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Abstract 
 

We show boundedness and contraction of a solution to an evolution 

equation of the type𝒖(𝒕) = 𝒖𝟎𝒔(𝒕) + ∫ 𝒔(𝒕 − 𝒖)
𝒕

𝟎
𝒇(𝒖)𝒅𝒖in Banach space, 

using the definition of contraction mapping and Banach Steinhaus 

theorem. The result shows that solution to the evolution equation has a 

unique fixed point. 

 

1.0     Introduction 
In this paper, we study the contractiveness and boundedness of a solution of an evolution equation of the form:  

�̇�(𝑡) − 𝐴(𝑡)𝑢(𝑡) − 𝑓(𝑡) = 0, 𝑢(0) = 𝑢0 > 0,                             (1.1) 

on a Banach space X, where A(t) is a linear operator and 𝑓 is a non-autonomous continuous function from [0,T] on X. 

𝑢(0)  =  𝑢0is referred to as the initial value problem, or Cauchy problem.𝐿[𝑋] = 𝐿([0, 𝑇], 𝑋)is the Lebesque equivalent class 

of measurable function 

‖𝑓‖𝑝 = (∫|𝑓|𝑝𝑑𝜇)

1

𝑝

 𝑝 ∈ [1, ∞). 

Many authors have worked on solution of evolution equation producing sound results for instance see [1-4]. On the other 

hand, the existence and uniqueness of classical solution of the form 

�̇�(𝑡) = 𝐴(𝑡)𝑢(𝑡)       𝑡 ∈ [0, 𝑇],     𝑢(0) = 𝑢0,                        (1.2) 

had been studied in [5-9]. Motivated by the above literature, the objective of this paper is to show boundedness, contraction 

and fixed point of the solution of nonhomogeneous abstract Cauchy problem in (1.1) 

For a given evolution family 𝑆(𝑡, 𝑢)𝑡≥𝑢,the evolution semigroup {𝑆(𝑡)}𝑡≥0 is defined on a time space 𝐸 of function 𝑓: ℝ → 𝑋 

by the function 
(𝑆(𝑡)𝑓)(𝑢) = 𝑆(𝑢, 𝑢 − 𝑡)𝑓(𝑢 − 𝑡),      𝑢 ∈ ℝ, 𝑡 ≥ 0.               (1.3) 

When 𝐸 = 𝐿𝑃(ℝ, 𝑋), 𝑝 ∈ [0, ∞) or 𝐸 = 𝐶0(ℝ, 𝑋) then the space of continuous functions vanishes at {∞} and {𝑆(𝑡)}𝑡≥0  is 

strongly continuoussemi group. 

 

2.0  Preliminaries 
Definition 2.1 Let X be a Banach space. A one parameter family 𝑆(𝑡), 𝑡 ∈ [0, ∞) of bounded linear operator from X into X is 

a semigroup of bounded linear operators on X if 

i)𝑆(𝑡 + 𝑢) = 𝑆(𝑡)𝑆(𝑢)for every 𝑡, 𝑢 ≥ 0 

ii)𝑆(0) = 𝐼where𝐼 is an identity operator on 𝑋 

iii)lim
𝑡→0

‖𝑆(𝑡) − 𝑆(0)‖𝑋 = 0 is uniformly continuous 

Definition 2.2 Let 𝑋, 𝑌be normed spaces and  𝑇: 𝑋 → 𝑌 be linear, then 𝑇 is called bounded linear map if ∃ some constant 

𝑀 ≥ 0 such that ‖𝑇(𝑥)‖ ≤ 𝑀‖𝑥‖∀ 𝑥 ∈ 𝑋. 𝑀 is called bound of 𝑇 

Definition 2.3 Let  

i)𝑀be a closed nonempty set in Banach space 𝑋 over 𝐾 

ii) The operator   𝑇: 𝑀 → 𝑀 be 𝐾 −contractive ie by definition ‖𝑇𝑢 − 𝑇𝑣‖ ≤ 𝐾‖𝑢 − 𝑣‖ ∀ 𝑢, 𝑣 ∈ 𝑀 and fixed 𝐾, 𝐾 ∈ [0,1) 

then the following holds 

i) Existence and Uniqueness: The equation 𝑇𝑢 = 𝑢,   𝑢 ∈ 𝑀 has exactly one solution. 

ii) Convergence of the iteration method: For each given 𝑥0 ∈ 𝑀, the sequence {𝑥𝑛} constructed as 𝑥𝑛+1 = 𝑇𝑥𝑛 converges to 

the unique solution 𝑥. 
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Definition 2.4 Let 𝑋 be a Banach space and 𝑇 a bounded operator on 𝑋. 𝑇 is not necessarily linear operator. 𝑇is said to be a 

contractive operator if there exist  𝐾 < 1 such that ‖𝑇𝑢 − 𝑇𝑣‖ ≤ 𝐾‖𝑢 − 𝑣‖    ∀ 𝑢, 𝑣 ∈ 𝑋. 

Theorem 2.5 Let 𝑇(𝑡) and S(𝑡) be uniformly continuous semigroup of bounded linear operator. If        

lim
𝑡→0

𝑇(𝑡)−𝑇(0)

𝑡
= lim

𝑡→0

𝑆(𝑡)−𝑆(0)

𝑡
= 𝐴,        (2.1) 

then𝑇(𝑡) = 𝑆(𝑡) for 𝑡 ≥ 0 

Proof: see [10] 

Theorem 2.6 (Banach-Steinhaus) Let𝑋, 𝑌 be Banach spaces and {𝑇𝑛}𝑛=1
∞ ⊂ 𝐵(𝑋, 𝑌). Let {𝑇𝑛𝑥}𝑛=1

∞  for each 𝑥 ∈ 𝑋 converges 

to 𝑇𝑥 then 

i) sup
𝑛≥1

‖𝑇𝑥‖ < ∞ 

ii) 𝑇 ∈ 𝐵(𝑋, 𝑌) 

iii) ‖𝑇‖ ≤ lim
𝑛→∞

𝑖𝑛𝑓‖𝑇𝑛‖ 

Theorem 2.7 (Uniform Boundedness theorem) Let𝑋 be a Banach space and 𝑌 a normed space. If 𝒜 ⊆ 𝐵(𝑋, 𝑌) such that for 

each 𝑥 ∈ 𝑋,   𝑆𝑢𝑝{‖𝐴𝑥‖: 𝐴 ∈ 𝒜} < ∞ then 𝑆𝑢𝑝{‖𝐴‖: 𝐴 ∈ 𝒜} < ∞ 

Theorem 2.8 Let 𝑇 be an operator on 𝑋 such that the 𝑘𝑡ℎ power of 𝑇 is a contraction operator. Then the equation 𝑇𝑓 = 𝑓 has 

a unique solution in 𝑋. 

Proof: Take 𝑇𝑘𝑓 = 𝑓 has a unique solution. In fact, we can obtain the solution by finding 

lim
𝑛→∞

𝑇𝑘𝑛𝑓0 = 𝑓                      (2.2) 

For an arbitrary initial function 𝑓0. In particular, we observe that by letting 𝑓0 = 𝑇𝑓 

lim
𝑛→∞

𝑇𝑘𝑛𝑓0 = lim
𝑛→∞

𝑇𝑘𝑛(𝑇𝑓) = 𝑓                  (2.3) 

Recall that if  𝑇𝑛𝑓 = 𝑓, then we have that 𝑇𝑘𝑛𝑓 = 𝑓 so that 

lim
𝑛→∞

𝑇𝑘𝑛(𝑇𝑓) = lim
𝑛→∞

𝑇𝑇𝑘𝑛𝑓 = lim
𝑛→∞

𝑇𝑓 = 𝑇𝑓 = 𝑓 

To show that the solution is unique, we have 

𝑇𝑓 = 𝑓and𝑇𝑔 = 𝑔        (i) 

𝑇𝑘𝑓 = 𝑓and𝑇𝑘𝑔 = 𝑔        (ii) 

For (i)‖𝑓 − 𝑔‖ = ⟦𝑇𝑓 − 𝑇𝑔⟧ ≤ 𝛼‖𝑓 − 𝑔‖ ⟹ (1 − 𝛼)‖𝑓 − 𝑔‖ ≤ 0 ⟹ 𝑓 = 𝑔 

For (ii)           ‖𝑓 − 𝑔‖ = ⟦𝑇𝑘𝑓 − 𝑇𝑘𝑔⟧ ≤ 𝛼‖𝑓 − 𝑔‖ ⟹ (1 − 𝛼)‖𝑓 − 𝑔‖ ≤ 0 ⟹ 𝑓 = 𝑔 

Therefore the operator has a unique fixed point.    

Theorem 2.9 (Gronwalls-Bellman’s Inequality) Let 𝑈  and𝑓be continuous and nonnegative function defined on 𝐼 = [𝑎, 𝑏]  
and Let 𝐾 be a non-negative constant. The inequality 

𝑢(𝑡) ≤ 𝐾 + ∫ 𝑓(𝑠)𝑢(𝑠)𝑑𝑠,
𝑡

𝑎
𝑡 ∈ 𝐼 = [𝑎, 𝑏]        (2.4) 

Then  

𝑢(𝑡) ≤ 𝐾𝑒𝑥𝑝(∫ 𝑓(𝑠)𝑑𝑠),
𝑡

𝑎
𝑡 ∈ 𝐼          (2.5) 

Proof: 

Define a function 𝑤(𝑡) by the right side of equation (2.4) then we observe that 

𝑤(𝑎) = 𝐾, 𝑢(𝑡) ≤ 𝑤(𝑡) 

and  

�̇�(𝑡) = 𝑓(𝑡)𝑢(𝑡) ≤ 𝑓(𝑡)𝑤(𝑡),      𝑡 ∈ 𝐼                         (2.6)     

Now multiply equation (2.6) by exp (− ∫ 𝑓(𝑠)𝑑𝑠)
𝑡

𝑎
 then, we have 

�̇�(𝑡) exp (− ∫ 𝑓(𝑠)𝑑𝑠)
𝑡

𝑎

− 𝑤(𝑡)𝑓(𝑡)exp (− ∫ 𝑓(𝑠)𝑑𝑠)
𝑡

𝑎

 

= 
𝑑

𝑑𝑡
(𝑤(𝑡)exp (− ∫ 𝑓(𝑠)𝑑𝑠)

𝑡

𝑎
) 

which implies that 
𝑑

𝑑𝑡
(𝑤(𝑡)exp (− ∫ 𝑓(𝑠)𝑑𝑠)

𝑡

𝑎
) ≤ 0                                 (2.7) 

Integrating both sides of equation (2.7) over 𝑎 to 𝑡 we have 

𝑤(𝑡)exp (− ∫ 𝑓(𝑠)𝑑𝑠)
𝑡

𝑎

− 𝑤(𝑎) ≤ 0 

Hence equation (2.5) is obvious. 

 

3.0  Main Results 
We will denote 𝑋 a Banach space.and 𝐿[𝑋] = 𝐿([0, 𝑡], 𝑋) as the equivalent class of Lebesgue measurable function and ‖. ‖ a 

norm as in. 
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Theorem 3.1Let 𝑓  be a bounded real valued function,𝑓: 𝑋 ⟶ 𝑋and 𝑢𝜖 ℝ𝑛 ,Μ ≥ 1, ℝ ⊂ 𝑋  and𝜔𝜖ℝ then if ‖𝑆(𝑡)‖𝐿(𝑋) ≤

Μ𝑒𝜔𝑡(semigroup operator) and Α 𝜖 ℝ𝑛 × ℝ𝑛,then the evolution equation (1.1) satisfies the following; 

i).  Boundedness. 

ii).  Contraction, hence has a unique fixed point. 

Proof: 

The evolution equation (1.1) in Banach space 𝑋 has a general solution by variation of constant or Duhamalformular as 

𝑢(𝑡) = 𝑢0𝑆(𝑡) + ∫ 𝑆(𝑡 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑡

0
,       (3.1) 

where𝑆(𝑡)  is a semigroup operator,      𝑆(𝑡) = 𝑒𝐴𝑡 . To show that equation (3.1) is bounded, we have for Κ > 0 , then 

‖𝑆(𝑡)‖𝐿(𝑋) ≤ K. where  𝐾 = Μ𝑒𝜔𝑡  𝑎𝑛𝑑 𝑡 > 0. 

Before we prove the first condition, we consider the theorem below. 

Theorem 3.2 Let {𝑠(𝑡); 𝑡 > 0} be a 𝐶0 − 𝑠𝑒𝑚𝑖𝑔𝑟𝑜𝑢𝑝, then ∃ 𝑀 ≥ 1 𝑎𝑛𝑑 𝑤 ∈ 𝑅 ∋ ‖𝑆(𝑡)‖𝐿(𝑋)  ≤ 𝑀 𝑒𝑤(𝑡) for each t≥ 0 

Proof: 

Claim: it suffices to show that there exists 𝛼 > 0 𝑎𝑛𝑑 𝑀 ≥ 1 such that 

‖𝑆(𝑡)‖𝐿(𝑋)  ≤ 𝑀 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ𝑡 ∈ [ 0, 𝛼].                                (3.2) 

Proof of Claim: Suppose by contradiction that equation(3.2) is not so. Then there exists at least one   𝐶0 -semigroup 

{𝑆(𝑡): 𝑡 ≥ 0} 𝑤𝑖𝑡ℎ the property that, for each 𝛼 > 0 and each 

 M ≥ 1, ∃ 𝑡𝛼,𝑚 ∈ [0, ∝],  such that 

‖𝑆(𝑡)‖𝐿(𝑋) > 𝑀.                                              (3.3) 

Taking 𝛼 =
1

𝑛
, 𝑀 = 𝑛 𝑎𝑛𝑑 𝑡𝑎𝑘𝑒 𝑡𝛼,𝑚 = 𝑡𝑛 𝑓𝑜𝑟 𝑛 ∈ ℕ∗, 𝑡ℎ𝑢𝑠 𝑤𝑒 ℎ𝑎𝑣𝑒 

‖𝑆(𝑡)‖𝐿(𝑋) > 𝑛,                                    (3.4) 

where𝑡𝑛 ∈ [0,
1

𝑛
] 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛 ∈ 𝑁*. 

By property of semi group for each 𝑡 ∈ 𝑋 

lim
𝑛→∞

𝑆(𝑡𝑛)𝑡 = 𝑡                                   (3.5) 

This means that the family of the semigroup {𝑆(𝑡): n∈ N*} of linear bounded operators is proof wise bounded. That is for 

each 𝑡 ∈ 𝑋,  the set{𝑆(𝑡):n∈ 𝑁*} is bounded. By uniform boundedness principle or Banach-Steinhaus theorem, it follows that 

the family is bounded in the uniform operator norm ‖∙‖𝐿(𝑋) which contradicts equation (3.4). This contradiction can be read 

off only if equation (3.2) holds. 

Now let 𝑡 ≥ 0, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑛 ∈ ℕ∗𝑎𝑛𝑑 𝜎 ∈ [0, 𝛼] ∃  𝑡 = 𝑛𝛼 + 𝜎, 𝑡ℎ𝑢𝑠 𝑤𝑒 ℎ𝑎𝑣𝑒 

‖𝑆(𝑡)‖𝐿(𝑋)= ‖𝑆𝑛(𝛼)𝑆(𝜎)‖𝐿(𝑋)                                      (3.6) 

≤  ‖𝑆𝑛(𝛼)‖𝐿(𝑋)‖𝑆(𝜎)‖𝐿(𝑋)   (𝐵𝑎𝑛𝑎𝑐ℎ 𝐴𝑙𝑔𝑒𝑏𝑟𝑎) 

≤ 𝑀𝑀n.  

But 𝑛 =
𝑡−𝜎

𝛼
<

𝑡

𝛼
 ,  thus  

‖𝑆(𝑡)‖𝐿(𝑋) ≤ 𝑀𝑀
𝑡

𝛼 = 𝑀𝑒𝑡𝑤, 

where𝑤 =
1

𝛼
𝑙𝑜𝑔𝑒𝑀. 

Hence    
‖𝑆(𝑡)‖𝐿(𝑋)  ≤  𝑀𝑒𝑡𝑤. 𝑡 ∈ [0, 𝛼].                                    (3.7) 

Now, from equation (3.2) we have  𝑢(𝑡) = 𝑢0𝑆(𝑡) + ∫ 𝑆(𝑡 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑡

0
. 

Taking the norm of both sides we have 

‖𝑢(𝑡)‖𝐿(𝑋) = ‖𝑢0𝑆(𝑡) + ∫ 𝑆(𝑡 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑡

0

‖
𝐿(𝑋)

 

Where 𝐿(𝑋) = 𝐿([0, 𝑡], 𝑋) 

‖𝑢(𝑡)‖𝐿(𝑋) ≤ ‖𝑢0𝑆(𝑡)‖
𝐿(𝑋)

+ ‖∫ 𝑆(𝑡 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑡

0

‖
𝐿(𝑋)

 

= 𝑢0‖𝑆(𝑡)‖𝐿(𝑋) + ‖∫ 𝑆(𝑡 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑡

0

‖
𝐿(𝑋)

 

≤ 𝑢0‖𝑆(𝑡)‖𝐿(𝑋) + ∫ ‖𝑆(𝑡 − 𝑢)𝑓(𝑢)‖𝑑𝑢𝐿(𝑋)

𝑡

0

 

≤ 𝑢0‖𝑆(𝑡)‖𝐿(𝑋) + ∫ ‖𝑆(𝑡 − 𝑢)‖𝐿(𝑋)‖𝑓(𝑢)‖𝑑𝑢𝐿(𝑋)

𝑡

0
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≤ 𝑢0‖𝑆(𝑡)‖𝐿(𝑋) + ∫ ‖𝑆(𝑡 − 𝑢)‖𝐿(𝑋)

𝑡

0

𝑀𝑑𝑢. 

By theorem (3.2) we have 

‖𝑢(𝑡)‖𝐿(𝑋) ≤ 𝑢0𝑀𝑒𝑤𝑡 + ∫ ‖𝑆(𝑡 − 𝑢)‖𝐿(𝑋)

𝑡

0

𝑀𝑑𝑢, 𝑡 ∈ [0, 𝛼] 

≤ 𝑢0𝑀𝑒𝑤𝑡 + 𝑀 ∫ 𝑀𝑒𝑤(𝑡−𝑢)𝑑𝑢
𝑡

0
  

= 𝑢0𝑀𝑒𝑤𝑡 + 𝑀2 ∫ 𝑒𝑤(𝑡−𝑢)
𝑡

0

𝑑𝑢 

= 𝑢0𝑀𝑒𝑤𝑡 + 𝑀2𝑒𝑤𝑡 ∫ 𝑒−𝑤𝑢
𝑡

0

𝑑𝑢 

= 𝑢0𝑀𝑒𝑤𝑡 + 𝑀2𝑒𝑤𝑡[−
1

𝑤
𝑒−𝑤𝑢]0

𝑡  

= 𝑢0𝑀𝑒𝑤𝑡 + 𝑀2𝑒𝑤𝑡[
1

𝑤
(1 − 𝑒−𝑤𝑡)] 

= (𝑢0𝑀 +
𝑀2

𝑤
) 𝑒𝑤𝑡 − 𝑀2𝑒𝑤(𝑡−𝑡) 

= (𝑢0𝑀 +
𝑀2

𝑤
) 𝑒𝑤𝑡 − 𝑀2 , 𝑡 ∈ [0, 𝛼]. 

Hence, 

‖𝑢(𝑡)‖𝐿(𝑋)  ≤ (𝑢0𝑀 +
𝑀2

𝑤
) 𝑒𝑤𝑡 − 𝑀2. 

To show that (3.2) is a contraction, it suffices to show that  

‖𝑢(𝑡1) − 𝑢(𝑡2)‖𝐿(𝑋) ≤ 𝛽‖𝑡1 − 𝑡2‖𝐿(𝑋) ,where𝛽 ∈ [0,1). 

Now,  

𝑢(𝑡1) − 𝑢(𝑡2) = 𝑢0𝑆(𝑡1) + ∫ 𝑆(𝑡1 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑡

0

− 𝑢0𝑆(𝑡1) − ∫ 𝑆(𝑡2 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑡

0

 

= 𝑢0𝑆(𝑡1) − 𝑢0𝑆(𝑡1) + ∫ 𝑆(𝑡1 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑡

0

− ∫ 𝑆(𝑡2 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑡

0

 

‖𝑢(𝑡1) − 𝑢(𝑡2)‖𝐿(𝑋) = ‖𝑢0𝑆(𝑡1) − 𝑢0𝑆(𝑡1) + ∫ 𝑆(𝑡1 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑡

0

− ∫ 𝑆(𝑡2 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑡

0

‖ 

≤ ‖𝑢0𝑆(𝑡1) − 𝑢0𝑆(𝑡2)‖
𝐿(𝑋)

+ ‖∫ 𝑆(𝑡1 − 𝑢)𝑓(𝑢)𝑑𝑢 − ∫ 𝑆(𝑡2 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑡

0

𝑡

0

‖
𝐿(𝑋)

 

= 𝑢0‖𝑆(𝑡1) − 𝑆(𝑡2)‖𝐿(𝑋) + ‖∫ 𝑆(𝑡1 − 𝑢)𝑓(𝑢)𝑑𝑢 − ∫ 𝑆(𝑡2 − 𝑢)𝑓(𝑢)𝑑𝑢
𝑡

0

𝑡

0

‖
𝐿(𝑋)

 

≤ 𝑢0‖𝑆(𝑡1) − 𝑆(𝑡2)‖𝐿(𝑋) + ∫ ‖𝑆(𝑡1 − 𝑢)𝑓(𝑢) − 𝑆(𝑡2 − 𝑢)𝑓(𝑢)‖𝐿(𝑋)

𝑡

0

𝑑𝑢 

≤ 𝑢0‖𝑆(𝑡1) − 𝑆(𝑡2)‖𝐿(𝑋) + ∫ ‖𝑆(𝑡1 − 𝑢) − 𝑆(𝑡2 − 𝑢)‖𝐿(𝑋)‖𝑓(𝑢)‖𝐿(𝑋)𝑑𝑢
𝑡

0

 

≤ 𝑢0𝛼‖𝑡1 − 𝑡2‖𝐿(𝑋) + ∫ ‖𝑆(𝑡1 − 𝑢) − 𝑆(𝑡2 − 𝑢)‖𝐿(𝑋)

𝑡

0

𝑀𝑑𝑢 
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By theorem (2.9), we have 

‖𝑢(𝑡1) − 𝑢(𝑡2)‖𝐿(𝑋) ≤ 𝛼𝑢0‖𝑡1 − 𝑡2‖𝐿(𝑋)𝑒[∫ ‖𝑆(𝑡1−𝑢)−𝑆(𝑡2−𝑢)‖𝐿(𝑋)𝑑𝑢]
𝑡

0  

= 𝛽‖𝑡1 − 𝑡2‖ 

𝛽 ∈ [0,1) 𝑎𝑛𝑑 𝑡 ∈ [0, 𝛼] 

Hence,  

‖𝑢(𝑡1) − 𝑢(𝑡2)‖𝐿(𝑋) ≤ 𝛽‖𝑡1 − 𝑡2‖𝐿(𝑋) 

And 𝑢(𝑡) is a contraction. Now since 𝑢(𝑡) is contraction, it has a unique fixed point ie 𝑢(𝑡) = 𝑡 

 

4.0 Conclusion 
We have shown boundedness and contraction of a solution to an evolution equation(3.1) in Banach space. And 

also shown thatthe construction of solution to a given evolution equationinto a contraction operator yields 

equation (3.1) to a unique fixed point. 
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