On Contraction and Fixed Point of the Solution of an Evolution Equation in Banach Space

Bright O. Osu, Daniel Francis and Uchenna E. Obasi
Department of Mathematics, Michael Okpara University of Agriculture, Umudike.

Abstract

We show boundedness and contraction of a solution to an evolution equation of the typeu $(t)=u_{0} s(t)+\int_{0}^{t} s(t-u) f(u)$ duin Banach space, using the definition of contraction mapping and Banach Steinhaus theorem. The result shows that solution to the evolution equation has a unique fixed point.

1.0 Introduction

In this paper, we study the contractiveness and boundedness of a solution of an evolution equation of the form: $\dot{u}(t)-A(t) u(t)-f(t)=0, u(0)=u_{0}>0$,
on a Banach space X , where $\mathrm{A}(\mathrm{t})$ is a linear operator and f is a non-autonomous continuous function from $[0, \mathrm{~T}]$ on X . $u(0)=u_{0}$ is referred to as the initial value problem, or Cauchy problem. $L[X]=L([0, T], X)$ is the Lebesque equivalent class of measurable function
$\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{\frac{1}{p}} p \in[1, \infty)$.
Many authors have worked on solution of evolution equation producing sound results for instance see [1-4]. On the other hand, the existence and uniqueness of classical solution of the form

$$
\begin{equation*}
\dot{u}(t)=A(t) u(t) \quad t \in[0, T], \quad u(0)=u_{0} \tag{1.2}
\end{equation*}
$$

had been studied in [5-9]. Motivated by the above literature, the objective of this paper is to show boundedness, contraction and fixed point of the solution of nonhomogeneous abstract Cauchy problem in (1.1)
For a given evolution family $S(t, u)_{t \geq u}$, the evolution semigroup $\{S(t)\}_{t \geq 0}$ is defined on a time space E of function $f: \mathbb{R} \rightarrow X$ by the function
$(S(t) f)(u)=S(u, u-t) f(u-t), \quad u \in \mathbb{R}, t \geq 0$.
When $E=L_{P}(\mathbb{R}, X), p \in[0, \infty)$ or $E=C^{0}(\mathbb{R}, X)$ then the space of continuous functions vanishes at $\{\infty\}$ and $\{S(t)\}_{t \geq 0}$ is strongly continuoussemi group.

2.0 Preliminaries

Definition 2.1 Let X be a Banach space. A one parameter family $S(t), t \in[0, \infty)$ of bounded linear operator from X into X is a semigroup of bounded linear operators on X if
i) $S(t+u)=S(t) S(u)$ for every $t, u \geq 0$
ii) $S(0)=I$ where I is an identity operator on X
iii) $\lim _{t \rightarrow 0}\|S(t)-S(0)\|_{X}=0$ is uniformly continuous

Definition 2.2 Let X, Y be normed spaces and $T: X \rightarrow Y$ be linear, then T is called bounded linear map if \exists some constant $M \geq 0$ such that $\|T(x)\| \leq M\|x\| \forall x \in X . M$ is called bound of T
Definition 2.3 Let
i) M be a closed nonempty set in Banach space X over K
ii) The operator $T: M \rightarrow M$ be K-contractive ie by definition $\|T u-T v\| \leq K\|u-v\| \forall u, v \in M$ and fixed $K, K \in[0,1)$ then the following holds
i) Existence and Uniqueness: The equation $T u=u, u \in M$ has exactly one solution.
ii) Convergence of the iteration method: For each given $x_{0} \in M$, the sequence $\left\{x_{n}\right\}$ constructed as $x_{n+1}=T x_{n}$ converges to the unique solution x.

Corresponding author: Bright O. Osu, E-mail: megaobrait@hotmail.com, Tel.: +2348032628251

Definition 2.4 Let X be a Banach space and T a bounded operator on $X . T$ is not necessarily linear operator. T is said to be a contractive operator if there exist $K<1$ such that $\|T u-T v\| \leq K\|u-v\| \quad \forall u, v \in X$.
Theorem 2.5 Let $T(t)$ and $\mathrm{S}(t)$ be uniformly continuous semigroup of bounded linear operator. If
$\lim _{t \rightarrow 0} \frac{T(t)-T(0)}{t}=\lim _{t \rightarrow 0} \frac{S(t)-S(0)}{t}=A$,
then $T(t)=S(t)$ for $t \geq 0$
Proof: see [10]
Theorem 2.6 (Banach-Steinhaus) Let X, Y be Banach spaces and $\left\{T_{n}\right\}_{n=1}^{\infty} \subset B(X, Y)$. Let $\left\{T_{n} x\right\}_{n=1}^{\infty}$ for each $x \in X$ converges to $T x$ then
i) $\sup \|T x\|<\infty$
ii) $n \geq 1$
ii) $T \in B(X, Y)$
iii) $\|T\| \leq \lim _{n \rightarrow \infty}$ inf $\|T n\|$

Theorem 2.7 (Uniform Boundedness theorem) Let X be a Banach space and Y a normed space. If $\mathcal{A} \subseteq B(X, Y)$ such that for each $x \in X, \operatorname{Sup}\{\|A x\|: A \in \mathcal{A}\}<\infty$ then $\operatorname{Sup}\{\|A\|: A \in \mathcal{A}\}<\infty$
Theorem 2.8 Let T be an operator on X such that the $k t h$ power of T is a contraction operator. Then the equation $T f=f$ has a unique solution in X.
Proof: Take $T^{k} f=f$ has a unique solution. In fact, we can obtain the solution by finding
$\lim _{n \rightarrow \infty} T^{k n} f_{0}=f$
For an arbitrary initial function f_{0}. In particular, we observe that by letting $f_{0}=T f$
$\lim _{n \rightarrow \infty} T^{k n} f_{0}=\lim _{n \rightarrow \infty} T^{k n}(T f)=f$
Recall that if $T^{n} f=f$, then we have that $T^{k n} f=f$ so that
$\lim _{n \rightarrow \infty} T^{k n}(T f)=\lim _{n \rightarrow \infty} T T^{k n} f=\lim _{n \rightarrow \infty} T f=T f=f$
To show that the solution is unique, we have
$T f=f$ and $T g=g \quad$ (i)
$T^{k} f=f$ and $T^{k} g=g \quad$ (ii)
For (i) $\|f-g\|=\llbracket T f-T g \rrbracket \leq \alpha\|f-g\| \Rightarrow(1-\alpha)\|f-g\| \leq 0 \Rightarrow f=g$
For (ii) $\quad\|f-g\|=\llbracket T^{k} f-T^{k} g \rrbracket \leq \alpha\|f-g\| \Longrightarrow(1-\alpha)\|f-g\| \leq 0 \Rightarrow f=g$
Therefore the operator has a unique fixed point.
Theorem 2.9 (Gronwalls-Bellman's Inequality) Let U and f be continuous and nonnegative function defined on $I=[a, b]$ and Let K be a non-negative constant. The inequality
$u(t) \leq K+\int_{a}^{t} f(s) u(s) d s, t \in I=[a, b]$
Then
$u(t) \leq \operatorname{Kexp}\left(\int_{a}^{t} f(s) d s\right), t \in I$
Proof:
Define a function $w(t)$ by the right side of equation (2.4) then we observe that
$w(a)=K, u(t) \leq w(t)$
and
$\dot{w}(t)=f(t) u(t) \leq f(t) w(t), \quad t \in I$
Now multiply equation (2.6) by $\exp \left(-\int_{a}^{t} f(s) d s\right)$ then, we have
$\dot{w}(t) \exp \left(-\int_{a}^{t} f(s) d s\right)-w(t) f(t) \exp \left(-\int_{a}^{t} f(s) d s\right)$
$=\frac{d}{d t}\left(w(t) \exp \left(-\int_{a}^{t} f(s) d s\right)\right)$
which implies that
$\frac{d}{d t}\left(w(t) \exp \left(-\int_{a}^{t} f(s) d s\right)\right) \leq 0$
Integrating both sides of equation (2.7) over a to t we have
$w(t) \exp \left(-\int_{a}^{t} f(s) d s\right)-w(a) \leq 0$
Hence equation (2.5) is obvious.

3.0 Main Results

We will denote X a Banach space and $L[X]=L([0, t], X)$ as the equivalent class of Lebesgue measurable function and \|. \| a norm as in.

Transactions of the Nigerian Association of Mathematical Physics Volume 3, (January, 2017), 55 - 60

Theorem 3.1Let f be a bounded real valued function, $f: X \rightarrow X$ and $u \in \mathbb{R}^{n}, \mathrm{M} \geq 1, \mathbb{R} \subset X$ and $\omega \in \mathbb{R}$ then if $\|S(t)\|_{L(X)} \leq$ $\mathrm{M} e^{\omega t}$ (semigroup operator) and $\mathrm{A} \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, then the evolution equation (1.1) satisfies the following;
i). Boundedness.
ii). Contraction, hence has a unique fixed point.

Proof:
The evolution equation (1.1) in Banach space X has a general solution by variation of constant or Duhamalformular as
$u(t)=u_{0} S(t)+\int_{0}^{t} S(t-u) f(u) d u$,
where $S(t)$ is a semigroup operator, $S(t)=e^{A t}$. To show that equation (3.1) is bounded, we have for $\mathrm{K}>0$, then $\|S(t)\|_{L(X)} \leq \mathrm{K}$. where $K=\mathrm{M} e^{\omega t}$ and $t>0$.
Before we prove the first condition, we consider the theorem below.
Theorem 3.2 Let $\{s(t) ; t>0\}$ be a C_{0} - semigroup, then $\exists M \geq 1$ and $w \in R \ni\|S(t)\|_{L(X)} \leq M e^{w(t)}$ for each $\mathrm{t} \geq 0$
Proof:
Claim: it suffices to show that there exists $\alpha>0$ and $M \geq 1$ such that
$\|S(t)\|_{L(X)} \leq M$ for eacht $\in[0, \alpha]$.
Proof of Claim: Suppose by contradiction that equation(3.2) is not so. Then there exists at least one C_{0}-semigroup $\{S(t): t \geq 0\}$ with the property that, for each $\alpha>0$ and each
$\mathrm{M} \geq 1, \exists t_{\alpha, m} \in[0, \propto]$, such that
$\|S(t)\|_{L(X)}>M$.
Taking $\alpha=\frac{1}{n}, M=n$ and take $t_{\alpha, m}=$ tn for $n \in \mathbb{N}^{*}$, thus we have
$\|S(t)\|_{L(X)}>n$,
where $_{n} \in\left[0, \frac{1}{n}\right]$ for each $n \in N^{*}$.
By property of semi group for each $t \in X$
$\lim _{n \rightarrow \infty} S\left(t_{n}\right) t=t$
This means that the family of the semigroup $\left\{S(t): n \in \mathrm{~N}^{*}\right\}$ of linear bounded operators is proof wise bounded. That is for each $t \in X$, the set $\left\{S(t): \mathrm{n} \in N^{*}\right\}$ is bounded. By uniform boundedness principle or Banach-Steinhaus theorem, it follows that the family is bounded in the uniform operator norm $\|\cdot\|_{L(X)}$ which contradicts equation (3.4). This contradiction can be read off only if equation (3.2) holds.
Now let $t \geq 0$, then there exists $n \in \mathbb{N}^{*}$ and $\sigma \in[0, \alpha] \exists t=n \alpha+\sigma$, thus we have
$\|S(t)\|_{L(X)}=\left\|S^{n}(\alpha) S(\sigma)\right\|_{L(X)}$
$\leq\left\|S^{n}(\alpha)\right\|_{L(X)}\|S(\sigma)\|_{L(X)} \quad$ (Banach Algebra)
$\leq M M^{\mathrm{n}}$
But $n=\frac{t-\sigma}{\alpha}<\frac{t}{\alpha}$, thus
$\|S(t)\|_{L(X)} \leq M M^{\frac{t}{\alpha}}=M e^{t w}$,
wherew $=\frac{1}{\alpha} \log _{e} M$.
Hence
$\|S(t)\|_{L(X)} \leq M e^{t w} . t \in[0, \alpha]$.
Now, from equation (3.2) we have $u(t)=\underline{u}_{0} S(t)+\int_{0}^{t} S(t-u) f(u) d u$.
Taking the norm of both sides we have
$\|u(t)\|_{L(X)}=\left\|\underline{u}_{0} S(t)+\int_{0}^{t} S(t-u) f(u) d u\right\|_{L(X)}$
Where $L(X)=L([0, t], X)$
$\|u(t)\|_{L(X)} \leq\left\|\underline{u}_{0} S(t)\right\|_{L(X)}+\left\|\int_{0}^{t} S(t-u) f(u) d u\right\|_{L(X)}$
$=\underline{u}_{0}\|S(t)\|_{L(X)}+\left\|\int_{0}^{t} S(t-u) f(u) d u\right\|_{L(X)}$
$\leq \underline{u}_{0}\|S(t)\|_{L(X)}+\int_{0}^{t}\|S(t-u) f(u)\| d u_{L(X)}$
$\leq \underline{u}_{0}\|S(t)\|_{L(X)}+\int_{0}^{t}\|S(t-u)\|_{L(X)}\|f(u)\| d u_{L(X)}$
Transactions of the Nigerian Association of Mathematical Physics Volume 3, (January, 2017), 55 - 60
$\leq \underline{u}_{0}\|S(t)\|_{L(X)}+\int_{0}^{t}\|S(t-u)\|_{L(X)} M d u$.
By theorem (3.2) we have

$$
\begin{aligned}
& \|u(t)\|_{L(X)} \leq \underline{u}_{0} M e^{w t}+\int_{0}^{t}\|S(t-u)\|_{L(X)} M d u, t \in[0, \alpha] \\
& \leq \underline{u}_{0} M e^{w t}+M \int_{0}^{t} M e^{w(t-u)} d u \\
& =\underline{u}_{0} M e^{w t}+M^{2} \int_{0}^{t} e^{w(t-u)} d u \\
& =\underline{u}_{0} M e^{w t}+M^{2} e^{w t} \int_{0}^{t} e^{-w u} d u \\
& =\underline{u}_{0} M e^{w t}+M^{2} e^{w t}\left[-\frac{1}{w} e^{-w u}\right]_{0}^{t} \\
& =\underline{u}_{0} M e^{w t}+M^{2} e^{w t}\left[\frac{1}{w}\left(1-e^{-w t}\right)\right] \\
& =\left(\underline{u}_{0} M+\frac{M^{2}}{w}\right) e^{w t}-M^{2} e^{w(t-t)} \\
& =\left(\underline{u}_{0} M+\frac{M^{2}}{w}\right) e^{w t}-M^{2}, t \in[0, \alpha] .
\end{aligned}
$$

Hence,
$\|u(t)\|_{L(X)} \leq\left(\underline{u}_{0} M+\frac{M^{2}}{w}\right) e^{w t}-M^{2}$.
To show that (3.2) is a contraction, it suffices to show that
$\left\|u\left(t_{1}\right)-u\left(t_{2}\right)\right\|_{L(X)} \leq \beta\left\|t_{1}-t_{2}\right\|_{L(X)}$, where $\beta \in[0,1)$.
Now,

$$
\begin{aligned}
& u\left(t_{1}\right)-u\left(t_{2}\right)=\underline{u}_{0} S\left(t_{1}\right)+\int_{0}^{t} S\left(t_{1}-u\right) f(u) d u-\underline{u}_{0} S\left(t_{1}\right)-\int_{0}^{t} S\left(t_{2}-u\right) f(u) d u \\
& =\underline{u}_{0} S\left(t_{1}\right)-\underline{u}_{0} S\left(t_{1}\right)+\int_{0}^{t} S\left(t_{1}-u\right) f(u) d u-\int_{0}^{t} S\left(t_{2}-u\right) f(u) d u \\
& \left\|u\left(t_{1}\right)-u\left(t_{2}\right)\right\|_{L(X)}=\left\|\underline{u}_{0} S\left(t_{1}\right)-\underline{u}_{0} S\left(t_{1}\right)+\int_{0}^{t} S\left(t_{1}-u\right) f(u) d u-\int_{0}^{t} S\left(t_{2}-u\right) f(u) d u\right\|^{t} \\
& \leq\left\|\underline{u}_{0} S\left(t_{1}\right)-\underline{u}_{0} S\left(t_{2}\right)\right\|_{L(X)}+\left\|\int_{0}^{t} S\left(t_{1}-u\right) f(u) d u-\int_{0}^{t} S\left(t_{2}-u\right) f(u) d u\right\|_{L(X)} \\
& =\underline{u}_{0}\left\|S\left(t_{1}\right)-S\left(t_{2}\right)\right\|_{L(X)}+\left\|\int_{0}^{t} S\left(t_{1}-u\right) f(u) d u-\int_{0}^{t} S\left(t_{2}-u\right) f(u) d u\right\|_{L(X)} \\
& \leq \underline{u}_{0}\left\|S\left(t_{1}\right)-S\left(t_{2}\right)\right\|_{L(X)}+\int_{0}^{t}\left\|S\left(t_{1}-u\right) f(u)-S\left(t_{2}-u\right) f(u)\right\|_{L(X)} d u \\
& \leq \underline{u}_{0}\left\|S\left(t_{1}\right)-S\left(t_{2}\right)\right\|_{L(X)}+\int_{0}^{t}\left\|S\left(t_{1}-u\right)-S\left(t_{2}-u\right)\right\|_{L(X)}\|f(u)\|_{L(X)} d u \\
& \leq \underline{u}_{0} \alpha\left\|t_{1}-t_{2}\right\|_{L(X)}+\int_{0}^{t}\left\|S\left(t_{1}-u\right)-S\left(t_{2}-u\right)\right\|_{L(X)} M d u
\end{aligned}
$$

By theorem (2.9), we have
$\left\|u\left(t_{1}\right)-u\left(t_{2}\right)\right\|_{L(X)} \leq \alpha \underline{u}_{0}\left\|t_{1}-t_{2}\right\|_{L(X)} e^{\left.\iint_{0}^{t}\left\|S\left(t_{1}-u\right)-S\left(t_{2}-u\right)\right\|_{L(X)} d u\right]}$
$=\beta\left\|t_{1}-t_{2}\right\|$
$\beta \in[0,1)$ and $t \in[0, \alpha]$
Hence,
$\left\|u\left(t_{1}\right)-u\left(t_{2}\right)\right\|_{L(X)} \leq \beta\left\|t_{1}-t_{2}\right\|_{L(X)}$
And $u(t)$ is a contraction. Now since $u(t)$ is contraction, it has a unique fixed point ie $u(t)=t$

4.0 Conclusion

We have shown boundedness and contraction of a solution to an evolution equation(3.1) in Banach space. And also shown thatthe construction of solution to a given evolution equationinto a contraction operator yields equation (3.1) to a unique fixed point.

5.0 References

[1] R. Sacker and G. Sell, Dichotomies for linear evolutionary equation in Banach spaces, J. Diff. Eqns. 113 (1994) 17-67.
[2] H. M. Rodrigues and J. G. Ruas-Filho, Evolution equations: dichotomies and the Fredholm alternative for bounded solutions, J. Diff. Eqns. 119 (1995), 263-283.
[3] R. Rau, Hyperbolic evolution groups and dichotomic of evolution families, J. Dynamics Diff. Eqns. 6, no. 2 (1994b), 335-350.
[4] F. Rabiger and R. Schnaubelt, The spectral mapping theorem for evolution semigroups on spaces of vector-valued functions, Semigroup Forum 52 (1996), 225-239
[5] L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Applicable Anal. 40 (1990), 11-19.
[6] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semi linear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494-505.
[7] D. Jackson, Existence and uniqueness of solutions to semi linear nonlocal parabolic equations, J. Math. Anal. Appl. 172 (1993), 256-265.
[8] N. Tanaka, Quasilinear evolution equations with non-densely defined operators, Differential integral Equations 9 (1996), no. 5, 1067-1106.
[9] F. Neubrander, Well- posedness of higher order abstract Cauchy problems, Trans, Amer, Math.Soc. 295 (1986), no. 1, 257-290.
[10] A. Pazy, Semi groups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.

