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Abstract 
 

In this paper, the stability analysis of periodic solution of cubic Duffing 

oscillator-the hard spring model were investigated. The eigenvalue 

classification were adopted and Mathcad software was used to demonstrate 

the behaviour of the solution. The major findings revealed the spiral stable 

equilibrium point of the system. The main contribution is that the hard 

spring model is the only nonlinear system that has an equivalent behavior 

of linear system in terms of the stability of the equilibrium point. 
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1.0     Introduction 
Stability is the fundamental tool for design and control. Every system in life is stable unless provoke by eternal force[1] and 

any system that is not stable is potentially chaotic[2].Different researchers have used different techniques to examine the 

stability of solutions of Duffing equations. For instance see[3-11]. On the study of the Duffing-type equation using critical 

point theory see [12,13]. On the stability of periodic solutions see [14,15]. The Duffing equation  

�̈� + c�̇� + ax + bx3 = h(t)                                                            (1.1)  

where a,b,care real constants and h(t)is continuous is second order nonlinear differential equation that is widely used in 

physics, economics, engineering, and many other physical phenomena. The study is significant because of the physical 

applications of the results. It is significant to the Physicist who uses it to study propagation of wave in mobile phones, radios, 

television [16]. The signal processor will find its significance in modelling of the non-linear spring mass system [14] and 

modeling of the ultra-wide band (UWB) radio systems for detecting high speed wireless [17]. Also used in Fuzzy modeling 

and the adaptive control of uncertain chaotic system. 

It is also significant to the Engineers who find its applicability in the areas of high damping door construction, crash analysis, 

construction of Traffic lights, modelling conservative double well oscillator which occur in magneto-elastic mechanical 

system [18] and Prediction of emission characteristics of saw dust particles [19]. It is also significant to the medical and life 

scientist who will find if applicable to the modelling of the brain [20], modeling and predicting hearth beats (pulse). The 

environmentalist will find it applicable in predicting earthquake occurrences [21] and other natural disasters such as tsunamis 

and heat waves. The hard spring system of equation (1.2) is used in modelling of mechanical systems. It can be used to model 

plant systems, where the effect of nonlinear stiffness on resonant behavior of plants is described by the Duffing oscillators 

with hardening nonlinearization. Its important can be seen in crash analyses, signal processing[22] and prediction of weather 

condition. Motivated by the above literature and ongoing research in this direction, the objective of this paper is to investigate 

the stability of periodic solution of Duffing’s equation of the form: 

�̈� + 𝑐�̇� + 𝑎𝑥 + 𝑏𝑥2 + 𝛽𝑥3 = ℎ(𝑡)          (1.2) 

With boundary conditions as: 

𝑥(0) = 𝑥(2𝜋) 

�̇�(0) = �̇� (2𝜋) 

The equivalent system for (1.2) is 

�̇�1 = 𝑥2 

�̇�1 = −𝑐𝑥2 − 𝑎𝑥 − 𝑏𝑥2 − 𝛽𝑥3 
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Where 𝑎, 𝑏, 𝑐 are real constants and ℎ: [0,2𝜋] → ℝ𝑛 is continuous. 

𝑐 = represent the damping coefficient 

𝑎 = resonance coefficient or stiffness constant 

𝑏 = the nonlinear term and ℎ(𝑡)can be any of the following functions sin𝑘(𝑡)or cos 𝑘 (𝑡). 
𝑘 = amplitude. 

𝑥3 is called the Duffing’s term and can be approximated as small as possible. The system can be treated as perturbed single 

Hamiltonian system. It is assumed that this term is responsible for the multiplicity of periodic solution [23]. 

𝛽 is the coefficient of nonlinearity. If 𝛽 > 0 then equation (1.2)represent a hard spring which is the problem that motivated 

this research. 

 

2.0  Preliminaries 
Definition 2.1. (Stability):An equilibrium point 𝑥𝑒 of a nonlinear system is said to be stable if for all 휀 > 0, there exists a 𝛿 >
0 such that �̅� ∈ 𝐵(𝑥𝜀 , 𝛿) ⟹ 𝜑(𝑡, 0, �̅�) ∈ 𝐵(𝑥𝜀 , 휀)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0 

Note: The Lyapunov stability of 𝑥𝑒 assumes a “simultaneous continuity”, more precisely the equicontinuity at 𝑥𝑒 of all the 

functions in the {𝜙𝑡: �̅� → 𝜑(𝑡, 0, �̅�) 𝑓𝑜𝑟 𝑡 ≥ 0 

Definition 2.2. (Asymptotic Stability):The equilibrium point 𝑥𝑒 is said to be asymptotically stable, if for all 휀 > 0, the exists 

a 𝛿 > 0 such that, 

(𝑖) 𝜑(𝑡; 0, �̅�) ∈ 𝐵(𝑥𝑒 , 휀) for all 𝑡 ≥ 0 

(ii) lim
𝑡→∞

𝜑(𝑡; 0, �̅�) = 𝑥𝑒  

Definition 2.3. Consider the general non-linear differential equation of the form 

�̇� = 𝑓(𝑡, 𝑥(𝑡))𝑤ℎ𝑒𝑟𝑒 𝑓: ℝ × ℝ𝑛 → ℝ𝑛 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 

The function f in definition 2.3 is said to be T-periodic if for every (𝑡, 𝑥) ∈ ℝ × ℝ𝑛𝑎𝑛𝑑 𝑠𝑜𝑚𝑒 𝑇 > 0, 𝑓(𝑡, 𝑥) = 𝑓(𝑡 +
𝑇, 𝑥)𝑎𝑛𝑑𝑓(𝑡, 𝑥) ≠ 𝑓(𝑡 + 𝑇∗, 𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑇∗ < 𝑇.  
Definition 2.4. A solution x of definition 2.3 defined on R such that x (t + T) = x (t) for all 𝑡 ∈ ℝ is called T- periodic solution 

or T- periodic harmonic solution. 

Definition 2.5. Damping is an influence or effect upon an oscillatory system that prevents, restricts or stops an oscillation. If 

the damping is enough that the system just fails to oscillate then it is said to be critically damped. Any further influence 

results to over damping and less is similarly under damped. 

Definition 2.6. (Asymptotic Stability):The equilibrium point 𝑥𝑒 is said to be asymptotically stable, if for all 휀 > 0, the exists 

a 𝛿 > 0 such that, 

(𝑖) 𝜑(𝑡; 0, �̅�) ∈ 𝐵(𝑥𝑒 , 휀) for all 𝑡 ≥ 0 

(ii) lim
𝑡→∞

𝜑(𝑡; 0, �̅�) = 𝑥𝑒  

Theorem 2.7. (Lyapunov stability) Let 𝑥 = 0 be an equilibrium point of �̇� = 𝑓(𝑥).  Let 𝑉: 𝐷 ⊂ ℝ𝑛 → ℝ be continuously 

differentiable such that 𝑉(0) = 0, 𝑉(𝑥) > 0 ∀𝑥 ∈ 𝐷 {0}  and 𝐿𝑓𝑉(𝑥) ≤ 0 for all 𝑥 ∈ 𝐷. Then 𝑥 = 0 is asymptotically stable. 

 

3.0  Result 

3.1  Analysis of the “Hard Spring” System of Equation (1.2) 
Equation (1.2) according to [24] is an example of a periodically forced oscillator with nonlinear elasticity. 

Consider a Duffing Oscillator of the form 

�̈� + 𝑐�̇� + 𝑎𝑥 + 𝑏𝑥2 + 𝛽𝑥3 = ℎ(𝑡)                         (3.1)   

where the damping constant obeys 𝑐 ≥ 0 

The equivalent system of (3.1) is 
�̇�1 = 𝑥2

�̇�2 = −𝑐𝑥2 − 𝑎𝑥 − 𝑏𝑥2 − 𝛽𝑥3 + ℎ(𝑡)
}           (3.2)    

This can also be called a simple model which yields chaos, as well as Vander pol oscillator.  

For 𝑎 > 0 the Duffing oscillator can be interpreted as a forced oscillator with a spring whose restoring force is written as 

𝐹 = −𝑎𝑥 − 𝑏𝑥2 − 𝛽𝑥3 + ℎ(𝑡)                    (3.3) 

when 𝛽 = 2, this spring is called a hard spring and when 𝛽 < 0, it is called a soft spring, although this interpretation is 

valued only for small x [25]. 

Equation (3.1), (3.2) and (3.3) can thus be rewritten as follows, when 𝛽 = 2, 

�̈� + 𝑐�̇� + 𝑎𝑥 + 𝑏𝑥2 + 2𝑥3 = ℎ(𝑡)                                (3.4)    
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With the equivalent system 
�̇�1 = 𝑥2

�̇�2 = −𝑐𝑥2 − 𝑎𝑥 − 𝑏𝑥2 − 2𝑥3 + ℎ(𝑡)
}                                                   (3.5) 

 

Equation (3.4) is thus described the equation of a “hard spring” which is under consideration in this paper. The same is 

applicable to the system (3.5) which is referred to as the “hard spring” system. 

For 𝑎 < 0, equation (3.1) through system (3.5),  describes the dynamics of a point mass in a double well potential and this 

can be regarded as a model for periodically forced steel beam which is deflected towards the two magnets as shown in Fig 1 

[26,18]. It is assumed that the chaotic motions can be observed in this case. 

3.2 Stability Analysis of the Undamped and Unforced System 
In this section, we examine the dynamics of the unforced system that is when ℎ(𝑡) = 0 in equation (3.4) and the system (3.5) 

when there is no damping that is when 𝑐 = 0. The equations/systems mentioned above are conservative and all the orbits are 

described by an energy integral. 

𝐸(𝑡) =
1

2
�̇�2 +

1

2
𝑎𝑥2 +

1

2
𝑥4 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡       (3.6) 

where the energy E(t) is a constant on each orbit. Each of such orbit is a closed oval, symmetric about the X-axis, the V-axis 

(�̇�) and the origin. Therefore in this case, the Duffing equation is a Hamiltonian system. The shape of 𝐸(𝑡) for 𝐵 = 2 can be 

shown in Fig 1 and it can be seen that 𝐸(𝑡) is a single well potential for 𝑎 > 0 and it is a double well potential for 𝑎 < 0. The 

trajectory of 𝑥 = −(𝑥, �̇�) moves on the surface of 𝐸(𝑡)keeping 𝐸(𝑡)  constant  

When 𝑐 > 𝑜, 𝐸(𝑡) satisfies 
𝑑(𝐸(𝑡))

𝑑𝑡
= −𝑐�̇�2 ≤ 0         (3.7) 

Therefore the trajectory of 𝑥 moves on the surface of 𝐸(𝑡) and so 𝐸(𝑡) decreases until 𝑥 converges to one of the equilibria  

�̇� = 0 

The amplitudes of the maximum 𝑥 and the maximum velocity when ℎ(𝑡) in equation (3.1) is decomposed into 𝑐1 cos 𝑘𝑡 can 

easily be related to the energy 

𝐸(𝑡) =
1

2
(𝑉)2 +

1

2
𝑎(𝑥)2 +

1

2
(𝑥)4        (3.8) 

We see that for large 𝐸(𝑡), V goes like √𝐸(𝑡) whereas 𝑥 goes like √𝐸(𝑡)4
, so that the orbit becomes increasingly elongated 

along the V-axis as 𝐸(𝑡) increases 

Case I For 𝛽 > 0, 𝑎 > 0, 𝑐 > 0 in equation (3.1) the only equilibrium is  

�̅� ≡ (0,0)          (3.9) 

and 𝐸(𝑡) satisfies  

i)𝐸(𝑡) = 0    𝑖𝑓  𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑋 = �̅� 

ii) 𝐸(𝑡) > 0𝑖𝑓 𝑋 ≠ �̅� 

iii) 𝐸(𝑡) < 0  𝑖𝑓  𝑋 ≠ �̅� 

Therefore, 𝐸(𝑡) is a Lyapunov Function and �̅� is globally asymptotically stable in the sense of Lyapunov. 

Case II On the other hand for 𝛽 > 0, 𝑎 < 0, 𝑐 > 0 in equation (3.1), there are three equilibria as indicated below in Fig 2 

1. Two of which are at the bottom of 𝐸(𝑡) and 

2. One of which is at its peak. In this case, almost all the initial conditions converge to one of the equilibria at the 

bottoms, except for initial conditions on the stable manifold of the equilibrium at the peak.  

The equilibria of the Duffing oscillator for ℎ(𝑡) = 𝑐1𝑐𝑜𝑠𝑘𝑡  𝑜𝑟 𝑐2𝑠𝑖𝑛𝑘 in the equation (3.1) when ℎ(𝑡) = 0 or specifically 

where 𝑘 = 0 can be obtained by substituting �̇� = 0 to equation (3.1)  

namely 

𝑥(𝑎 + 𝛽𝑥2) = 0                            (3.10) 

Therefore the point 𝑥 = 0is always an equilibrium. 

Moreover, when𝑎 + 𝛽𝑥2 > 0, two equilibria 

𝑥 = ±√
−𝑎

𝛽⁄  appear                                   (3.11) 

The stability of these equilibria can be understood by analyzing the equation. 

In equation (3.1) for ℎ(𝑡) = 0 or 𝑘 = 0 can be re-written as  

𝑑

𝑑𝑡
(

𝑥
�̇�

) = (
�̇�

−𝑐�̇� − 𝑎𝑥 − 𝛽𝑥3
)        (3.12) 

and the Jacobian Matrix 𝐷𝐹(𝑥) of the right hand side is calculated as  
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𝐷𝐹(𝑥) = (
0               1

−𝑎𝑥 − 𝛽𝑥2     − 𝑐
).        (3.13) 

Therefore, the eigenvalues of 𝐷𝐹(𝑥) for the equilibrium 𝑥 = 0 is  

𝜆 =
−𝑐±√𝑐2−4𝑎

2
          (3.14) 

and it is found that this equilibrium is stable for 𝑎 ≥ 0 and unstable for 𝑎 < 0. 

Case III On the other hand, the eigenvalues of the equilibria  

𝑥 = ±√
−𝑎

𝛽⁄  

Are 𝜆 =
−𝑐±√𝑐2−8𝑎

2
         (3.15) 

and are found that these equilibria are stable for 𝛽 > 0 and 𝑎 < 0 and unstable for 𝛽 < 0 and 𝑎 < 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: For 𝑎 > 0, the Duffing oscillator can be interpreted as a forced oscillator with a nonlinear spring whose restoring force 

is written as 𝐹 = −𝑎𝑥 − 𝛽𝑥3 

 

  

  

  

  

  

 

 

 

 

 

 

Fig 2: For 𝑎 < 0, the Duffing oscillator can be regarded as a model of a periodically forced steal beam which is deflected 

towards two magnets. 
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Fig 3: The shape of 𝐸(𝑡) and schematic trajectories of Duffing equation is in the (𝑥, �̇� 𝐸(𝑡)) space for 𝛽 > 0 

 

3.3  Stability Analysis of the Undamped and Unforced System Using the Eigenvalue Approach 
Considering the Duffing equation of the form (3.1) 

The first equivalent systems of (3.1) is given by  

�̇� = 𝑦 

�̇� = −𝑐𝑦 − 𝑎𝑥 − 𝑏𝑥2 − 2𝑥3 + ℎ(𝑡)                                  (3.16)   

For the unforced case, equation (3.3) is reduced to 

�̇� = 𝑦 

�̇� = −𝑐𝑦 − 𝑎𝑥 − 𝑏𝑥2 − 2𝑥3                                  (3.17) 

At fixed points, �̇� = 𝑦 = 0 

So that 𝑦 = 0 and �̇� = −𝑎𝑥 − 𝑏𝑥2 − 2𝑥3 

= 𝑥(−𝑎𝑥 − 𝑏𝑥 − 2𝑥2) = 0 

Giving us 𝑥 = 0, 𝑥1 =
−𝑏+√𝑏2−8𝑎

4
, and 𝑥2 =

−𝑏−√𝑏2−8𝑎

4
 which correspond to (0,0), (𝑥1, 0) and  

(𝑥2, 0) at fixed point. Analysis of the stability of the fixed points can be done by linearizing  

equation (3.17) which gives 

�̈� = �̇� 

�̈� = −𝑐�̇� − (𝑎 + 2𝑏𝑥 + 6𝑥2)�̇�                                  (3.18) 

The matrix equation for (3.18) can be written as 

[
�̈�
�̈�

] = [
0 1

−(𝑎 + 2𝑏𝑥 + 6𝑥2) −𝑐
] [

�̇�
�̇�

]                                 (3.19) 

Examining the stability at the point (0,0) gives 

[
0 − 𝜆 1

−(𝑎 + 2𝑏𝑥 + 6𝑥2) − 𝜆 −𝑐 − 𝜆
] 

𝜆𝑐 + 𝜆2 + 𝑎 + 2𝑏𝑥 + 6𝑥2 + 𝜆 = 0 

𝜆2 + 𝜆(1 + 𝑐) + 𝑔 = 0                                   (3.20) 

𝜆 =
−(1 + 𝑐) ± √(1 + 𝑐)2 − 4𝑔

2
 

Where 𝜆1 = 1
2⁄ (−(1 + 𝑐) + √(1 + 𝑐)2 − 4𝑔)and 𝜆2 = 1

2⁄ (−(1 + 𝑐) − √(1 + 𝑐)2 − 4𝑔) 

are the roots of equation (3.20). The above can be written as  
 

Transactions of the Nigerian Association of Mathematical Physics Volume 3, (January, 2017), 45 – 54 



 

50 

 

Stability Analysis of Cubic Duffing…           Eze and Obasi     Trans. of NAMP 
 

𝜆1 = 1
2⁄ (−𝛿 + √𝛿2 − 4𝑔) and 𝜆2 = 1

2⁄ (−𝛿 − √𝛿2 − 4𝑔)  where 𝛿 = 1 + 𝑐 and  

𝑔 = 𝑎 + 2𝑏𝑥 + 6𝑥2 

The coefficient of 𝛽  shows that the Duffing equation is highly damped representing a hard spring. This hard spring is 

represented in equation (3.18) where the coefficient of 𝑥2 is 6. 

At the origin, 𝜆±
(0,0) = 1

2⁄ (−𝛿 ± √𝛿2 − 4𝑔)                                (3.21) 

With 𝛿 = 0, 𝜆1,2 = 1
2⁄ (±√−4𝑔) 

For this, we consider the following cases: 

(1) When 𝑔 = 0,     𝜆1,2 = 0 and this implies that 𝑏, 𝑥, 𝑎 are all zero 

(2) When 𝑔 > 0, 𝜆1,2 = ±𝑖√𝑔 which corresponds to critical points that are centres for which stability is ensured. 

(3) When 𝑔 < 0, 𝜆1,2 = ±√𝑔  which corresponds to saddles giving rise to instability [8]. 

With 𝛿 > 0, 𝜆1,2 = 1
2⁄ (−𝛿 ± √𝛿2 − 4𝑔) 

For this, we consider the following cases: 

(1) When 𝑔 = 0, 𝜆1,2 = 0, −𝛿 

(2) When 𝑔 > 0, 𝜆1,2 = 1
2⁄ (−𝛿 ± √𝛿2 − 4𝑔) 

For the discriminate, we have the following cases: 

When 𝛿2 < 4𝑔, 𝜆1,2 = 1
2⁄ (−𝛿 ± 𝑖√𝛿2 − 4𝑔) showsthat the roots are imaginary which to lead to spiral and asymptotic 

stability. 

When  𝛿2 > 4𝑔, 𝜆1,2 = 1
2⁄ (−𝛿 ± √𝛿2 − 4𝑔) shows that the roots are real which leads to saddles and instability. 

When  𝛿2 = 4𝑔, 𝜆1,2 = ±√𝑔shows that the roots are real corresponding to saddles and instability. 

When  𝑔 < 0, 𝜆1,2 = 1
2⁄ (𝛿 ± √𝛿2 + 4𝑔) 

For the discriminate, we consider the following cases: 

(1) When 𝛿2 + 4𝑔 < 0, 𝜆1,2 = 1
2⁄ (𝛿 ± 𝑖√𝛿2 + 4𝑔) which corresponds to spirals and asymptotic stability. 

(2) When 𝛿2 + 4𝑔 > 0, 𝜆1,2 = 1
2⁄ (𝛿 ± 𝑖√𝛿2 + 4𝑔) which leads to instability. 

(3) When  𝛿2 + 4𝑔 = 0, 𝜆1,2 = ±(𝑖√𝑔) which leads to centres and instability. 

Interestingly, for special case when 𝑐 = 0 with no forcing term equation (3.17) becomes 

�̇� = 𝑦 

�̇� = −𝑎𝑥 − 𝑏𝑥2 − 2𝑥3              (3.22) 

The above can be integrated by quadrature, differentiating (3.8) and plugging in (3.9) gives 

�̇� = �̇� = −𝑎𝑥 − 𝑏𝑥2 − 2𝑥3 

Multiplying both sides by �̇� gives   �̇��̇� − 𝑎𝑥�̇� − 𝑏�̇�𝑥2 − 2�̇�𝑥3 = 0                 (3.23) 

Equation (3.23) can be written as 
𝑑

𝑑𝑡
[

1

2
�̇�2 −

1

2
𝑎𝑥2 −

1

3
𝑏𝑥3 −

1

2
𝑥4] = 0                                 (3.24) 

So we have a variant of motion 

ℎ =
1

2
�̇�2 −

1

2
𝑎𝑥2 −

1

3
𝑏𝑥3 −

1

2
𝑥4                                  (3.25) 

solving for �̇�2 gives  �̇�2 = (
𝑑𝑥

𝑑𝑡
)

2

= 2ℎ + 𝑎𝑥2 +
2

3
𝑏𝑥3 + 𝑥4 

𝑑𝑥

𝑑𝑡
= √2ℎ + 𝑎𝑥2 +

2

3
𝑏𝑥3 + 𝑥4 

𝑡 = ∫ 𝑑𝑡 = ∫
𝑑𝑡

√2ℎ+𝑎𝑥2+
2

3
𝑏𝑥3+𝑥4

       [27] 

Note that the invariant of motion ℎ satisfies �̇� =
𝜕ℎ

𝜕�̇�
=

𝜕ℎ

𝜕𝑦
  where 

𝜕ℎ

𝜕𝑥
= 𝑎𝑥 + 𝑏𝑥2 + 2𝑥3 = �̇�                                   (3.26) 

So the equation of Duffing oscillator are given by the Hamiltonian system [27] 

�̇� =
𝜕ℎ

𝜕𝑦
   and  �̇� = −

𝜕ℎ

𝜕𝑥
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Table 1: The Stability Analysis and Numerical Solutions of Duffing’s Equation at Different Values 𝑎, 𝑏, 𝑐 

𝑎 = 0.1
𝑏 = 0.2
𝑐 = 0.1

𝑥12 =
−0.2 ± √−0.76

4

𝑥21 =
−0.2 ± √−0.76

4

−0.05
−0.05
0.168
−1.07

𝑆𝑝𝑖𝑟𝑎𝑙
𝑆𝑝𝑖𝑟𝑎𝑙
𝑆𝑎𝑑𝑑𝑙𝑒
𝑆𝑝𝑖𝑟𝑎𝑙

𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒
𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒

𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒
𝑆𝑡𝑎𝑏𝑙𝑒

 

 

𝑎 = 0.6
𝑏 = 0.3
𝑐 = 0.5

𝑥12 =
−0.2 ± √−4.71

4

𝑥21 =
−0.2 ± √4.71

4

−0.0075
−0.0075

0.468
−0.618

𝑆𝑝𝑖𝑟𝑎𝑙
𝑆𝑝𝑖𝑟𝑎𝑙
𝑆𝑎𝑑𝑑𝑙𝑒
𝑆𝑝𝑖𝑟𝑎𝑙

𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒
𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒

𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒
𝑆𝑡𝑎𝑏𝑙𝑒

 

 

𝑎 = 0.01
𝑏 = 0.02
𝑐 = 0.03

𝑥12 =
−0.2 ± √−0.0796

4

𝑥21 =
−0.2 ± √0.0796

4

−0.02
−0.02
0.066

−0.076

𝑆𝑝𝑖𝑟𝑎𝑙
𝑆𝑝𝑖𝑟𝑎𝑙
𝑆𝑎𝑑𝑑𝑙𝑒
𝑆𝑝𝑖𝑟𝑎𝑙

𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒
𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒

𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒
𝑆𝑡𝑎𝑏𝑙𝑒

 

 

𝑎 = −0.2
𝑏 = 0.2

𝑐 = 0.03

𝑥12 =
−0.2 ± √−1.56

4

𝑥21 =
−0.2 ± √1.56

4

−0.2
−0.2
0.262

−0.362

𝑆𝑝𝑖𝑟𝑎𝑙
𝑆𝑝𝑖𝑟𝑎𝑙
𝑆𝑎𝑑𝑑𝑙𝑒
𝑆𝑝𝑖𝑟𝑎𝑙

𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒
𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒

𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒
𝑆𝑡𝑎𝑏𝑙𝑒

 

 

3.3.1  Numerical Solution Of Duffing’s Equation Using Mathcad 
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 Figure 5: Phase portrait of Duffing’s equation showing  

asymptotic stability of solution as a spiral sink. 
Figure 4: Trajectory profile of Duffing equation for  

values 𝑎 = 0.1, 𝑏 = 0.2, 𝑐 = 0.1 
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Figure 10: Oscillatory profile of Duffing equation for 

values 𝑎 = −0.2  𝑏 = 0.2  𝑐 = 0.03 
 

Figure 7: Phase portrait of Duffing’s equation depicting  

asymptotic stability of solution as a spiral sink 
Figure 6: Trajectory Profile of Duffing Equation for 

values 𝑎 = 0.6, 𝑏 = 0.3, 𝑐 = 0.5 

Figure 9: Phase portrait of Duffing’s equation depicting  

a centre of a non-stable node 

Figure 8: Oscillatory profile of Duffing equation for 

values 𝑎 = −0.2  𝑏 = 0.2  𝑐 = 0.03 

 

Figure 11: Phase portrait depicting the centre as an unstable 

node (parameters). 
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4.0  Discussion 
The numerical tool (MATHCAD) in this paper was used to demonstrate the numerical behavior of the solution.In Figure 4, 

the value of 𝑐 = 0.1 shows that the damping coefficient is high. At this point the system will oscillate but with small 

amplitude which returns to equilibrium as fast as possible. This degree of damping also describes the behaviour of the 

system. In Figure 5, the MATHCAD described the behavior of the Duffing equation when 𝑎 = 0.6, 𝑏 = 0.3 𝑎𝑛𝑑 𝑐 = 0.5 is 

periodic. We observed asymptotically stable behavior at both saddle and spiral points which are three equilibrium points. In 

Figure 6, the value of 𝑐 = 0.5 shows that the system will oscillate but not as fast as the oscillation in Figure 4. This is due to 

the increase in the damping coefficient from 𝑐 = 0.1 to 𝑐 = 0.5.  

 In Figure 7, the dynamics of Duffing equation were shown when 𝑎 = 0.6, 𝑏 = 0.3 𝑎𝑛𝑑 𝑐 = 0.5. We observe asymptotically 

stable at spiral point. This shows that the order is revolving round. At this point, the spiral sink toward the equilibrium point. 

In Figure 8, the oscillatory profile of Duffing equation was shown. The damping coefficient in this case is low that is 𝑐 =
0.03hence forcing the systemto oscillate with a decrease amplitude. The respond in this case is a sinusoid. Damping is a 

frictional force so it generate heat and dissipate energy. In this case, the system is undamped having spiral node. In Figure 9, 

the MATCAD were obtained for the values 𝑎 = −0.2, 𝑏 = 0.2 𝑎𝑛𝑑 𝑐 = 0.03. In this case the phase line tend to converge 

toward the equilibrium point due to the decrease in amplitude. This makes the phase portrait of Duffing equation depicting a 

centre of a non-stable node. In Figure 10, the system will oscillate with decrease in amplitude due to decrease in the damping 

coefficient. In this case, the system is said to be underdamped. In Figure 11, the dynamics of Duffing equation were shown 

for 𝑎 = 0.2, 𝑏 = 0.2 𝑎𝑛𝑑 𝑐 = 0.03.In this case, the phase line tends to converge to the centre as an unstable node. 

The hard spring system can be linked to the spring in the shock absorber. This second order differential equation is of a form 

known as a conservative equation. It admits a conservation law which is an energy equation. In this hard spring, the only 

equilibrium point is the rest state which is the origin. 

 

5.0  Conclusion 
With the use of eigenvalue approach and numerical tool (Mathcad), we investigated the stability properties of the cubic 

Duffing oscillator and demonstrated the behavior of the solution. Fig 4 to Fig 11  discussed abovedescribes different 

behaviour of the solution which was gotten either by increase or decrease of the damping coefficient. As a result of this 

changes, spiral stable equilibrium point of the system was observed for most parameters. 
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