 

For 𝑖 = 1, 2,   .  .  . , 𝑛. 
Where 𝐻 is the Hamiltonian, with the transversality condition 
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𝜆1𝑖(𝑇) = 𝜆2𝑖(𝑇) = 𝜆2𝑖(𝑇) = 0                                                                                                                         (29) 

For example, 𝜆1𝑖
′ 𝑓𝑜𝑟𝑖 = 1, 2, … , 𝑛 is given by 

𝜆1𝑖
′ = −

𝜕𝐻

𝜕𝑆𝑖

 

𝜆1𝑖 (𝛽𝑖𝐼𝑖 + 𝛾𝜎𝑖 +

𝑛
∑

𝑘 = 1, 𝑘 ≠ 𝑖
𝑎𝑖𝑘 + 𝜇𝑆) − −𝜆2𝑖𝛽𝑖𝐼𝑖 − 𝜆3𝑖𝛾𝜎𝑖 −

𝑛
∑

𝑘 = 1, 𝑘 ≠ 𝑖
𝜆1𝑘𝑎𝑖𝑘                         (30) 

The general form for the optimality condition is given by  
𝜕𝐻

𝜕𝜎𝑖
=∝ 𝜎𝑖 − 𝛾𝑆𝑖(𝜆1𝑖 − 𝜆3𝑖) = 0   𝑎𝑡𝜎𝑖

∗                                                                                                           (31)  

On the set 𝑡: 0 < 𝜎𝑖
∗(𝑡) < 𝜎𝑚𝑎𝑥 , 𝑖 = 1, 2, … . , 𝑛.    by Solving (31) for 𝜎𝑖

∗(𝑡)𝑓𝑜𝑟𝑖 = 1,2, …𝑛  on the interior of the control set, 

we have 

𝜎𝑖
∗(𝑡) =

𝛾𝑆𝑖(𝜆1𝑖 − 𝜆3𝑖)

∝
                                                                                                                                      (32) 

Using the control bounds, we obtain 

𝜎𝑖 = min {max {𝑜,
𝛾𝑆𝑖(𝜆1𝑖 − 𝜆3𝑖)

∝
}, 𝜎𝑚𝑎𝑥} 𝑓𝑜𝑟𝑖 1,2, … . , 𝑛                                                                      (33) 

Since the solution of the state and adjoint system are 𝐿∞ bounded, the right hand side of these ODEs are Lipcithz in the state 

and adjoint variables, which guarantee the uniqueness of the optimality system consisting (23), (25), and (27). 

 

4.0 Numerical Solution 
In this section, Numerical solution are presented via maple 18, we used the Forth Order Runge-Kutta method to solve the 

state system, the solution to the optimal control problem are presented using the data collected from Plateau State. Collection 

of bats was based on the availability of bat roost, consent from relevant authorities, and the cooperation of local hunters and 

community inhabitants who were knowledgeable of bat 55 roosts and available to assist in bat capture. Bats were collected 

from 8 different locations within 4 Local government areas in plateau state, Nigeria,[13].The data are presented in Table 2 

Table 2: Bats sampled and Geographic Positions of their Roast sites, [13] 
S/no Bat species (family) Bat common 

name 

Name of location bat roost 

sites 

Number of 

hat/species 

(population 

Number of 

bats tested 

positive 

Geopositioning of 

bat roast 

1 Eidolonhelvum 

(Pteropodidae) 

African straw 

coloured bats or 

African fruit bat 

National Commission for 

Museums and Monuments, 

Jos. roosting on trees 

732 32 9054'48N, 8o 

53'10E, Altitude 

1223m  

2 Rhinopoma 

microphylum(Rhinopomatida) 

Mousetailed bat Leptur, roosting in a cave 12 4 9026'48N, 9o 2'0E, 

Altitude 966m 

3 Chaerophon pumila 

(Molossidae) 

Little freetailed 

bats 

Dawaki, roosting in hospital 

roof and house wall 

99 5 905’1N,9o 4'2E, 

Altitude 759m 

4 Rhinolophus landeri 

(Rhinolophidae) 

Lander's 

horseshoe bat 

Pandam Game Reserve, 

roosting in an ancient well. 

196 10 808'12N, 8o 

57'52E, Altitude 

162m 

5 Nycteris macrotis 

(Nycteridae) 

Largeeared 

slitfaced bat 

Pandam, roosting in a 

culvert 

18 3 802'9N, 8o 9'0E, 

Altitude 145m 

6 Epomophorus franquetti 

(Pteropodidae) 

Franquet Epaulet Sabon layi, roosting on 

trees in the Chief's 

compound 

124 5 804'59N, 9o 7'45E, 

Altitude 173m 

7 Epomorphorus Gambianus 

(Pteropodidae) 

Gambian Epaulet Sabon layi, roosting on 

trees beside the bridge 

5 2 8039'N, 9o 8'9E, 

Altitude 158m 

8 Laviafrons (Megadermatid) Yellow winged 

bat 

Lakushi,roostingon thorny 

trees in a swampy forest-

like area 

100 3 804'4N, 9o 9'3E, 

Altitude 152m 

To illustrate our control results, we consider a population consisting of 8 subpopulation (a case study of 4 different local 

government of Plateau State, Nigeria.) 

All eight (8) sub populations are connected to each other and each movement coefficient only depends on the distance 

between two sub populations. For each sub populations  𝑖 = 1,2, … . ,8 , our state system (23) consists of 24 ordinary 

differential equations. And 24 ordinary differential equations of adjoint variables which were numerically  solved. 

Table (2) shows the details of bats sample, the geographical positions of their roost, Number of population and infected bats 

in each sub population. The following is the default setting for the initial conditions and parameters.  

𝛼 = 100, 𝛽𝑖 = 0.01, 𝛾𝑖 = 0.1, 𝜇𝑆 = 𝜇𝑅 = 0.00236, 𝑈𝐼 = 0.1818  
The rate of 𝑎𝑖𝑗 , 𝑎𝑖𝑠is guessed based on deductions from [10]. 
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Then parameter (𝛾) , the efficacy of vaccine distribution is difficult to  find in the literature, here we evaluated  2 different 

values (i.e. 0.1, 0.4). 

The numbers in each class (susceptible (Solid line),Infected (dotted line)  and removed(dashed line)).We tried different 

examples with different values for 𝜎and 𝛾 in table 3. 

Table 3: Table of values for examples  

Example 𝜎(𝑡) 𝛾 

 0 − 

2 0.1 0.4 

3 0.5 0.1 

4 0.5 0.4 

5 1.0 0.4 

 

 
         

   

 
 
Figure 3: S.I.R. Graph for 4 selected subpopulations at 𝜎𝑖(𝑡) =  0 

 
 

 

 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 3, (January, 2017), 99 – 110 



 

107 

 

Optimal Control of Rabiesin…           IssaI, Aderinto, Afolabi and Yisa    Trans. of NAMP 
 

 

 

Figure 4: S.I.R. Graph for 4 selected subpopulations at 𝜎𝑖(𝑡) = 0.1, 𝛾 = 0.1  

 

 
Figure 5: S.I.R. Graph for 4 selected subpopulations at 𝜎𝑖(𝑡) = 0.1, 𝛾 = 0.4 
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Figure 6: S.I.R. Graph for 4 selected subpopulations at 𝜎𝑖(𝑡) = 0.5, 𝛾 = 0.1 

 

 

 
Figure 7: S.I.R. Graph for 4 selected subpopulations at 𝜎𝑖(𝑡) = 0.5, 𝛾 = 0.4 
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Figure 8: S.I.R. Graph for 4 selected subpopulations at 𝜎𝑖(𝑡) = 0.1, 𝛾 = 0.1 

 

 

 
Figure 9: S.I.R. Graph for 4 selected subpopulations at 𝜎𝑖(𝑡) = 0.1, 𝛾 = 0.4 

4.1 Interpretation of Results 

The general shapes of the graphs were very similar with small changes in magnitude. If the coefficient 𝛽𝑖 are too large, the 

disease spread very fast. We choose 𝛽𝑖 = 0.001for illustration (Note for a more realistic case, one could choose different 𝛽𝑖 

in different sub-populations to represent different conditions). With the following default setting for the initial conditions and 

parameters. 
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∝ = 100,     𝛽𝑖 =  0.1,   𝛾𝑖 = 0.1,   𝜇𝑆 = 𝜇𝑅 = 0.00236,   𝑈𝐼 = 0.1818 

The rate of 𝑎𝑖𝑗,   𝑎𝑖𝑠 was guessed based on deductions from [10]. 

If 𝛾 is lower than 0.4, this results in a corresponding lower level of vaccine control.  From the graphs, if the coefficient   𝛽𝑖  

are too large, the disease spread very fast.  

Different examples with different values for 𝜎 and 𝛾 were evaluated which was shown in Table 3. The simulations show 

clearly that when there is no control (vaccine), there is no remove class. Similarly when there is control, the remove class 

surface, you will also note the efficacy of the vaccine is very important as it was shown that when the efficacy was high, the 

remove class was higher and when the efficacy is low, the remove class reduced drastically. 

 

5.0 Conclusion 
Optimal control theory approach was used to characterizes the rabies metapopulation  model.The existence and uniqueness of 

the model was established, and finally solved using numerical method (Runge-Kutta fourth order in Paticular). The result 

obtained shows that vaccination is a very efficient factor in reducing the number of infected individuals and increasing the 

number of recovered individuals.And because of human consumption of bat meat in many parts of Nigeria, There is need to 

optimally control the number of infectious so as to reduce the spread of the diseases among bats, domestic animals and 

wildlife generally. Henceforth, there is need for continued surveillance nationwide to have better understanding of the 

epidemiology of viral agents of economic and public health importance in bats and, other wild animals so as to aid in their 

prevention, control and eradication.Equipping of existing laboratories in Research institutes and Universities in the nation for 

modern, speedy and quality diagnosis is much recommended 
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