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Abstract 
 

Over the years, the use of mathematical models as an aid in understanding 

features of HIV infection dynamics has been substantial. This paper 

considered two mathematical models of the viral dynamics of HIV with 

reversion rate and immune response. The first model used the saturated 

function as mode of transmission while the second model used the mass 

action mode of transmission and captured the latently infected CD4+ cells 

and the productively infected CD4+. The basic properties of the two models 

such as positivity, existence and uniqueness of the solution of the two 

models are proven. The basic reproduction number of the models are 

computed and the models are further analyzed for the stability of the 

equilibrium states. In addition, numerical simulations are carried out to 

show the effect of reversion rate and mode of transmission on the dynamics 

of an in-vivo HIV model. It is observed from numerical results that 

capturing the latently infected CD4+ cells and the productively infected 

CD4+ cells using mass action mode of transmission have great impact in 

reducing basic reproduction number and also reduced the viral load in the 

body of the infected HIV person. Finally, the sensitivity analysis of the 

model parameters for the two models are carried out to support the 

numerical simulation. 
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1.0     Introduction 
HIV (Human Immunodeficiency Virus) is a member of lentiviruses that has two known types, HIV-1 and HIV- 2 [1]. It 

infects vital cells in the human immune system such as helper T cells (specifically CD4+cells), macrophages, and dendritic 

cells [2]. HIV infection leads to low levels of CD4+ cells through a number of mechanisms that include apoptosis of infected 

T cells [3], apoptosis of uninfected bystander cells [4], direct viral killing of infected cells, and killing of infected CD4+ cells 

by CD8 cytotoxic lymphocytes [5]. When CD4+cell number declines below a critical level, cell-mediated immunity is lost, 

and the body becomes progressively more susceptible to opportunistic infections. HIV cannot reproduce itself on its own. It 

can only replicate inside the cells of host organism and copies its RNA (Ribonucleic acid) genome into healthy cells using an 

enzyme. This enzyme is called reverse transcriptase and it transcribes viral RNA into DNA which can then be integrated into 

the host genome which then replicates the virus[6].  

According to [6], HIV has a long latency period that is, the time it takes the body’s immune system to lose its ability to 

generate the immune response required to suppress the virus. This leads to an intensified replication of the virus. Without 

treatment, the average survival is estimated to be 9 to 11 years depending on the HIV subtype [7].  Like any other pathogen, 

invasion of the body by HIV stimulates an immune response. Although there is a wide range of immune responses, we will 

focus on CD4+  cells and CD8 cells.  CD8 cells control the virus by either lysing the infected cell or inhibiting HIV 

replication and entry into target cells [8]. 

The dynamics between virus infections and the immune system involve many different components and are multi–factorial.  
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HIV infects CD4+cells, which are a central component orchestrating the generation of specific immune responses that fight 

the virus [9]. Therefore, the interactions between HIV and the immune system are more complex compared to most other 

infections  

A good number of studies have been conducted to highlight the dynamics of HIV within the host. Ball et al. [10] and 

Perelson and Riberiro [11] reviewed developments in HIV modeling using mass action mode of 

transmissionwithoutemphasizing the important of immune response and reversion rate.Perelson and Riberiro [11] considered 

the quantitative findings about HIV by studying acute infection, the response to drug therapy and the rate of generation of 

HIV variants that escape immune responses.Mugwagwa [8] further worked on the role of CD8 immune responses in HIV. In 

his work, he showed that a strong cytotoxic lymphocyte (CTL) response can control the viral load while in some cases the 

virus may persist regardless of the immune response. Hattaf and Yousfi [12]presented a delay – differential equation model 

with mass action mode of transmission and immune response. They used optimal control approach to describe the interaction 

between HIV, CD4+cells and cell – mediated immune response. These authors [8] and[12]concluded that the immune 

response plays a crucial role in reducing the incidence of HIV infection.  However, few studies such as Rong et al. [13], 

Yang et al [14], Srivastava and Chandra [15], and Arafa et al [16] consideredthe reversion of resting infected CD4+cells to 

uninfected statewithin the host dynamics of HIV without emphasizing the importance of immune responses as stated in [8] 

and [12]. The reversion of resting infected CD4+ cells to uninfected CD4+ cells is due to non-completion of reverse 

transcription. Hence, this research work is meant to address the importance of immune responses and reversion of resting 

infected CD4+cells to uninfected cells on the dynamics of HIV within host. 

 

2.0  Model Formulation 
The model is formulated by considering the population of interest, the total cell population and is divided into four mutually 

exclusive compartments namely: uninfected CD4+ cells, 𝑥(𝑡),  Infected CD4+cells, 𝑦(𝑡), Free virus particle, 𝑣(𝑡), and CD8 

cells, 𝑧(𝑡).  Following Sun and Min [17], we assume a saturated infection rate and that some fraction of infected CD4+ cells 

return to the uninfected classdue to non-completion of reverse transcription. We also assume that infected  CD4+ cells have a 

high death rate compared to uninfected CD4+ cells so that 𝜇2>𝜇1. Furthermore, immune responses is incorporated in the 

model based on the result from [8] and [12]. Hence, below is tabular description of the parameters of the model and the flow 

diagram.     

 
 
 
 
 
 
 
 
 
 
 
Figure 1: Model diagram showing movements of cells between compartments 

Table 1: Model Parameter Values 

Parameter Description 

𝑏 

𝜋 

𝜇3 

𝜇4 

𝜇2 

𝜇1 

𝛽 

 

∅ 

𝑘 

𝑐 

Rate at which resting infected CD4+cells  revert to uninfected cells 

Recruitment rate of  CD4+cells 

Natural death rate of the virus 

Natural death rate of healthy CD8 cells 

Natural death rate of infected CD4+cells 

Natural death rate of healthy CD4+cells 

Effective contact rate between an infected CD4+  cells and a healthy 

CD4+cells 

Natural death rate of healthy CD4+cells 

Virus population 

Proliferation of CD8 cells 

In view of the flow diagram, we obtain the following deterministic system of non-linear ordinary differential equations: 
𝑑𝑥

𝑑𝑡
=   𝜋 −  

𝛽𝑥𝑣

1 + 𝛼𝑣
− 𝜇1𝑥 +  𝑏𝑦 
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𝑘𝑦 

 

 𝜇1𝑥 

𝑏𝑦 

𝜇2𝑦 

 

 𝜇4𝑧 

 

 𝜇3𝑣 𝑐𝑦𝑧 

𝛽𝑥𝑣

1 +  𝛼𝑣
 

𝜋 

𝑥    𝑦 𝑣 

𝑧 

∅𝑦𝑧 
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𝑑𝑦

𝑑𝑡
=

𝛽𝑥𝑣

1 + 𝛼𝑣
− 𝜇2𝑦 − ∅𝑦𝑧 – 𝑏𝑦 

𝑑𝑣

𝑑𝑡
= 𝑘𝑦 − 𝜇3𝑣                     (1) 

𝑑𝑧

𝑑𝑡
=  𝑐𝑦𝑧 − 𝜇4𝑧.                               

The nonnegative initial conditions of the model system (1) are 𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0, 𝑣(0) = 𝑣0, 𝑧(0) = 𝑧0. 

2.1  Model Analysis 
The Model (1) will be analyzed qualitatively to get insights into the dynamical features of the in-vivo HIV infection 

considering the reversion state of the infected cells to uninfected state. 

The basic properties of the model (1) are very cardinal in the proofs of stability of the equilibrium states. We begin by 

showing that all solutions of the system (1) are positive for all time  𝑡 ≥ 0. 

2.1.1  Positivity of Solution 
Lemma 1.Let the initial conditions for the model system (1) be {x0, y0, v0, z0 ≥ 0} ∈ Ω, where Ω is the positivity invariant 

region. Then, the solution set {x(t), y(t), v(t), z(t)} of the system (1) is positive for all t ≥ 0. 

Proof.  From the first equation of system (1), we have 
𝑑𝑥

𝑑𝑡
=  𝜋 − 

𝛽𝑥𝑣

1 + 𝛼𝑣
− 𝜇1𝑥 +  𝑏𝑦,                                                                                 

Which can be rewrite as 
𝑑𝑥

𝑑𝑡
≥ − (

𝛽𝑣

1+𝛼𝑣
+ 𝜇1) 𝑥 .                                                     (2) 

Now, 
𝛽𝑣

1+𝛼𝑣
< 𝛽 since  

𝛽

1+𝛼𝑣
≤ 1 for 𝛼 ≥ 1.Therefore (2) can be written as  

𝑑𝑥

𝑑𝑡
≥ −(𝛽 + 𝜇1)𝑥.     (2*)  

Integrating (2∗) by separation of variables and applying the initial conditions, yields  

𝑥(𝑡) ≥ 𝑥0𝑒
−(𝛽+ 𝜇1  )𝑡  ≥ 0. 

In a similar way, we show the second, third and fourth equations of the model system (1) remain positive. 

Thus, the solution set of the model (1) is positive in Ω for all  𝑡 ≥ 0. 

2.1.2  Existence and Uniqueness of Solution for the Model 
For the mathematical model to predict the future of the system from its current state at time 𝑡0, the initial value problem 

(IVP) 

𝑥ʹ = 𝑓(𝑡, 𝑥), 𝑥(𝑡0) =  𝑥0         (3) 

must have a solution that exists and is unique. 

In this sub-section, we give conditions for the existence and uniqueness of solution for the system of equations. 

Let 

𝑓1(𝑡, 𝑥) = 𝜋 − 
𝛽𝑥𝑣

1+𝛼𝑣
− 𝜇1𝑥 +  𝑏𝑦                                                                            (4) 

𝑓2(𝑡, 𝑥) =  
𝛽𝑥𝑣

1+𝛼𝑣
− 𝜇2𝑦 − ∅𝑦𝑧 – 𝑏𝑦                                                                        (5) 

𝑓3(𝑡, 𝑥) = 𝑘𝑦 − 𝜇3𝑣                                                                                                        (6) 

𝑓4(𝑡, 𝑥)  =  𝑐𝑦𝑧 − 𝜇4𝑧                                                                                                  (7) 

So that 

𝑥ʹ = 𝑓(𝑡, 𝑥), 𝑥(𝑡0) =  𝑥0         (8) 

Theorem 1.Let Ω denotes the region  
|𝑡 − 𝑡0| ≤ 𝑎, ‖ 𝑥 − 𝑥0‖  ≤ 𝑏, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑥0 = (𝑥1, 𝑥2, … , 𝑥𝑛)    (9) 

 and suppose that 𝑓(𝑡, 𝑥) satisfies the Lipchitz condition 

‖ 𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)‖  ≤ 𝑘‖𝑥1 − 𝑥2‖       (10) 

Whenever the pairs (t, x1) and (t, x2) belong to D′,where k is a positive constant. Then, there exists a constant δ > 0such that 

a unique continuous vector solution x(t) of the system (8) exist in the interval |t − t0|  ≤ δ. It is important to note that 

condition (8) is satisfied by the requirement that k =
∂fi

∂xj
, i, j = 1,2, … , n be continuous and bounded in Ω. 

Lemma 2. If f(t, x) has continuous partial derivative 
∂fi

∂xj
 on a bounded closed convex domain R, then it satisfies a Lipchitz 

condition in R. 

We are interested in the region 

1 ≤  𝜀 ≤ 𝑅                                                                               (11) 

and for a bounded solution of the form 

0 < 𝑅 <  ∞                                                                                      (12) 
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We have the following existence theorem.  

Theorem 2.Let Ω denote the region defined in (9)such that (11) and (12) hold. Then, there exists a solution of model system 

(4) − (7) which is bounded in the region Ω. 

Proof.   Let 𝑓1 =  𝜋 − 
𝛽𝑥𝑣

1+𝛼𝑣
− 𝜇1𝑥 +  𝑏𝑦                            

𝑓2 = 
𝛽𝑥𝑣

1 + 𝛼𝑣
− 𝜇2𝑦 − ∅𝑦𝑧 – 𝑏𝑦                    

𝑓3 = 𝑘𝑦 − 𝜇3𝑣                                                      
𝑓4  =  𝑐𝑦𝑧 − 𝜇4𝑧                                                            

It suffices that  
𝜕𝑓𝑖

𝜕𝑥𝑗
, 𝑖, 𝑗 = 1,2,3,4 are continuous. Consider the partial derivatives of the first equation of (1) that is 

𝜕𝑓1
𝜕𝑥

=  −
𝛽𝑣

1 + 𝛼𝑣 
− 𝜇1 ,     |

𝜕𝑓1
𝜕𝑥

| =  |−
𝛽𝑣

1 + 𝛼𝑣 
− 𝜇1| <  ∞ 

𝜕𝑓1
𝜕𝑦

= 𝑏, |
𝜕𝑓1
𝜕𝑦

| =  |𝑏| <  ∞                                         

𝜕𝑓1
𝜕𝑣

=  
−𝛽𝑥(1 − 𝑣)

(1 + 𝛼𝑣)2
,        |

𝜕𝑓1
𝜕𝑥

| =  |−
𝛽𝑥(1 − 𝑣)

(1 + 𝛼𝑣)2
| <  ∞          

𝜕𝑓1
𝜕𝑧

= 0,    |
𝜕𝑓1
𝜕𝑦

| =  |0| <  ∞                                     

In a similar way, we solve for all the equations of the model. Clearly, all the partial derivatives of (1) are continuous and 

bounded. Hence, there exists a unique solution of (4) - (7) in the region Ω by theorem 2. 

2.1.3  Existence and Stability of Equilibrium Points 

Let 𝐸(𝑥∗, 𝑦∗, 𝑣∗, 𝑧∗) be the equilibrium point of the system (1). The steady state solutions are obtained by equating the right 

hand side (RHS) of system (2.1) to zero and solve. Thus, 
𝑑𝑥

𝑑𝑡
=  𝜋 − 

𝛽𝑥𝑣

1+𝛼𝑣
− 𝜇1𝑥 +  𝑏𝑦 = 0        (13) 

𝑑𝑦

𝑑𝑡
=

𝛽𝑥𝑣

1+𝛼𝑣
− 𝜇2𝑦 − ∅𝑦𝑧 – 𝑏𝑦 = 0        (14) 

𝑑𝑣

𝑑𝑡 
= 𝑘𝑦 − 𝜇3𝑣 = 0         (15) 

𝑑𝑧

𝑑𝑡
= 𝑐𝑦𝑧 − 𝜇4𝑧 = 0                                                 (16) 

2.1.4  The Virus-free Equilibrium, 𝑬𝟎 
The virus free equilibrium 𝐸0 is a point where HIV has not yet invaded the cell population, that is 𝑦 = 𝑣 = 0. 

Solving (13)-(16) simultaneously for 𝑦 = 𝑣 = 0,  we have virus free equilibrium (VFE) 𝐸0 given by 

𝐸0 = (𝑥∗, 𝑦∗, 𝑣∗, 𝑧∗) =  (
𝜋

𝜇1
, 0, 0, 0)       (17) 

2.1.5  The Basic Reproduction Number, 𝑹𝟎 
The basic reproduction number denoted by 𝑅0, is defined as the average number of secondary infections produced when an 

infected cell is introduce in a wholly uninfected CD4+ cells during its entire period of infectiousness. We compute 𝑅0 using 

the next generation operator approach described by [18].  

Considering the infective compartments, the associated generation matrices F and V at the VFE 𝐸0  are given by 

𝐹 =   [
    0

𝛽𝜋

𝜇1

   0   0
]     and    𝑉 =   [

𝜇2 +  𝑏      0
  −𝑘 𝜇3

]. 

while the inverse matrix of 𝑉 is given by 

𝑉−1  =   

[
 
 
 

1

𝜇2 +  𝑏
     0

𝑘

𝜇3(𝜇2 +  𝑏)

1

𝜇3 ]
 
 
 

 

The eigenvalues corresponding to the product matrix, FV −1      are λ1 =
𝛽𝑘𝜋

𝜇1𝜇3(𝜇2+ 𝑏)
  ,λ2  =  0. 

Therefore, the dominant eigenvalue (that is, the spectral radius) is the basic reproduction number, that is   𝑅0 =
max [|λ1|, |λ2|]. This gives 

𝑅0 = 
𝛽𝑘𝜋

𝜇1𝜇3(𝜇2+ 𝑏)
          (18) 

According to [18], virus free equilibrium 𝐸0 is locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.  Therefore, the 

following theorem holds. 

Theorem 3 The virus-free equilibrium point of the in-vivo HIV model described by the system (1) is locally asymptotically 

stable if R0< 1 and unstable if R0 > 1. 
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2.1.6  Global Stability of the Virus Free Equilibrium, 𝑬∗ 
We shall use Lyapunov function to establish the global stability of the virus free equilibrium.  

Theorem 4.If R0 < 1, the virus free equilibrium E0  is globally asymptotically stable in Ω. 
Consider the Lyapunov function 

𝐿 = 𝑦 + 
(𝜇2 +  𝑏)

𝑘
𝑣. 

The derivative of 𝐿 is given by 

𝐿ʹ = 𝑦ʹ +  
(𝜇2 + 𝑏)

𝑘
𝑣ʹ          (19) 

Where primeʹ denote the derivative. Substituting 𝑦ʹ 𝑎𝑛𝑑  𝑣ʹ at the virus-free equilibrium 𝐸0in (19), we have 

𝐿ʹ =  
𝜇3 (𝜇2 +  𝑏)

𝑘
(

𝑘𝛽𝜋

𝜇1𝜇3 (𝜇2 +  𝑏)
−  1) 𝑣 ≤  

𝜇3 (𝜇2 +  𝑏)

𝑘
(𝑅0 −  1)𝑣                                      

Therefore, if 𝑅0 ≤ 1, then 𝐿′(𝑡) ≤ 0. Also, 𝐿′(𝑡) = 0 if and only if   𝑥 = 𝑥∗, 𝑦 = 0, 𝑣 = 0, and 𝑧 = 0. Thus, the maximum 

invariant set in {(𝑥, 𝑦, 𝑣, 𝑧) ∈ Ω. ∶  𝐿′(𝑡) = 0} is the singleton{𝐸0}, where 𝐸0 is the virus free equilibrium state. By LaSalle’s 

invariant principle, every solutions of the model (1) with initial conditions in Ω tends to DFE 𝐸0 as 𝑡 ⟶ ∞. Hence, the virus 

free equilibrium point 𝐸0 is globally asymptotically stable in Ωif  𝑅0 ≤ 1. 

2.1.7 Existence and Stability of the Endemic Equilibrium State 
Endemic equilibrium state 𝐸∗ is a steady state solution where the virus persists in the population, that is 𝑣 ≠ 0. 

Solving (13)-(16) simultaneously for 𝑦 ≠ 0 and 𝑣 ≠ 0. We have endemic equilibrium point (EEP)𝐸∗ = (𝑥∗, 𝑦∗, 𝑣∗, 𝑧∗) 

where𝑥∗ =  
(𝑐𝜋+𝑏𝜇4)(𝑐𝜇3+ 𝛼𝑘𝜇4)

𝛽𝑘𝜇4+𝜇1(𝑐𝜇3+𝛼𝑘𝜇4)
, 𝑦∗ = 

𝜇4

𝑐
, 𝑣∗ = 

𝑘𝜇4

𝜇3𝑐
,   𝑧∗ = 

𝛽𝑥∗𝑣∗−(𝜇2+ 𝑏)𝑦∗(1+𝛼𝑣∗)

(1+𝛼𝑣∗)∅𝑦∗   provided𝛽𝑥∗𝑣∗ > (𝜇2 +  𝑏)𝑦∗(1 + 𝛼𝑣∗). 

2.1.8  Local Stability of the Endemic Equilibrium, 𝑬∗ 
The local stability of the endemic equilibrium is determined using linearization method. The Jacobian matrix, 𝐽𝐸∗  of model 

(1) at the endemic equilibrium 𝐸∗ is given as  

𝐽𝐸∗ =

[
 
 
 
 
 −

𝛽𝑣∗

1+𝛼𝑣∗ − 𝜇1 𝑏

𝛽𝑣∗

1+𝛼𝑣∗ −(𝜇2 + 𝑏) − ∅𝑧∗

–
𝛽𝑥∗(1−𝑣∗)

(1+𝛼𝑣∗)2
0

𝛽𝑥∗(1−𝑣∗)

(1+𝛼𝑣∗)2
∅𝑦∗

0                                          𝑘
0                                          𝑐𝑧∗

− 𝜇3             0
    0          𝑐𝑦∗ − 𝜇4]

 
 
 
 
 

    (20) 

The characteristic equation of the Jacobian matrix 𝐽𝐸∗ (20) is 

𝜆4 − 𝜆3 (𝑐𝑦∗ − 𝜇4 − 𝜇3 − (𝜇2 + ∅𝑧∗ + 𝑏) −
𝛽𝑣∗

1+𝛼𝑣∗
− 𝜇1) − 𝜆2 [((𝑐𝑦∗ − 𝜇4) − (𝜇2 + ∅𝑧∗ + 𝑏) − 𝜇3) (

𝛽𝑣∗

1+𝛼𝑣∗
− 𝜇1) − (𝜇3 −

(𝑐𝑦∗ − 𝜇4)(𝜇2 + ∅𝑧∗ + 𝑏) + 𝜇3(𝑐𝑦
∗ − 𝜇4) + (∅𝑦∗)(𝑐𝑧∗) + 𝑏] − 𝜆 [((𝑐𝑦∗ − 𝜇4 − 𝜇3)(𝜇2 + ∅𝑧∗ + 𝑏) + (∅𝑦∗)(𝑐𝑧∗) + 𝜇3(𝑐𝑦

∗ −

𝜇4)) (
𝛽𝑣∗

1+𝛼𝑣∗ − 𝜇1) − ((𝑐𝑦∗ − 𝜇4)(𝜇2 + ∅𝑧∗ + 𝑏) − (∅𝑦∗)(𝑐𝑧∗) − 𝑏)𝜇3 − (𝑐𝑦∗ − 𝜇4)𝑏] − (𝜇3(𝑐𝑦
∗ − 𝜇4)(𝜇2 + ∅𝑧∗ + 𝑏) −

(
𝛽𝑥∗(1−𝑣∗)

(1+𝛼𝑣∗)2
) (𝑐𝑦∗ − 𝜇4) + (∅𝑦∗)(𝑐𝑧∗)𝜇3) [(

𝛽𝑣∗

1+𝛼𝑣∗
− 𝜇1) + (

𝛽𝑣∗

1+𝛼𝑣∗
)𝑏𝜇3 + (

𝛽𝑣∗

1+𝛼𝑣∗
) (

𝛽𝑥∗(1−𝑣∗)

(1+𝛼𝑣∗)2
)] (𝑐𝑦∗ − 𝜇4) = 0 (21)  

Using the Routh Hurwitz criteria of stability for (21), the endemic equilibrium is locally asymptotically stable for 𝑅0 > 1. 

2.1.9  Sensitivity Analysis of the Model 
Sensitivity analysis is a mathematical tool used to determine the robustness of the model predictions to parameter values, 

since data collection and presumed parameter values have errors [19]. Sensitivity analysis is performed in order to determine 

the relative importance of model parameters on the virus transmission. This helps to investigate which parameters of the 

model (1) have highest impact on the𝑅0. The normalized forward sensitivity index is used in this work. 

Definition 1. The normalized forward sensitivity index of a variable τ that depends differentiable on the index of a parameter 

p is defined as 

𝑟𝜏
𝑝

=
𝜕𝑝

𝜕𝜏
×

𝜏

𝑝
 

We derive analytical expression for the sensitivity of 𝑅0 as 𝑟𝜏
𝑅0 =

𝜕𝑅0 

𝜕𝜏
×

𝜏

𝑅0 
, where 𝜏 denoting the model parameters. We 

compute the sensitive indices of the model (1) for each parameter involves in 𝑅0 . The indices with positive signs show that 

the value of 𝑅0 increases when the corresponding parameters are increased and those with negative signs indicate that the 

value of 𝑅0  decreases when the parameters are increased. 

The sensitivity index of 𝑅0 with respect to 𝛽 is given by 

𝑟𝛽
𝑅0 =

𝜕𝑅0 

𝜕𝛽
×

𝛽

𝑅0 
= 1. 

In a similar way, we get the sensitivity index of 𝑅0 with respect to all parameters in 𝑅0 , and the sensitivity indices results are 

given in Table 2. 
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Interpretation of Sensitivity Indices 

In interpreting the sensitivity indices, we keep all factors constant. Table 2 shows that the parameters  𝛽, 𝑘, 𝜋 increase the 

value of 𝑅0 when they are increased. This implies that the in-vivo HIV virus will continue to grow in the cell population 

when these parameters are increased. However when these parameters 𝑏, 𝜇1,  𝜇2 and 𝜇3  are increased, the value of 

𝑅0 decreases. This means that the in-vivo HIV virus will die out of growth in the cell population. The most sensitive 

parameters are the effective contact rate, 𝛽, followed by the virus population rate, 𝑘, and the recruitment rate of the 𝐶𝐷4+ 

cells, 𝜋. Increasing or decreasing the values of 𝛽, 𝑘, 𝜋 leads to the increase or decrease in the value of 𝑅0 with the same 

proportion since the sensitivity index is equal to one. Therefore, 𝛽, 𝑘, 𝜋  increase as 𝑅0 increases. The reversion rate of 

infected  CD4+ cells to uninfected CD4+ cells,  𝑏 is also sensitive. When 𝑏 is increased, 𝑅0 decreases. This implies that the 

number of the infected cells will reduce when the reversion rate is increased and hence increases the healthy CD4+ cells. 

Table 2: Numerical values of sensitivity indices of 𝑅0  for the Model 1 

Parameter Value Sensitivity index Parameter Value Sensitivity index 

𝑏 

𝜋 

𝜇3 

 

0.2day−1 

10day−1mm−3 

0.167day−1 

 

−0.4545455 

+1.000000000 

−1.000000000 

𝛽 

𝑘 

𝜇2 

𝜇1 

2.4 × 10−8day−1 

4000day−1 

0.24day−1 

0.01day−1 

+1.000000000 

+1.000000000 

−0.5454545 

−1.000000000 

2.2 Modified Model Formulation 
We consider mass action term that is  𝛽𝑥𝑣 as mode of transmission since the virus infecting 𝑥 cells depends on the number of 

healthy cells. Following Arafa et al. [16], the infected cells are divided into two infected classes namely latently infected 

CD4+ cells, 𝑦1 , and productively infected CD4+ cells, 𝑦2 .  Definitions of the parameters variables remain the same as the 

previous model except 𝛼, which is progress rate from latently infected CD4+ cells to productively infected CD4+ cells.  The 

flow diagram is given in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Flow diagram showing movement of cells between Compartments in the Modified Model of the in-vivo HIV 

Model. 

Inmodified model of the in-vivo HIV 

The modified model equations is derived with aid of the flow diagram in figure 2 as 
𝑑𝑥

 𝑑𝑡
=   𝜋 −   𝛽𝑥𝑣 − 𝜇1𝑥 +  𝑏𝑦1                               

𝑑𝑦1 

𝑑𝑡
=  𝛽𝑥𝑣 − 𝜇2𝑦1 − 𝑏𝑦1  –  𝛼𝑦1  

𝑑𝑦2 

𝑑𝑡
=  𝛼𝑦1 − 𝜇3𝑦2 − ∅𝑦2 𝑧                                                                                                                          (22)      

𝑑𝑣

𝑑𝑡
= 𝑘𝑦2 − 𝜇4𝑣                                                                                                       

𝑑𝑧

𝑑𝑡
=  𝑐𝑦2 𝑧 − 𝜇5𝑧  .                                                                                                           

The nonnegative initial conditions of the modified model (22) are 𝑥(0) = 𝑥0, 𝑦1(0) = 𝑦10
, 𝑦2(0) = 𝑦20

, 𝑣(0) = 𝑣0,

𝑧(0) = 𝑧0. 

2.3 Modified Model Analysis 

2.3.1  Positivity of the solutions of the Modified Model 
The positivity of the solutions of the modified model is stated in the following lemma. 

Lemma 3.Let the initial conditions for the model system (21) be{x(0), y1(0), y2(0), v(0), z(0) ≥  0} ∈ Ψ, where Ψ is the 

positivity invariant region. The solution set {x(t), y1(t), y2(t), v(t), z(t)} of the system (22) is positive for all time, t ≥  0. 

Proof. From the first equation of modified model(22), which is given as 
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𝑑𝑥

𝑑𝑡
=  𝜋 −  𝛽𝑥𝑣 − 𝜇1𝑥 +  𝑏𝑦1 . 

We have 
𝑑𝑥

𝑑𝑡
=  𝜋 + 𝑏𝑦1 − (𝛽𝑣 + 𝜇1)𝑥 ≥  −(𝛽𝑣 + 𝜇1)𝑥.                                                  (23) 

Integrating (23) by separation of variables and applying the initial conditions, yields     

𝑥(𝑡) ≥  𝑥(0)𝑒−∫ (𝛽𝑣 + 𝜇1)𝑑
𝑡
0 𝑡  ≥ 0. 

In a similar way, we show that all the solutions of the modified model remains positive in the domain Ω. Therefore, the 

solution set of the modified model (22) is positive in Ψ for all time 𝑡 ≥ 0. 

2.3.2 Existence and Uniqueness of Solution for the Modified Model 
The theorem 2 is used to proof the existence and uniqueness of the solution of the modified model as it is done in model (1). 

Let 
𝑑𝑥

𝑑𝑡
= 𝑓1(𝑡, 𝑥) =  𝜋 −  𝛽𝑥𝑣 − 𝜇1𝑥 +  𝑏𝑦1       (24)  

𝑑𝑦1

𝑑𝑡
= 𝑓2(𝑡, 𝑥) =   𝛽𝑥𝑣 − 𝜇2𝑦1 –  𝑏𝑦1 −  𝛼𝑦1                                              (25) 

𝑑𝑦2

𝑑𝑡
=   𝑓3(𝑡, 𝑥) =   𝛼𝑦1 − 𝜇3𝑦2 −  ∅𝑦2𝑧       (26)    

𝑑𝑣

𝑑𝑡
=   𝑓4(𝑡, 𝑥)  =   𝑘𝑦2 − 𝜇4𝑣                                                                               (27) 

𝑑𝑧

𝑑𝑡
=   𝑓5(𝑡, 𝑥)  =  𝑐𝑦2𝑧 − 𝜇5𝑧                                                                               (28) 

So that 

𝑥ʹ = 𝑓(𝑡, 𝑥), 𝑥(𝑡0) =  𝑥0. 

It suffices that 
𝜕𝑓𝑖

𝜕𝑥𝑗
, 𝑖, 𝑗 = 1,2,3,4,5 are continuous and bounded. Consider the partial derivatives of   𝑓1(𝑡, 𝑥) 

𝜕𝑓1
𝜕𝑥

=  −𝛽𝑣 − 𝜇1, |
𝜕𝑓1
𝜕𝑥

| =  |−𝛽𝑣 − 𝜇1| <  ∞                            

𝜕𝑓1
𝜕𝑦1

= 𝑏,               |
𝜕𝑓1
𝜕𝑦1

| =  |𝑏| <  ∞                                           

𝜕𝑓1
𝜕𝑦2

= 0,                |
𝜕𝑓1
𝜕𝑦2

| =  |0| <  ∞                                         

𝜕𝑓1
𝜕𝑣

=  −𝛽𝑥,          |
𝜕𝑓1
𝜕𝑥

| =  |−𝛽𝑥| <  ∞                                 

𝜕𝑓1
𝜕𝑧

= 0,                 |
𝜕𝑓1
𝜕𝑧

| =  |0| <  ∞                                       

The other equations of the modified model are solved in a similar way and this shows that all the partial derivatives of 

modified model (22) are continuous and bounded. Hence, by theorem (2), there exist a unique solution of model (22) in the 

region Ψ. 

2.4.3 Existence and Stability of Virus-free Equilibrium State of the Modified Model 
In this sub-section, the model is qualitatively analyzed to investigate the condition of existence of the virus-free equilibrium 

state of the model (22). The procedure to find 𝐸0 and 𝑅0  has been explained in model (1).  

Thus, the virus-free equilibrium state (VFE) 𝐸0  and the basic reproduction number, 𝑅0 , of the modified model are given by  

𝐸0 = (
𝜋

𝜇1
, 0, 0, 0, 0) and 𝑅0 = 

𝛽𝜋𝛼𝑘

𝜇1𝜇3𝜇4(𝜇2+𝑏+𝛼)
 respectively.  

The following theorem gives the local stability of the virus free equilibrium state of the modified model.  

Theorem 5The virus-free equilibrium state of the modified model is locally asymptotically stable if 𝑅0 < 1 and unstable if 

𝑅0 > 1. 

2.4.4 Sensitivity Analysis of the Modified Model 
The sensitivity analysis of the modified model parameters are given in Table 3 below and the interpretation is done as model 

(1). 

Table 3: Numerical values of sensitivity indices of 𝑅0  for the modified Model. 

Parameter Value Sensitivity index Parameter Value Sensitivity index 

𝑏 

𝜋 

𝛼 

𝜇4 

𝜇3 

0.2day−1 

10day−1mm−3 

0.0608day−1 

0.1day−1 

0.24day−1 

−0.7639419402 

+1.000000000 

+0.7677616499 

−1.000000000 

−1.000000000 

𝛽 

𝑘 

𝜇2 

𝜇1 

  

2.4 × 10−8day−1 

4000day−1 

0.001day−1 

0.01day−1 

+1.000000000 

+1.000000000 

−0.0038197097 

−1.000000000 
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3.0  Numerical Simulation 
The numerical simulations of the model are carried out using a set of reasonable parameter values given in Table 4. Some 

parameter values are from different literatures and some are assumed. The initial conditions 𝑥(0) = 1000000𝑚𝑙−1 ,
𝑦1(0) = 0, 𝑦2(0) = 0, 𝑣(0) = 100𝑚𝑙−1 , 𝑧(0) = 10𝑚𝑙−1 are used for the simulation. 

Table 4: Model Parameter Values 

Parameter Value Source Parameter Value Source 

𝜋 

𝛼 

𝑏 

𝜇4𝑧 

𝜇5𝑧 

𝜇3𝑦2 

𝜇3𝑣 

10day−1mm−3 

0.0608day−1 

0.2day−1 

0.1day−1 

0.1day−1 

0.24day−1 

0.167day−1 

Estimated 

“ 

“ 

“ 

“ 

“ 

“ 

𝛽 

∅ 

𝑘 

𝜇2𝑦 

𝜇2𝑦1 

𝑐 

𝜇1 

2.4 × 10−8day−1 

1day−1 

4000day−1 

0.24day−1 

0.001day−1 

0.005day−1 

0.01day−1 

[13] 

“ 

“ 

[8] 

“ 

“ 

[10] 

 
Fig. 3(a)                     Fig. 3(b) 

 
Fig. 3(c)      Fig. 3(d) 

Simulation result for the uninfected CD4+ cells, infected CD4+ cells, free virus particle and CD8 cells populations against 

time for model (1). 

 
Fig. 4(a)      Fig. 4(b) 
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Fig. 4(c)      Fig. 4(d) 

 
Fig. 4(e)  

Simulation result foruninfected CD4+ cells, latently infected CD4+ cells, productively infected CD4+ cells, free virus particles 

and CD8 cells against time for the modified model. 

 

4.0  Discussion 
The mass action mode of infection is very important in the formulation of the in-vivo HIV model. This is shown in Figures 

3(a), 3(b), 4(a) and 4(b). In these figures, we expected the number of the uninfected cells to increase and the number of CD8 

cell to decrease (Figures 4(a) and 4(e)) when the rate of reversion of resting infected cells to uninfected state is gradually 

increased (Figures 3(a) and 3(d)). But, this is not so because of the mode of infection used for the model 1 that is saturated 

infection. In addition, the effect of the reversion of resting infected cells to uninfected state for the model 1 is shown in 

Figures 3(b) and 3(c). Before the integration of the viral genome into the genome of the CD4+cells, a relative size of resting 

infected cells revert to the uninfected cells. This implies that the more resting infected cells continue to revert to uninfected 

cells, the lesser the number of infected  CD4+ cells. Meanwhile, the model (1) has a basic reproduction number R0= 0.99005 

which shows that the virus will die out with time as long as resting infected CD4+cells continue to revert to uninfected cells. 

Furthermore, the importance of the reversion rate in reducing the number of CD4+ cells in the body of HIV infected person is 

shown in Figures 4(b) –4(d).  It indicates that the number of infected cells (latently and productively infected) and free virus 

particles decreases as the rate of the reversion of infected cells to uninfected state gradually increases. The basic reproduction 

number for the modified model is R0 = 0.4219 and this connotes that the virus will die out faster with time when compare 

with the basic reproduction number of model (1). Although, it is already established that CD8 cells reduces number of 

infected CD4+ cells [8], we have found from the result that the reversion of resting infected to uninfected cells will further 

reduce the number of CD4+ cells.  

 

5.0  Conclusion  
In this paper, two models of an in-vivo HIV incorporating the reversion state of the infected CD4+ cells to uninfected CD4+ 

cells are considered. The virus dynamics is described by non-linear ODES. The solution set of the two models are shown to 

be positive for all time and have unique solution that exists. The basic reproduction numbers, 𝑅0, of the two models are 

computed using the next generation method [18]. The models are further analyzed for the existence and stability of the 

equilibrium states. Additionally, numerical simulation of the two models are carried out to examine the effect of the reversion 

state of the infected CD4+ cells to uninfected CD4+ cells on the dynamics of an in-vivo HIV. The second model shows that 

capturing the latently infected CD4+ cells and the productively infected CD4+ cells using mass action mode of transmission  
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have great impact in reducing  𝑅0  and also reduces the viral load in the body of the infected HIV person. Finally, the 

sensitivity analysis of the model parameters for the two models are carried out to support the numerical simulation.  
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