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Abstract 
 

In this second part of this paper we use the homotopy analysis method 

(HAM) to solve the nonlinear fractional Duffing Oscillator.  
3( ) D ( ) ( ) ( ) ( )D q t q t q t q t f t   + − + =

 
We show that the fractional Duffing oscillator with two fractional derivatives 

can be seen as an appropriate model for earthquake prediction. We discuss 

the case for which
2 

and
n −  

. 

 

1.0     Introduction 
This work is a continuation of the work in [63]. Therefore we maintain the format of that paper. 

 

2.0 Continuing Analysis 
In section 9.0 we considered the linear oscillator with forcing function typified by ( ) sinf t t =  and we got a solution 

(equation (50)) using Laplace transform. In figures 3 – 8 we exhibit simulation results with varying values of α, β, µ,δ. These 

simulations show the influence of the fractional order on the amplitudes of the solution. We will discuss this below. 

 

3.0 Homotopy Analysis Method Applied 
We now consider the problem (2) of section 9.0 namely        

3( ) D ( ) ( ) ( ) ( )D q t q t q t q t f t   + − + =
      (65) 

Using homotopy analysis method (HAM) we solve this problem. HAM is briefly treated in section 2.0 and further reading 

can be done with [46 – 50]. 

In solving this problem we utilize our Theorem 1 in section 10 and write (65) as the system (66) 

If we follow theorem 3.1 of [57] equation (65) is equivalent to the system. 
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Together with the initial condition 

1
(0), as j 1

(0)
0,j

i

i

x
x

otherwise

=
= 


        (67) 

Noting that equation (65) can be written as  

( ) ( )1

* * *( ) , ( ), ( ),..., ( ) , (0) , 0,....,n k

kD y t f t y t D y t D y t y c k m
 = = =   (68) 

Where 1 21, 0 ..... nm m      +       and 
*D

 denotes Caputo fractional derivative of order α. It should 

be noted of course that f can be nonlinear in general and    

1, , 1, 1, , 0 1j n j j j      − −  −          (69) 

Following the scheme as in [52] we write equation (65) as the system 

1

2

3

* 1

* 1 2

* 2 3
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* 1 1 1

.

.

.

( )n

n n n

D q q

D q q

D q q

D q q q q f t







   − −

=

=

=

= − + − +

       (70) 

Applying homotopy analysis method to the above system of FDE leads to the following so called zero order deformation 

equations: 

( ) ( )

( ) ( )

0 1

0 1 2

1 [ : ( )] ph [ ( ; ) ( ; )], 1,2,...., 1,

1 [ ; ( )] ph [ ( ; ) ( , , ,..., )]

i i

n i

i i i i i i

n n i n n n

p D t p q t H D t p t p i n

p D t p q t H D t p f t

 

 

  

    

+− − = − = −

− − = −
 (71) 

Where [0,1]p  is an embedding parameter, 0ih   are non-zero auxiliary parameters for which ( ) 0, 1,2,...,iH t i n =  

arenon-zero functions, 0 ( )iq t  are initial guess of ( )iq t , ( ; )i t p  are unknown functions.. 
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We note from (71) that when p = 0 we have that 0( ;0) ( )i it q t =  and when p = 1 we have that 

( ;1) ( ), 1,2,3,....,i it q t i n = =  which shows that as p goes from 0 to 1 the solution varies from the initial guess 0 ( )iq t  

to the solution ( )iq t . Thus if we expand ( ; )i t p in Taylor’s series with respect to p we have 

0

1

( ; ) ( ) ( ) , 1,2,..., nm

i i im

m

t p q t q t p i


=

= + =       (72) 

Where 

0

( ;p)1
( ) , 1, 2,...,

!

m

i
im pm

t
q t i n

m p


=


= =


      (73) 

Differentiating equation (71) m times with respect to p and setting p = 0 and finally dividing them by m! we obtain the mth – 

order deformation equation for i = 1, 2,…, n as (74) below 
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And 

 
0, 1

1, 1
m

m

m



= 


 

Applying the Riemann-Liouville integral operator iJ


 on both sides of equation (74), we have  

1
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4.0 Homotopy Analysis Method for Fractional Duffing Oscillator 

In this section we now applied the above to the problem fractional Duffing oscillator. Consider the forced Duffing oscillator 

with fractional order derivatives given by the equation 
3 , t [0, )

u(0) a , D (0) 0, , tan

D u D u u u sin t

u b a b are real or complex cons ts

 



    + + − =  

=  = 
   (77) 

Where u = u(t) [0, ], 0, [ ]mC b b m   =  is the displacement function, 

0 1, 1 2, 0, 0, 0            where δ > 0 is the damping factor, ω is the frequency and a the initial 

displacement. 

We now convert (77) to an equivalent system as depicted in section (17.0) above. With α and β in Q there exist 

( ) ( ) ( ) ( ) ( )
2

, , , , , 1, , 1p q t s p q t s+ = = . Setting ,
p t
q s

and = =  we pick an M (least common multiple) of 

q and s so that we have 1 :
M

and N M = =  where N is the dimension of the equivalent system obtained. We state our 

result in the following theorem: 

Theorem: The system (77) is equivalent to the N-dimensional system with u = u0. 
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      (78)  

With initial conditions 
( )0

/

0 0

0

u a

u b 

 = 


= 
       (79) 

The proof of this theorem is in the same vein as in [57] and is omitted. We now proceed to solving (78, 79) using the 

homotopy analysis as outlined in section 17 above. We set ( ) 1i iH t and h h= = . We choose our initial guess a 

00 , ( )u E t  = − .         (80) 

 Our m-th order deformation is now given by 

( )
1 1 10 0 0 1

0 1

1 1

m m m mm

m

u u hJ D u u

m

m

 



− − −
= + −


= 



       (81) 

This leads us using (80) in (81) to the solutions 

( ) ( )

( ) ( )

( ) ( ) ( )

1 0 0 0

2 1

3 1 2

0 0 1 0 ,

2

0 , 1

2 3 2

0 , 1 12

u hJ D u u hu hE t

u h h E t J u

u h h h E t h h J u hJ u

  

 

 

 

  

 







= − = = −

= + − −

= + + − − + −

    (82) 

And we have 

( ) ( ) ( )
0 1 2 3

1 2

0 0 0 0 0

2 3 2

, 1 1

...

1 3 3 2 ...

u u u u u

h h h E t h h J u hJ u  
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= + + + − − + − +
 

In the same way we solve for 1 2 1, ,..., Nu u u −  having 

( )

( ) ( ) ( )
1 1

1

2 0 0 1 1 0 0 2 0 2 2 1 1 0 2

( 1) / ( 1) 0
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− −

−

− −
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 − + + + 
= +  

+ + + + +    

(83) 

A Special Case: 

A special case can be seen in the following example: 

Consider the fractional Duffing oscillator problem given by 
3 1
2 2

1
2

1
2

3

2
0( )

sin [0, )

(0) , 1

D u D u u u t t

u D u

    



+ + + =  

= =
     (84) 

The equivalent system is given by 

( )

( )

1
2

1
2

1
2

1 1
2 2

2
0 1 0 ( )

1 2 1
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2 3 0 0 0 3

, 0

, 0 1
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    (85) 
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This can be solved in the same way as done in the general case above. We show this below 

Consider the equation (85i) 

.  

 
Denote by u00(t), the initial guess for the equation (0.3). The zeroth order deformation equation will be of the form 

where q = 0 gives 

q = 1 gives the original equation. Choosing our initial guess 

. 

Thus the zeroth order deformation equation for (85) is 

 
To obtain the mth−order deformation equation, we use the procedure described in section 6.0 by taking 

 -u1 

and  
1
2

0 1N D u u= −  

so that we have the mth−order deformation equation to be 
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where 
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Neglecting the values of m >3, we investigate the influence of hon the solution series and since we still have freedom to 

choose the auxiliary parameter; we first consider the convergence of the related series such as u0. These curves contain a 

horizontal line segment and this horizontal line segment denotes the valid region of hwhich guaranteed the convergence of 

related series. It is observed that the valid region for his 0.00.2 − h  as shown in the figures 1 and 2 below: 

 

 
Figure 3: Graph of u0 against h (h curve) for t = 5 

 

Thus, the middle point of this interval, that is, −1.0, is an appropriate selection for ~ in which the numerical solution 

converges. Thus, the approximate analytical solution of system (0.2) is 

u0 = u00 + u01 + u02 + u03 + u04 + ··· 

which gives 
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Some Simulations: 

Figures 5 – 10 below show some simulations that was done plotting u(t) against t 

 
Figure 5: Influence of β on the solution as β → 0, 1.5 < α < 2  

 
Figure 7: The case for α → 2, with  0 < β < 0.5 

  
Figure 9:  The case of  α → 2 and β → 0 

 

5.0 Remarks 
This research is ongoing. We are still working on the problem on the issue of stability of solutions using Lyapunov Mittag-

Leffler stability procedure [64], phase space analysis which will help us show very clearly that the fractional Duffing is a 

more appropriate model for predicting earthquake.  

 It is obvious from simulations that the fractional Duffing oscillator analysis is more robust than the integer case.  
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