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Abstract 
 

This paper considered the optimization of convex functions in infinite 

dimensional spaces. Requisite theorems were reviewed and concise proofs 

of the relevant results given. Some analogues of Bolzano-Weirestrass 

results in infinite dimensional spaces were studied using the Eberlein-

Smul’yan theorem. The main thrust is on the application of Lax-Milgram 

theorem which guarantees the existence of a unique minimizer of a convex 

functional defined on the Sobolev spaces𝑯𝟎
𝟏(𝜴) . Finally example was 

given to illustrate the results. The main contribution is that every finite 

dimensional space problem has an analoguous infinite dimensional space 

version provided the right topology and assumptions are made. 
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1.0     Introduction 
It is a fact that both finite and infinite dimensional spaces play vital role in mathematical analysis and other areas of 

mathematics. The concept of optimization has been studied vigorously in the literature, be it in the case of finite dimensional 

spaces or otherwise. For instancein [1-4] there are known results concerning optimization of continuous functionalwhich now 

forms a must know for everystudents of classicalanalysis. On the optimization of convex functions, see [5-8] 

Theorem 1.1Let 𝑓: [𝑎, 𝑏] → ℝbe continuous then the following holds 

i)𝑓is bounded ie ∃m ∈ ℝsuch that |𝑓(𝑥)| ≤ 𝑚 ∀ 𝑥 ∈ [𝑎, 𝑏] 
ii) There exists a point 𝑐1 ∈ [𝑎, 𝑏]such that 𝑓(𝑐1) = min 𝑓(𝑥) ∀ 𝑥 ∈ [𝑎, 𝑏] 
iii) There exists a point 𝑐2 ∈ [𝑎, 𝑏]such that 𝑓(𝑐2) = max 𝑓(𝑥) ∀ 𝑥 ∈ [𝑎, 𝑏] 
iv)𝑓[𝑎, 𝑏] = |𝑓(𝑐1), 𝑓(𝑐2)| 
v) 𝑓is uniformly continuous on [𝑎, 𝑏] 
This result carries through to finite dimensional space. Precisely, we have the following results 

Theorem 1.2 (Weierstrass theorem) Let 𝐷 ⊂ ℝ𝑛 be a compact set (closed and bounded) and 𝑓: 𝐷 → ℝbe a continuous 

function. Then 𝑓attains a global maximum or a global minimum on 𝐷that is∃ 𝑥1 and 𝑥2such that                   

𝑓(𝑥1) ≥ 𝑓(𝑥) ≥ 𝑓(𝑥2) ∀ 𝑥 ∈ 𝐷  

Observe that from these theorems, the function achieve its maximum and minimum on the given domain. The proof of this 

relies on the property of [𝑎, 𝑏]or 𝐷 that is the set is compact (closed and bounded). It is also known that in Bolzano 

Weierstrass theorem that every bounded sequence in ℝ𝑛has a convergent subsequence. This result is utilized rigorously in the 

proof of theorem (1.1) and (1.2). Attempts to move this result to infinite dimensional spaces have proved abortive because 

compact sets are rare to find in infinite dimensional spaces [9-17]. However, in some infinite dimensional spaces, analogue of 

Bolzano Weierstrass theoremexist. Examples are the Arzela Ascoli theorem and Eberlein Smu’lyan theorem. We state those 

analogues here without proof. 

Theorem 1.3 (Arzela Ascoli theorem) Any uniformly bounded equicontinuous sequence {𝑥𝑛}in a continuous 𝐶[𝑎, 𝑏] has a 

uniformly convergent subsequence [17] 

Remark: This result is very useful for solution of ordinary differential equations. 

Theorem 1.4 (Eberlein Smu’lyan theorem) A Banach space 𝐸 is reflexive if and only if every norm bounded sequence in 𝐸 

has a subsequence which converge weakly to an element of 𝐸 [12] 
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Remark: This is very useful for solution of partial differential equations because all solutions of partial differential equations 

are found in Sobolev spaces which are reflexive spaces. 

The objective of this paper is to study existence and uniqueness of solutions of convex optimization problem in the infinite 

dimensional space 𝐻0
1(Ω). 

 

2.0  Preliminaries 
Definition 2.1 A bilinear form or functional 𝐵 on a Hilbert space 𝐻 is a mapping 𝐵: 𝐻 × 𝐻 → ℝ such that 𝑎(𝑥, 𝑦) is linear in 

each of 𝑥, 𝑦, 𝑤 ∈ 𝐻 ie for all 𝑢1, 𝑢2 ∈ 𝐻 and 𝑐1, 𝑐2 ∈ ℝ 

𝐵(𝑐1𝑢1 + 𝑐2𝑢2, 𝑤) = 𝑐1𝐵(𝑢1, 𝑤) + 𝑐2𝐵(𝑢2, 𝑤) 

𝐵(𝑤, 𝑐1𝑢1 + 𝑐2𝑢2, ) = 𝑐1𝐵(𝑤, 𝑢1) + 𝑐2𝐵(𝑤, 𝑢2) 

Definition 2.2 Let 𝑉 be a normed linear spaces and 𝑓: 𝑉 →  ℝ ∪ {+∞} be an extended real valued function. Consider the 

optimization problem of the form 

inf  𝑓(𝑣) where 𝑣 ∈ 𝑉                                           (2.1) 

A point �̅� ∈ 𝑉 is a local minimizer of 𝑓 in 𝑣 if there exists a positive constant 𝑟 > 0 such that  

𝑓(�̅�) ≤ 𝑓(𝑣) ∀ 𝑣 ∈  B(�̅�, 𝑟) ∩ 𝑉                                  (2.2) 

It is a global minimizer if equation (2.2) holds for all points 𝑣 ∈ 𝑉. Solving an optimization problem like equation (2.1) I to 

find a global minimizer of 𝑓 in 𝑉. 

Definition 2.3 (Convex set) Let 𝑋 be a real linear space and 𝐶 ⊂ 𝑋. The set 𝐶 is called convex if for each 𝑥1𝑥2 ∈ 𝐶 and for 

each 𝑡 ∈ [0,1], we have 

𝑡𝑥1 + (1 − 𝑡)𝑥2 ∈ 𝐶 

Definition 2.4 Let 𝐷 be a subset of real vector space and 𝑓: 𝐷 →  ℝ ∪ {+∞}, then 𝑓 is said to be convex if 

(a) 𝐷 is convex and 

(b) for each 𝑡 ∈ [0,1] and for each 𝑥1𝑥2 ∈ 𝐷 we have 

𝑓(𝑡𝑥1 + (1 − 𝑡)𝑥2) ≤ 𝑡𝑓(𝑥1) + (1 − 𝑡)𝑓(𝑥2) 

Definition 2.5 Let 𝑓: 𝑋 →  ℝ ∪ {+∞} be a map. The effective domain of 𝑓 is the set defined by 

𝐷(𝑓) ≔ {𝑥 ∈ 𝑋: 𝑓(𝑥) < +∞} 

Definition 2.6 A map 𝑓: 𝑋 →  ℝ ∪ {+∞} is called proper if 𝐷(𝑓) ≠ ∅ 

Definition 2.7 (Epigraph) The epigraph of 𝑓 is the set defined by 

epi(𝑓) ≔ {(𝑥, 𝛼) ∈ 𝑋 × ℝ ∶ 𝑥 ∈ 𝐷(𝑓)and 𝑓(𝑥) ≤ 𝛼} 

Definition 2.8 (Section of 𝑓) Let 𝛼 ∈ ℝ, we have the following definition 

𝑆𝑓,𝛼 ≔ {𝑥 ∈ 𝑋: 𝑓(𝑥) ≤ 𝛼} = {𝑥 ∈ 𝐷(𝑓): 𝑓(𝑥) ≤ 𝛼} 

Definition 2.9 A function 𝑓: 𝑋 →  ℝ ∪ {+∞} is lower semi-continuous at �̅� if lim
𝑥→�̅�

𝑓(𝑥) ≥ 𝑓(�̅�) 

Definition 2.10Let 𝐸 be a normed linear space and let 𝐽 be the canonical embedding of 𝐸 into 𝐸∗∗. If 𝐽 is onto, then 𝐸 is 

called reflexive. Thus a reflexive Banach space is one in which the canonical embedding is onto. 

Definition 2.11Let 𝑋 be a reflexive space. A function 𝑓: 𝑋 →  ℝ ∪ {+∞} is called coercive if lim
𝑥→+∞

𝑓(𝑥) = +∞ 

Definition 2.12 The weak topology on 𝐸 denoted by w is the smallest topology on 𝐸 which makes the maps ∅𝑓 continuous. 

Proposition 2.13 A mapping 𝑓: 𝑋 →  ℝ ∪ {+∞} is convex if and only if the epi(𝑓) is convex 

Proposition 2.14 If 𝑓: 𝑋 →  ℝ ∪ {+∞} is lower semi continuous at �̅� ∈ 𝑋  and {𝑥𝑛} is a sequence in 𝑋  which converges 

strongly to �̅�, then lim
𝑛→∞

inf 𝑓(𝑥𝑛) ≥ 𝑓(�̅�) 

Theorem 2.15 Let 𝑓: 𝑋 →  ℝ ∪ {+∞} be any map. Then 𝑓 is convex and lower semi continuous if and only if 𝑓 is convex 

and weakly lower semi continuous. 

Proof:𝑓 is convex and lower semi continuous ⟺ epi(𝑓) is convex and a closed set 

⟺  is convex and weakly closed 

⟺ 𝑓 is convex and weakly lower semi continuous 

Lemma 2.16 Let 𝐾 ⊂ 𝐸 be convex and closed in the strong topology. Then 𝐾 is closed in the weak topology ie if 𝐾 is 
strongly closed and convex, then it is weakly closed. 
 

3.0  Some Results in Optimization 
Definition 3.1𝑓: 𝑋 →  ℝ ∪ {+∞} is strictly convex if for each 𝑥1, 𝑥2 ∈ 𝐷(𝑓), 𝑥1 ≠ 𝑥2 and for each 𝑡 ∈ (0,1) we have𝑓(𝑡𝑥1 +
(1 − 𝑡)𝑥2) < 𝑡𝑓(𝑥1) + (1 − 𝑡)𝑓(𝑥2). Example: 𝑓: 𝑋 →  ℝ ∪ {+∞} defined by 𝑓(𝑥) = 𝑘  (constant map). This 𝑓  is convex 

but not strictly convex. 

Theorem 3.2 Let 𝑓: 𝑋 →  ℝ ∪ {+∞} be strictly convex and proper. If 𝑓 has a minimum at 𝑥0 ∈ 𝑋, then 𝑥0 is unique. 

Proof: Suppose that 𝑎 ∈ 𝑋, 𝑏 ∈ 𝑋 are such that 𝑎 ≠ 𝑏 and 𝑓(𝑎) = 𝑓(𝑏) = 𝑓(𝑥𝑜) ≤ 𝑓(𝑥) ∀ 𝑥 ∈ 𝑋. 

Then 𝑓(𝑎) = 𝑓(𝑥0) ≤ 𝑓 (
1

2
𝑎 +

1

2
𝑏) <

1

2
𝑓(𝑎) +

1

2
𝑓(𝑏) = 𝑓(𝑥0) = 𝑓(𝑎). Contradiction, so 𝑎 = 𝑏 
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Theorem 3.3Let 𝑋 be a reflexive Banach space and let 𝐾 be a closed convex bounded and nonempty subset of 𝑋. Let 𝑓: 𝑋 →
 ℝ ∪ {+∞} be lower semi continuous and convex. Then there exists �̅� ∈ 𝐾  such that 𝑓(�̅�) ≤ 𝑓(𝑥) ∀ 𝑥 ∈ 𝐾  ie 𝑓(�̅�) = inf 

𝑓(𝑥) = min 𝑓(𝑥) 

Proof:𝑓  is lower semi continuous and convex ⟹ 𝑓  is weakly lower semi continuous. Put 𝑚 ∶= inf 𝑓(𝑥)∀ 𝑥 ∈ 𝐾. First 

suppose 𝑚 = −∞. Then for 𝑛 ∈ ℕ, ∃  𝑥𝑛  ∈ 𝐾 such that  

𝑓(𝑥𝑛) < −𝑛                                                                                  (3.1) 

Boundedness of 𝐾 implies {𝑥𝑛} is bounded and by Eberlein-Smul’yan theorem ∃ {𝑥𝑛𝑘
} subsequence of {𝑥𝑛} such that 𝑥𝑛𝑘

→

𝑥 ∈ 𝑋. But 𝐾 is convex and closed implies that 𝐾 is weakly closed. Hence 𝑥 ∈ 𝐾. By weak lower semi-continuity of 𝑓, we 

have  

𝑓(𝑥) ≤ lim inf 𝑓(𝑥𝑛𝑘
) < −∞ 

By equality of equation (3.1) and this is impossible since 𝑓(𝑥) ∈  ℝ ∪ {+∞}. Hence 𝑚 ∈ ℝ. We now use the definition of 

“inf”. Let 𝑛 ∈ ℕ and take𝜀𝑛 =
1

𝑛
 , then ∃𝑥𝑛  ∈ 𝐾 such that 

𝑚 ≤ 𝑓(𝑥𝑛) < 𝑚 +
1

𝑛
 

The sequence {𝑥𝑛} in 𝐾 implies {𝑥𝑛} is bounded and so ∃ {𝑥𝑛𝑘
}𝑘∈ℕ  subsequence of {𝑥𝑛} and �̅� ∈ 𝐾 such that  𝑥𝑛𝑘

→ �̅�. 

Since 𝑓 is weakly lower semi-continuous we have  

𝑓(�̅�) ≤ lim
𝑘→∞

inf (𝑚 +
1

𝑛𝑘

) = 𝑚 

Thus (�̅�) ≤ 𝑚 = inf 𝑓(𝑥) ∀ 𝑥 ∈ 𝐾. So 𝑚 ≤ 𝑓(�̅�) ≤ 𝑚 ⟹ 𝑓(�̅�) = 𝑚 

Theorem 3.4 Let 𝑋  be a real reflexive Banach space and Let 𝑓: 𝑋 →  ℝ ∪ {+∞} be a convex, proper and lower semi-

continuous function. Suppose lim
‖𝑥‖→∞

𝑓(𝑥) = +∞ , then ∃ �̅� ∈ 𝑋 such that 𝑓(�̅�) ≤ 𝑓(𝑥)∀ 𝑥 ∈ 𝑋 ie 𝑓(�̅�) = inf 𝑓(𝑥) 

Proof: Applying contraction mapping principle, Since 𝑓 is proper ∃ 𝑥0 ∈ 𝑋 such that 𝑓(𝑥0) ∈ ℝ ie 𝑓(𝑥0) ≠ +∞ 

Let 𝐾 ∶= {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ≤ 𝑓(𝑥0)} We now show that 𝐾 is closed, convex, nonempty and bounded set. But 𝐾 is a section with 

𝛼 ≔ 𝑓(𝑥0). So it is convex and closed since f is convex and lower semi-continuous. 

Claim: 𝐾 is bounded. Suppose this is not the case, then for each 𝑛 ∈ ℕ, ∃ 𝑥𝑛  ∈ 𝐾 such that ‖𝑥𝑛‖ > 𝑛. Thus since 𝑥𝑛  ∈ 𝐾, 

we have that  

𝑓(𝑥𝑛) ≤ 𝑓(𝑥0)                                                                                  (3.2) 

This implies that lim
𝑛→+∞

‖𝑥𝑛‖ = + ∞ and so by hypothesis  

lim
𝑛→+∞

𝑓(𝑥𝑛) = + ∞                                                                              (3.3) 

Contradicting inequality (3.2). Hence 𝐾 is bounded. By theorem (3.4), we have that ∃ �̅� ∈ 𝐾 ⊂ 𝑋 such that ∀ 𝑥 ∈ 𝐾𝑓(�̅�) ≤
𝑓(𝑥). Now, let 𝑥 ∈ 𝑋\𝐾. Then 𝑓(𝑥) > 𝑓(𝑥0). But 𝑥0 ∈ 𝐾 So 𝑓(�̅�) ≤ 𝑓(𝑥0). 
Hence 𝑓(𝑥) > 𝑓(�̅�)∀ 𝑥 ∈ 𝑋 ie 𝑓(�̅�) ≤ 𝑓(𝑥)∀𝑥 ∈ 𝑋. 

 

4.0  Main Result 
Lemma 4.1 (Riesz-Frechet) For every continuous linear form 𝑓onthe Hilbert space 𝐻,there exist a unique 𝑦 ∈ 𝐻such thatfor 

all 𝑥 ∈ 𝐻,the following identity holds 

1.  𝑓(𝑥) = 〈𝑥, 𝑦〉 

2.  ‖𝑦‖ = ‖𝑓‖ 

Lemma 4.2 Let 𝑉 be a given Hilbert spaces with scalar product (.,.) and corresponding norm ‖. ‖. Furthermore, let there ba a 

giving mapping 𝑎: 𝑉 × 𝑉 → ℝ with the following properties: 

(i) For an arbitrary 𝑢 ∈ 𝑉, both 𝑎(𝑢, . ) and 𝑎(. , 𝑢) define linear functional on V 

(ii) There exists a constant 𝑀 > 0such that |𝑎(𝑢, 𝑣)| ≤ 𝑀‖𝑢‖‖𝑣‖for all u, v ∈ 𝑉 

(iii) There exists a constant 𝑟 > 0 such that 𝑎(𝑢, 𝑢) ≥ 𝑟‖𝑢‖2 for all 𝑢 ∈ 𝑉. A mapping 𝑎(. , . ) satisfying (i) and (ii) is called a 

continuous bilinear form. The essential property (iii) is called V-ellipticity of connectivity. 

Theorem 4.3 (Lax-Milgram) Let 𝑎: 𝑉 × 𝑉 → ℝ  be a continuous, 𝛼  elliptic bilinear form. Then for each 𝑓 ∈ 𝑉∗,  the 

variational equation  

𝑎(𝑢, 𝑣) = 𝑓(𝑣) for all 𝑣 ∈ 𝑉           (4.1) 

has a unique solution 𝑢 ∈ 𝑉. Furthermore, a priori estimate 

‖𝑢‖ ≤
1

𝑟
‖𝑓‖              (4.2) 

Proof: First we show that the solution of equation (4.1) is unique. Suppose that 𝑢 ∈ 𝑉 and �̅� ∈ 𝑉 are both solutions. Then the 

linearity of 𝑎(. 𝑣)  implies that 𝑎(�̅� − 𝑢, 𝑣) = 0  for all 𝑣 ∈ 𝑉.  Choosing 𝑣 ≔ �̅� − 𝑢,  we get 𝑎(𝑣, 𝑣) = 0  which by 

𝛼 − ellipticity implies that 𝑣 = 0  as desired. Note that 𝛼 -ellipticity, however is stronger than the condition "𝑎(𝑣, 𝑣) =
0implies 𝑣 = 0". To prove the existence of a solution to (4.1), we use Banach fixed point theorem. Therefore, we need to 

choose a contractive mapping that has as a fixed point a solution of equation (4.1). For each 𝑦 ∈ 𝑉, the assumption (i) and (ii)  
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for bilinear form guarantee that  𝑎(𝑦, . ) − 𝑓 ∈ 𝑉∗ . Hence Riesz’s theorem ensures the existence of a solution 𝑧 ∈ 𝑉  of                                 
(𝑧, 𝑣) = (𝑦, 𝑣) − 𝑟[𝑎(𝑦, 𝑣) − 𝑓(𝑣)] ∀ 𝑣 ∈ 𝑉        (4.3) 

for each real 𝑟 > 0. Now we define the mapping 𝑇𝑥: 𝑉 → 𝑉by 𝑇𝑟𝑦 ≔ 𝑧and study its properties especially contractivity. The 

relation (4.3) implies 
(𝑇𝑟𝑦 − 𝑇𝑟𝑤, 𝑣) = (𝑦 − 𝑤, 𝑣) − 𝑟𝑎(𝑦 − 𝑤, 𝑣) for all 𝑣, 𝑤 ∈ 𝑉      (4.4) 

Given 𝑝 ∈ 𝑉, by applying Riesz’s theorem again we define an auxillary linear operator  

𝑆: 𝑉 → 𝑉 by (𝑆𝑃 , 𝑣) = 𝑎(𝑝, 𝑢) ∀ 𝑣 ∈ 𝑉       (4.5) 

Property (ii) of the bilinear form implies that 
‖𝑆𝑃‖ ≤ 𝑀‖𝑝‖ ∀ 𝑝 ∈ 𝑉 .                                                                   (4.6) 

The definition of operator 𝑆  means that equation (4.4) can be written as (𝑇𝑟𝑦 − 𝑇𝑟𝑤, 𝑣) = (𝑦 − 𝑤 − 𝑟𝑆((𝑦 −

𝑤), 𝑣)) ∀ 𝑣, 𝑤 ∈ 𝑉. This allows us to investigate whether 𝑇𝑟is contraction: 

‖𝑇𝑟𝑦 − 𝑇𝑟𝑤‖2 = (𝑇𝑟𝑦 − 𝑇𝑟𝑤, 𝑇𝑟𝑦 − 𝑇𝑟𝑤) 

= (𝑦 − 𝑤 − 𝑟𝑆(𝑦 − 𝑤), 𝑦 − 𝑤 − 𝑟𝑆(𝑦 − 𝑤)) 

= ‖𝑦 − 𝑤‖2 − 2𝑟(𝑆(𝑦 − 𝑤), 𝑦 − 𝑤) + 𝑟2(𝑆(𝑦 − 𝑤), 𝑆(𝑦 − 𝑤)) 

By equations (4.5) and (4.6) this yields: 

‖𝑇𝑟𝑦 − 𝑇𝑟𝑤‖2 ≤ ‖𝑦 − 𝑤‖2 − 2𝑟𝑎(𝑦 − 𝑤, 𝑦 − 𝑤) + 𝑟2𝑀2‖𝑦 − 𝑤‖2  . Finally invoking the V-ellipticity of 𝑎(. , . )  we get 

‖𝑇𝑟𝑦 − 𝑇𝑟𝑤‖2 ≤ (1 − 2𝑟𝑦 + 𝑟2𝑀2)‖𝑦 − 𝑤‖2 ∀ 𝑦, 𝑤 ∈ 𝑉. Consequently, the operator  

𝑇𝑟 ∶ 𝑉 → 𝑉 is contractive if 0 < 𝑟 <
2𝑟

𝑀2 . Choose =
𝑟

𝑀2 . Now Banach fixed point theorem tells us that there exist 𝑢 ∈ 𝑉 with 

𝑇𝑟𝑢 = 𝑢 since𝑟 > 0 . The definition (4.3) of 𝑇𝑟 implies that  

𝑎(𝑢, 𝑣) = 𝑓(𝑣) ∀ 𝑣 ∈ 𝑉                                                                                           (4.7) 

 

5.0  Overview of Sobolev Spaces 
Let Ω be an open set in ℝ . Let 𝑘 be a natural number and let 1 ≤ 𝑝 < ∞, the Sobolev space 𝑊𝑘,𝑝(Ω ) is defined to be the set 

of all functions 𝑓 on Ω such that every  index 𝛼 with |𝛼| ≤ 𝑘 is denoted by 

𝑊𝑘,𝑝(Ω ) := {𝑢 ∈ ℒ 𝑝(Ω ) :𝐷𝛼𝑢 ∈ ℒ 𝑝(Ω ) ∀ 𝛼 with |𝛼| ≤ 𝑘}. The natural number 𝑘 is called the Sobolev space [16] 

Definition 5.1 The 𝑊1,2(Ω ) is defined as  𝑊1,2(Ω )∶= {𝑢 ∈ ℒ 𝑝(Ω ) ∶ 𝐷𝛼𝑢 ∈ ℒ 𝑝(Ω ) ∀ 𝛼 with |𝛼| ≤ 1}. Usually we denote  

𝑊1,2(Ω ) = 𝐻1(Ω). 𝐻1(Ω) is a separable Hilbert space when it is equipped with inner product functions in the Sobolev space 

𝐻. The definition of 𝐻1(Ω) is based on the inner product 

〈𝑓, 𝑔〉𝐻1 = ∫ 𝑓(𝑥)𝑔(𝑥) + ∇𝑓(𝑥) + ∇𝑔(𝑥)𝑑𝑣  over   Ω                                               (5.1)     

where Ω ⊂ ℝ𝑛and 𝑓, 𝑔 ∶ Ω → ℝ . 
Note that for n= 1.The inner product simply 

〈𝑓, 𝑔〉𝐻1 = ∫ 𝑓(𝑥)𝑔(𝑥) + 𝑓 ′(𝑥)𝑔′𝑏

𝑎
(𝑥)𝑑𝑥                                              (5.2) 

Based on the inner product of equation (5.2) the 𝐻1 − norm 

‖𝑓‖𝐻1 = √〈𝑓, 𝑔〉𝐻1                                                                                               (5.3) 

is defined and we obtain the Sobolev space. 

Definition 5.2𝐻1(Ω) = {𝑓:Ω → ℝ ∶ ‖𝑓‖𝐻1 < ∞ of all function Ω for which 𝐻1 − norm is finite. 

Definition 5.3The Sobolev space 𝑊0
𝑘,𝑝(Ω) is defined as the completion of 𝐶0

∞(Ω) in the norm of 𝑊0
𝑘,𝑝(Ω)ie ‖∙‖𝑊𝑘,𝑝 (Ω)  and 

𝑊0
𝑘,𝑝(Ω) = 𝐶0

∞(Ω) 

Definition 5.4 The space 𝐶0
∞(Ω) is the space of infinitely often differential real function with compact (closed and bounded) 

support in Ωis denoted by 𝐶0
∞(Ω) = {𝑣: 𝑣 ∈ 𝐶0

∞(Ω), sup (𝑣) ⊂ Ω} where supp(𝑣) = {𝑥 ∈ Ω ∶ 𝑣(𝑥) ≠ 0} 

Definition 5.5𝐻0
1(Ω)  is defined as the closure of 𝐶0

∞(Ω)  in (𝐻0
1(Ω), ‖∙‖𝐻1 ) . 𝐻0

1(Ω)  is a Hilbert space for the reduced 

norm|∙|𝐻1,Ω. It can be considered as subspace of 𝐻1(Ω) comprising of all those functions that vanish (in certain cases).  

Note: 𝐻0
1(Ω) ≡ 𝐻1(Ω) because their norms are equivalent. 

 

6.0  Applications 
The achievements of Lax and Milgram result in [15]was to specify conditions for this weak formulations to have a unique 

solution that depends continuously upon the specified data 𝑓 ∈ 𝑉∗ 

6.1  Optimization in real Hilbert Spaces 
We now consider the special case in which the real reflexive space is a real Hilbert space. Let 𝐻 be a real Hilbert space, we 

know that 𝐻 is reflexive. We now consider the following examples of mapping defined on H. 

Example 1 (Projection onto closed, convex subset H) 

Let 𝐾 be a nonempty, closed convex subset of 𝐻. Let 𝑓 ∶ 𝐻 → ℝ ∪ {+∞} be defined for arbitrary 𝑥 ∈ 𝐻 and fixed 𝑢 ∈ 𝐻 by 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 3, (January, 2017), 39 – 44 



 

43 

 

Optimization of Convex Functions…           Eze and Obasi     Trans. of NAMP 
 

 𝑓(𝑥) ∶= {
‖𝑥 − 𝑢‖               𝑖𝑓 𝑥 ∈ 𝐾 

    +∞              𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.          
 

Then 𝑓 is convex, lower semi-continuous, proper and 
  𝑓(𝑥)

‖𝑥‖ → +∞
= +∞ 

Thus, there exists 𝑥0 ∈ 𝐾 such that 𝑓(𝑥0) = min
𝑥∈𝐾

𝑓(𝑥) 

Verification: 

a. Convexity of 𝑓 follows from that of ‖∙‖ 

b. Lower semi-continuity of 𝑓 follows from that of  ‖∙‖ since the  ‖∙‖ is continuous and every continuous 

function is lower semi-continuous. 

c. To show that 𝑓 is proper. From the problem, since 𝐾 is non-empty, let 𝑥0 ∈ 𝐾, then 𝑓(𝑥0) = 

‖𝑥0 − 𝑢‖ < ∞. 
d. To show that 𝑓 is coercive, ie lim

‖𝑥‖→∞
𝑓(𝑥) = +∞ 

Case 1: Suppose 𝑥 is not in 𝐾, then the result is trivial because the image of 𝑓 is infinity no matter how 𝑥 behaves 

Case 2: If 𝑥 ∈ 𝐾, then 𝑓(𝑥) = ‖𝑥 − 𝑢‖ 

≥ ‖𝑥‖ − ‖𝑢‖ → ∞  𝑎𝑠  ‖𝑥‖ → ∞ ⟹ 𝑓(𝑥) → ∞ 𝑎𝑠 ‖𝑥‖ → ∞. 
Example 2. Let 𝛺 ⊂ ℝ𝑛be a bounded open set. Let us consider the Dirichlet problem 
−∆𝑢 = 𝑓 𝑖𝑛 Ω

𝑢 = 0 𝑜𝑛 𝜕Ω
 

Where 𝑓: Ω → ℝ is a given function and ∆ =
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 + . . . +

𝜕2

𝜕𝑥𝑛
2 

The solution space could be taken to be the Sobolev space 𝐻0
1(𝛺) with dual 𝐻∗(𝛺) and the former a subspace of  𝐿𝑝 space ie  

𝑉 =  𝐿2(𝛺). The bilinear form associated to −∆ is 𝐿2(𝛺) inner product of the derivatives 

𝐵(𝑢, 𝑣) = ∫ ∇u  ∇ v(x)dx                                               (6.1) 

A classical solution of equation (6.1) is a function 𝑥 ∈ 𝐶2(𝛺) which satisfies equation. Let 𝑢 be a classical solution of the 

Dirichlets problem. If we multiply equation (6.1) by 𝜙 ∈ 𝐶0
∞(𝛺) and integrate along 𝛺we get  

− ∫ ∇𝑢𝜙 = ∫ 𝑓𝜙                                                         (6.2) 

From Green’s theorem, we have  

∫ ∇𝑢 ∇𝜙 = − ∫ ∇𝑢𝜙 + ∫ 𝜙𝜕Ω
𝜕𝑢 

Using the fact that 𝜙 = 0 on 𝜕Ω, we deduce that 

∫ ∇𝑢 ∇ϕ = ∫ 𝑓(𝜙)                                                                 (6.3) 

Now since 𝑢 ∈ 𝐶2(Ω) and 𝑢 = 0 and 𝜕Ω, it follows that 𝑢 ∈ 𝐻0
1(Ω) and  

∫ ∇𝑢 ∇𝑣 = − ∫ 𝑓(𝑣) ∀𝑣 ∈ 𝐻0
1(Ω) 

Then we say that 𝑢 is a weak solution of equation (6.1) if 𝑢 ∈ 𝐻! (Ω) and satisfies ∫ ∇𝑢 ∇𝑣 = − ∫ 𝑓(𝑣) 

∀ 𝑣 ∈  𝐻! (Ω) which means that the solution is min
𝑢∈𝐻0

1(Ω)
𝐽(𝑢) ∶=

1

2
∫|∇𝑢|2 𝑑𝑥 − 𝑓𝑢𝑑𝑥. It is worthy to note that 𝐽 is convex, 

continuous and coercive (coercivity of 𝐽 is a consequences of Pointcare-Friedrich inequality). Thus the existence of a unique 

minimizer is ensured by Lax Milgram Theorem. 

 

7.0 Conclusion 
We have been able to study some analogue of the Bolzano-Weierstrass results in infinite dimensional spaces. We reviewed 

some results in optimization using precisely, the Eberlin-Smul’yan theorem which showed a major outcome. 

Furthermore, we studied optimization in the classical reflexive Banach space 𝐻0
1(Ω)using one of the results in functional 

Analysis, the Lax-Milgram theorem which were illustrated with examples. 
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