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Abstract 
 

This paper presents an application of multiple scale and stochastic 

approximation method to discretize generic financial PDE. The multiple 

scale method was adopted in calculating the periodic solutions resulted from 

a Hopf bifurcation of a discretized generic PDE to monitor and stabilize the 

oscillatory movement of the market price of stock. Thereafter a stochastic 

algorithm was formulated to price an American option under the Black-

Scholes model through a drifted financial derivative system. With finer 

discretization, positive periodic solution, space nodes and time nodes, we 

demonstrate that the drifted financial derivative system can be efficiently and 

easily solved with high accuracy, by using a stochastic approximation method 

which proves to be faster in pricing an American option. Multiple scale 

method is used to obtain the periodic solution which in turn is used to 

identify the movements of two parameters responsible for oscillatory behavior 

of the system to be risk-free in conjunction with the stock price. It is 

discovered that as the stock price decreases, the periodic solution fluctuates 

according to risk-free rate. An illustrative example is given in concrete 

setting.  An illustrative example is given in a concrete setting. 

 
 Keywords: Financial PDE; Stochastic algorithm; Multiple scale; Drifted system; Option pricing; Spatial 

 discretization. MSC: 65C05, 65D30, 98B28. 

 

1.0     Introduction 
As it is well known, the iteration methods play a fundamental role in numerical analysis due to their simple structure and 

flexibility in practical computation. Theoretically, all kinds of equations including functional equation(s) can be solved by 

using iteration method. For instance, the solution of first-order ordinary differential equation(s) (ODE) can be defined as the 

limit of the Picard iteration sequence. However the Picard sequence actually does not work in solving differential equations 

except for the very simple ODE, because it requires computing integration repeatedly. An iteration method works in solving 

differential equations only if special features or special classes of equations are addressed, for which the solution can be 

obtained by a small number of iterations.  

For numerical approximations, the most popular numerical methods for pricing American options can be classified to lattice 

method, Monte Carlo simulation and finite difference method. Sure, besides finite difference methods, there are other popular 

numerical methods based on discretization for solving PDEs like finite element method, boundary element method, spectral 

and pseudo-spectral methods and etc. In fact, finite difference method ranks as the most popular one among its kind in 

financial engineering. The lattice method is simple and still widely used for evaluating American options. It was first 

introduced in [1] and the convergence of the lattice method for American options is proved in[2]. Monte Carlo method 

requires some further modification due to the early exercise feature. Fu [3, 4] priced American-style options by using Monte 

Carlo method in conjunction with gradient-based optimization techniques. Duck et al. [5] proposed a technique which 

generates monotonically varying data to enhance the accuracy and reliability of Monte Carlo-based method in handling early 

exercise features. 

 

Corresponding author: Bright O. Osu, E-mail: megaobrait@hotmail.com, Tel.: +2348032628251 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 313 – 324 



 

314 

 

A Stochastic Algorithm and…           Osu and Okechukwu    Trans. of NAMP 
 

The finite difference method for pricing American options was first presented in [6,7, 8]. Jaillet et al. [9] showed the 

convergence of the finite difference method. A comparism of different numerical methods for American options pricing was 

discussed in [10,11]. Generally, there still exist some difficulties in using these numerical methods. For finite difference 

method, the difficulty arises from the early exercise property, which changes the original Black-Scholes equation to an 

inequality that cannot be solved via fractional finite difference process. Therefore, finding the early exercise boundary prior 

to spatial discretization (discretization on underlying asset) is a must in each time step. Horng and Tien [12] proposed a 

simple numerical method base on finite difference and method of lines to overcome this difficulty in American option 

valuation. To those who have ever dealt with Black-Scholes equations, the instabilities and oscillatory behavior modeled by 

Black-Scholes equation are all too well known. What perhaps not so familiar is that the Black-Scholes equations (PDE) could 

be discretized into delay differential equation (DDE) which have the opposite effect in the financial market, namely that they 

could suppress oscillations and stabilize equilibria which would be unstable in the absence of delays. For instance, oscillatory 

behavior can often be connected to a Hopf bifurcation of an equilibrium solution under the variation of some parameter, and 

such local bifurcations share common qualities expressed in terms of the behavior on a low-dimensional center manifold. 

Hence, an analysis of stabilization near a generic Hopf bifurcation would yield general results applicable to any system near a 

Hopf instability and serve as a useful guide for understanding the behavior of a financial market systems under time delays.  

Although the financial derivatives are governed by the celebrated parabolic partial differential Black-Scholes formula, but it 

is not clear how derivatives are controlled and stabilized.Also the early exercise boundary prior to spatial discretization in 

each time step has been established for American option valuation.Another approach used in[13] is proposed in this work 

based on the fact that financial derivative experience a drift which hardly can be brought to equilibrium state. In the case of 

ordinary differential equation (ODE’s), a very popular method for obtaining transient behavior is the two way variable 

expansion method (also known as multiple scales) in [14,15,16] proposed to understand the behavior of a financial market 

systems under time delays. 

The analyses are made based on the discretization of Black-Scholes equation using central finite-difference approximation 

into first-order ordinary differential equation, which was transformed to a delay differential equation to monitor and stabilize 

the oscillatory movement of the market price of stock, using the multiple scale method and later transformed to a drifted 

financial derivative system. We solve the resulting drifted financial derivative system by employing a stochastic algorithm 

described and analyzed in [13], where each iteration requires the adjustment of the drift parameter based on the dividend 

yield.  

The outline of the work is the following: In section 2 we presented a scalar DDE and the properties it must satisfy for the 

existence of Hopf bifurcation. Illustrative example was also given. We review modeling of Black-Scholes, the partial 

differential equation which financial derivative have to satisfy and formulate Linear Complementarity Problem (LCP) for an 

American option in section 3. In section 4, we discretize the generic PDE into LCP and drift financial derivative system and 

later transformed to DDE to check the stability of the market, while in section 5, multiple scale method were presented, 

applied and analyzed. A stochastic algorithm is formulated in section 6. Numerical experiments are presented in section 7 and 

conclusions are given in section 8. 

 

2.0  Hopf Bifurcation of Time-Delay Systems 
Consider the following scalar DDE’s with a parameter q∗ (the delay or some other physical parameter)  

x(n)(t) = F(x(t), x′(t), … , xn−1(t), x(t − τ), 
x′(t − τ), … , xn−1(t − τ), q∗ ) , x ∈ R                                                                      (1) 

where F has at least up to fourth order continuous derivatives satisfying F(0,0, … ,0, q∗) ≡ 0. Equation (1) is assumedto admit 

a  Hopf bifurcation at  q∗ = q∗
0
. The existence of the bifurcation can be characterized by the root location of the 

 characteristic function D(λ, q∗) of the linearized equation at x = 0 of (1) as follows: 

b. For a small ε ≔ q∗ − q∗
0
. D(λ, q∗) has exactly one pair of simple complex roots  

 λ(ε) = α(ε) ± iβ(ε) such that at ε = 0, one has α(0) = 0, w0 = β(0) > 0, and all the other characteristics roots 

 have negative real parts. 

c. α′(0) = R
dλ

dε
(0) ≠ 0 (the transversality condition), where R(z) stands for the real part of zϵℂ. 

 Due to the Hopf bifurcation Theory, the bifurcated nontrivial periodic solution has a period approximately2π
β(ε)⁄ , 

 and 2π
β(ε)⁄ → 2π

w0⁄  as ε → 0. Thus, in the vicinity of the Hopf bifurcation, namely for a sufficiently small |ε|, the 

 stationary solution of (1) has a form                                                                                               

x(t) = r(εt) cos(w(ε)t + θ) + 0(εt))  
=  rcos(wot + θ) + 0(ε),                                                                                        (2)                                                        

as done in applications of method of multiple scales, where  
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r ≔ r(0), θ ≔ θ(0) for short. Therefore, it is expected that the time-delay system near the Hopf bifurcation behaves similar 

to the Black-Scholes differential equation involving a term x′′(s). The key features of the Hopf bifurcation of (1) can be 

preserved if the right hand function F is approximated with the third or fifth order Taylor expansion, which is required in the 

computation of the averaged power function, defined in [17]. That is to say, the local dynamics near the Hopf bifurcation of 

(1) can be determined from the averaged power function [17]. 

Example1; Let us study the following scalar DDE arising from laser physics Schanz and Pelster [18]. 

ẋ(t) = −(
π

2
+ ε) sinx(t − 1),                                                                   (3) 

where | ε | ≪ 1 is a small parameter. Equation (3) undergoes a Hopf bifurcation at ε = 0, because the following conditions 

hold [16,17]: 

1. For small ε < 0, the zero solution x = 0 of ( 3 ) is asymptotically stable. 

2. At ε = 0, the characteristic function p(λ) ≔ λ + (
π

2
+ ε)e−λ has a pair of complex conjugate roots λ = ± i π 2⁄ , and 

 the other roots of p(λ) have negative real parts. 

3. R [
dλ

dε
]

ε=0
≠ 0, where R(z) stands for the complex conjugate of z. 

The key features near the Hopf bifurcation can be determined from 

ẋ(t) = −(
π

2
+ ε) × (x(t − 1) −

x3(t−1)

6
+
x5(t−1)

120
),                                       (4)       

because Hopf bifurcation is a local property of dynamical systems and also refers to the analysis or evaluation of market 

conditions based on two distinct scenarios. 

 

3.0   Option Pricing Model 
Here, we consider the Black and Scholes Model [14,19] and the partial differential equation which financial derivative 

(stock) have to satisfy. The Black-Scholes Model assumes a market consisting of a single risky asset (S) and a risky-free 

bank account (r). This market is given by the equations; 

dS = Sdt + σSdz                                                                                     (5) 

dB = rBdt,                                                                                                 (6) 

here (5) is a geometric Brownian-Motion and (6) a non-stochastic. S is a Brownian-Motion, Z is a Wiener process  is a 

constant parameter called the drift. It is a measure of the average rate of growth of the asset price. Meanwhile, σ is a 

deterministic function of time. When σ is constant, (5) is the original Black-Scholes Model of the movement of a security, S. 

In this form is the mean return of S, and σ is a variance. The quantity dZ is a random variable having a normal distribution 

with mean 0 and variance dt. 

dZ ∝ N(0, (√dt)2) .   

For each interval dt, dZ is a sample drawn from the distribution N(0, (√dt)2), this is multiplied by σ to produce the term 

σdZ. The value of the parameters  and σ may be estimated from historical data. 

Under the usual assumptions,  [14,19] have shown that the worth V of any contingent claim written on a stock, whether it is 

American or European, satisfies the famous Black-Scholes equation: 
∂V

∂t
+
1

2
σ2S2

∂2V

∂S2
+ (r − q)S 

∂V

∂S
− rV = 0,                                                  (7)     

where volatility σ, the risk-free rate r, and dividend yield q are all assumed to be constants. The value of any particular 

contingent claim is determined by the terminal and boundary conditions. For an American option, notice that the PDE (7) 

only holds in the not-yet-exercised region. At the place where the option should be exercised immediately, the equality sign 

in (7) would turn into an inequality one. That means the option value V(S, t) at each time follows either 

V(S, t)  =∧ (S, t) for the early exercised region or (7) for the not-yet-exercised region, where 

∧ (S, t) is the payoff of an American option at time t. 

The generic form of (7) is derived by the change of variable τ = T − t  to 
𝜕𝑉

𝜕𝜏
 −  

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
− (𝑟 − 𝑞) 𝑆 

𝜕𝑉

𝜕𝑆
 +  𝑟𝑉 = 𝐿𝑉 ,                                            (8)    

where 𝑉(. , 𝜏) ≡ 𝑉(. , 𝑇 − 𝜏),   𝜎 (. , 𝜏) ≡  𝜎 (. , 𝑇 − 𝜏), 𝑎𝑡 𝜏 = 0 𝑡𝑜 𝜏 = 𝑇  
𝑆𝑚𝑖𝑛 < 𝑆 < 𝑆𝑚𝑎𝑥 , subject to the initial condition  𝑉(𝑆, 0) =  ⋀(𝑆). 
For the computations, the unbounded domain is truncated to 
(𝑆, 𝑡) ∈ (0, 𝑆) 𝑥  (0, 𝑇]                                                                                 (9) 

with sufficiently large  𝑆 ≡  𝑆𝑚𝑎𝑥 . 
The worth V of an American option under Black-Scholes model satisfies an LCP 

{
𝐿𝑉 ≥ 0              
𝑉 ≥ ∧                 
(𝐿𝑉)(𝑉 −∧) = 0 ,

                                                                                       (10) 
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we impose the boundary conditions 

{
𝑉(0, 𝑡) = 0                              

𝑉(𝑆, 𝑡) = ∧ (𝑆), 𝑆 ∈ (0, 𝑆𝑚𝑎𝑥)  .
                                                                   (11) 

Beyond the boundary 𝑆 =  𝑆𝑚𝑎𝑥 , the worth 𝑉 is approximated to be the same as the payoff ∧ , that is 𝑉 (𝑆, 𝑡) = ∧ (𝑆) for 𝑆 ≥
 𝑆𝑚𝑎𝑥. 

 

4.0   Discretizing the Financial PDE 
American options can be exercised at any time before expiry. Formally, the value of an American put option with a strike 

price k is  

𝑉(0, 𝑘) = 𝑠𝑢𝑝 (0 ≤ 𝜏∗ ≤ 𝑇: 𝐸(𝑒−𝜏𝜏
∗
(𝑘 − 𝑆𝜏∗)

+).            
The optimal exercise time 𝜏∗ is the value that maximizes the expected payoff - any scheme to price an American must 

calculate this. 

For American options with payoff  ∧ (𝑠), the equivalent of equation (8) is 

[
𝜕𝑉

𝜕𝜏
−
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
− (𝑟 − 𝑞)𝑆 

𝜕𝑉

𝜕𝑆
+ 𝑟𝑉 ≥ 0

𝑉(𝑆, 𝑇) ≥ ∧ (𝑆)

]                                                                                              (12) 

[
𝜕𝑉

𝜕𝜏
−
1

2
 𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
− (𝑟 − 𝑞)𝑠

𝜕𝑉

𝜕𝑆
+ 𝑟𝑉] [𝑉(𝑆, 𝑇) −∧ (𝑆)] = 0 . 

Consider a uniform spatial mesh on the interval  [𝑠𝑚𝑖𝑛 , 𝑠𝑚𝑎𝑥]: 
𝑆𝑗 = 𝑆𝑚𝑖𝑛 + 𝑗𝛿𝑆, 𝑗 = 𝑂, 1, … , 𝑛 + 1, where  

𝛿𝑠 =
𝑆𝑚𝑎𝑥−𝑆𝑚𝑖𝑛

𝑛+1
,   𝑆𝑚𝑎𝑥 = 𝑆0 𝑒𝑥𝑝 [(𝑟 − 𝑞 −

𝜎2

2
) 𝑇 + 6σ√𝑇] .                                     (13) 

The truncated domain (9) has the lower bound 𝑆𝑚𝑖𝑛 = 0 and upper bound 𝑆𝑚𝑎𝑥  as in (13).  

Replacing all derivatives with respect to S by their central finite-difference approximations, we obtain the following 

approximation to the Black-Scholes PDE (12) 
𝜕𝑉(𝜏, 𝑆)

𝜕𝜏
=
1

2
  𝜎2(𝑆) 𝑆2

𝑉(𝜏,   𝑆 + 𝛿𝑆) − 2𝑉(𝜏, 𝑆)  +  𝑉 (𝜏, 𝑆 − 𝛿𝑆)

𝛿𝑆2
 

+ (𝑟 − 𝑞) 𝑆 
𝑉(𝜏,   𝑆+𝛿𝑆)− 𝑉 (𝜏,   𝑆−𝛿𝑆)

2𝛿𝑆
− 𝑟𝑉 (𝜏, 𝑆) + 𝛰(𝛿𝑆2).                                                  (14)  

Let 𝑉𝑗(𝜏) denote the semi-discrete approximation to 𝑉(𝜏, 𝑆𝑗). Applying (14) at each internal node 𝑆𝑗, we obtain the following 

system of first-order ordinary differential equations; 

𝑑𝑉𝑗(𝜏)

𝑑𝜏
=
1

2
((

𝜎(𝑆𝑗)𝑆𝑗

𝛿𝑆
)
2

− 
(𝑟−𝑞)𝑆𝑗

𝛿𝑆
)𝑉𝑗−1(𝜏) − (−(

𝜎(𝑆𝑗)𝑆𝑗

𝛿𝑆
)
2

−  𝑟) 𝑉𝑗(𝜏) +  
1

2
((

𝜎(𝑆𝑗)𝑆𝑗

𝛿𝑆
)
2

+ 
(𝑟−𝑞)𝑆𝑗

𝛿𝑆
)𝑉𝑗+1(𝜏), 

𝑗 = 1, 2, … , 𝑛 ;                                                                                                                  (15)    

with discretized form given as 
𝑑𝑉𝑗(𝜏)

𝑑𝜏
= 𝐿𝑗,𝑗−1𝑉𝑗−1(𝜏) − 𝐿𝑗,𝑗𝑉𝑗(𝜏) + 𝐿𝑗,𝑗+1𝑉𝑗+1(𝜏).                              

System (15) has n equation in 𝑛 + 2 unknown functions, 

𝑉0(𝜏), 𝑉1(𝜏), … , 𝑉𝑛(𝜏), 𝑉𝑛+1(𝜏). Using the boundary conditions we have the functions 𝑉0(𝜏) and 𝑉𝑛+1(𝜏) which respectively 

approximate the solution at the boundary nodes 𝑆0 = 𝑆𝑚𝑖𝑛  and 𝑆𝑛+1 = 𝑆𝑚𝑎𝑥  .As a result, the system of differential equations 

(15) can be written as the following matrix-vector differential equation with an n-by-n tri-diagonal coefficient matrix L 

whose entries are defined in (15) 
𝑑𝑉(𝜏)

𝑑𝜏
= 𝐿𝑉(𝜏) +  𝐺(𝜏),                                                                                      (16) 

subject to the initial condition  

V(0) =  𝛬 ∶= [𝛬(𝑆1)  , 𝛬(𝑆2), … , 𝛬(𝑆𝑛)]
𝑇
  .                                                      (17) 

Here we use the notation: 

𝐿 =

(

 
 
 

𝐿11 𝐿12 0
𝐿21 𝐿22 𝐿23
0
⋮
0
0

𝐿32
⋮
0
0

𝐿33
⋮
0
0

⋯ 0 0
⋯ 0 0

⋯
⋱…
…

0
⋮

𝐿𝑛−1,𝑛−1
𝐿𝑛,𝑛−1

0
⋮

𝐿𝑛−1,𝑛
𝐿𝑛,𝑛 )

 
 
 
, 𝑉(𝜏) =

(

 
 

𝑉1(𝜏) 
𝑉2(𝜏)
⋮

𝑉𝑛−1(𝜏)

𝑉𝑛(𝜏) )

 
 

. 

The vector 𝐺(𝜏) ∈ 𝑅𝑛 is given by  

[(
𝜎2(𝑆0)𝑆0

2

2𝛿𝑆2
 −   

(𝑟−𝑞)𝑆0

2𝛿𝑆
) 𝑉0(𝜏), 0 , … , 0, (

𝜎2(𝑆𝑛+1)𝑆𝑛+1
2

2𝛿𝑆2
+ 

(𝑟−𝑞)𝑆𝑛+1

2𝛿𝑠
)  𝑉𝑛+1(𝑟)]

𝑇

. 

𝐺 (𝜏) contains boundary values of the mesh solution.  
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The spatial discretization leads to: 

a. Semi-discrete LCP 

According [20] from (13), (16) and (17), we have 

{

𝐿𝑗𝑉𝑗+1  ≥  𝑔𝑗

𝑉𝑗+1  ≥  𝛬  
(𝑉𝑗+1  − 𝛬)𝑇(𝐿𝑗𝑉𝑗+1 − 𝑔𝑗) = 0

 ,                                                              (18) 

where L is n-by-n tri-diagonal coefficient matrix, g is a vector resulting from the second term in equation (15) V and  are 

vectors containing the grid point values of the worth V and the pay off , respectively. This again must be solved at every 

time step. A crude approximation is to solve the system 𝐿𝑗  𝑋 =  𝑔𝑗 , then set 𝐿𝑗+1 = 𝑚𝑎𝑥(𝑋, 𝛬). 
b. Drifted financial derivative system 

According to [21], 𝐺(𝜏) term in (16) can be treated as an enforced input to the financial derivative system, resulted from 

boundary condition, defined in (11). With zero boundary condition, equation (16) yields. 

�̇� = 𝐿𝑣  ,                                                                                                    (19) 

which represents a pfaffian differential constraints as in [22] but not of kinematic nature arises from the conservation on non-

zero financial derivatives. The transformed financial derivative system (19) can be re-expressed as 

𝐿𝑣 = 𝑑 .                                                                                                  (20) 

System (20) represents a drifted financial derivative system with a drift term d. In such a system the derivative value V can 

be solved by computing the stochastic algorithm used in [13]. 

In general, equation (16) can be denoted in the form 
𝑑𝑣

𝑑𝑡
= −𝑓 (𝑣𝑡   ; 𝛼),                                                                                         (21) 

where 𝑣𝑡  ∈   𝑅
𝑛 , 𝑎𝑛𝑑 𝛼 ∈  𝑅  is a parameter. This usual notation 𝑣𝑡  denotes the values of the system state over a time 

windows of finite length 𝜏, that is 𝑣𝑡(𝜃) = 𝑣(𝑡 + 𝜃) ∈  𝑅
𝑛, 𝜃 ∈  [−𝜏, 0],  and 𝑣𝑡  ∈  𝐶, where 𝐶 ≔ 𝑐 ([−𝜏, 0], 𝑅𝑛) denotes the 

Banach space of continuous functions over the interval [−𝜏, 0]  equipped with the supremum norm. It is assumed that 

𝑓: 𝐶 𝑥 𝑅 ⟶ 𝑅𝑛  is twice continuously differentiable in its arguments and 𝑓(0; 𝛼) = 0 for all 𝛼. Assume further that the 

origin undergoes a supercritical Hopf bifurcation at 𝛼 = 0. Hence, for small positive 𝛼 the origin is unstable and there exist a 

small amplitude limit cycle. To study the behavior near the origin, it is convenient to scale the variable 𝑣 ⟶ 휀𝑣 𝑎𝑛𝑑 𝛼 ⟶
휀𝛼, where 휀 is a small positive parameter. This transforms (21) into a weekly nonlinear system of the form  
𝑑𝑣

𝑑𝑡
= −(𝐿 𝑣𝑡 +  휀 𝑓 (𝑣𝑡;  휀)),                                                                            (22) 

where 𝐿: 𝐶 ⟶ 𝑅𝑛is a linear operator and 𝑓 is a 𝐶2 function with𝑓(0; 휀) = 0 for all 휀. Equation (22) is a perturbation of the 

linear equation [15] 
𝑑𝑣

𝑑𝑡⁄ = −𝐿 𝑣𝑡.                                                                                 (23) 

 

5.0 Multiple Scale and Financial Derivatives 
In this section, we show how the method of multiple scale can be applied to the discretized PDE in equations (19) and (23).  

Example (2) 

Consider the DDE problem, one that has an exact solution, namely; 
𝑑𝑥

𝑑𝑡
= −𝑥(𝑡 − 𝑇), 𝑇 =  𝜋 2⁄ +  휀𝜇.                                                                  (24) 

Equation (24) undergoes a Hopf bifurcation at 휀 = 0, because the following conditions in example 1 hold .Hence, equation 

(24) behaves similar to Black-Scholes differential equation involving a term 𝑋′′(𝑆). 
Lemma 5.1 

Let 𝑡  be replaced by two time variable: regular time 𝐵 = 𝑡 (A riskless Bond (cash) as in (5)) and slow time 𝑆 =  휀𝑡  
(underlying security which evolves in accordance with stock price S, as in (6)), then the solution of (24) is given by 

𝑋0 = 𝑅0 𝑒𝑥𝑝 (
4𝜇(𝑆0𝑒

(𝜇−𝜎
2
2⁄ )𝑡+𝜎𝑤𝑡

𝜋2+4
) 𝑐𝑜𝑠

(

 
 
𝑟−1 𝑙𝑛 𝐵𝐵0

−1 −(
2𝜋𝜇(𝑆0𝑒

(𝜇−𝜎
2
2⁄ )𝑡+𝜎𝑤𝑡)

𝜋2+4
+ 𝜃0)

)

 
 

.          (25) 

Proof. 

Let the dependent variable 𝑥(𝑡) be replace by 𝑥 (𝐵, 𝑆). Hence, if 𝑥 (𝐵, 𝑆) 

𝑑𝑥 =  
𝜕𝑥

𝜕𝐵
 𝑑𝐵 +

𝜕𝑥

𝜕𝑠
 𝑑𝑠 

𝑑𝑥

𝑑𝑡
=  
𝜕𝑥

𝜕𝐵

𝑑𝐵

𝑑𝑡
  + 

𝜕𝑥

𝜕𝑠

𝑑𝑠

𝑑𝑡
 

𝑑𝑥

𝑑𝑡
= 

𝜕𝑥

𝜕𝐵
 +  휀

𝜕𝑥

𝜕𝑠
 . 
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From equation (24), we have 
𝜕𝑥

𝜕𝐵
+  휀

𝜕𝑥

𝜕𝑠
= −𝑥(𝐵 − 𝑇, 𝑆 − 휀𝑇),                                                                 (26) 

since 𝑇 = 𝜋 2⁄ +  휀𝜇, the delayed term may be expanded for small 휀 as follows; 

𝑥(B − 𝜋 2⁄ − 𝜖𝜇, 𝑆 − 휀 𝜋 2⁄ − 휀2𝜇) 

= 𝑥 (𝛽 − 𝜋 2,⁄ 𝑆) −  휀 𝜇 
𝜕𝑥𝑑

𝜕𝐵
−  휀 𝜋 2⁄

𝜕𝑥𝑑

𝜕𝑆
+  0 (휀2),                                                               (27) 

where 𝑥𝑑 is an abbreviation for 𝑥 (𝐵 − 𝜋 2⁄ , 𝑆). Next we expand  

𝑥 =  𝑥0 + 휀𝑥1 +  0 (휀
2),                                                                                  (28) 

so 
𝜕𝑥

𝜕𝐵
= 

𝜕𝑥0

𝜕𝐵
 +   휀

𝜕𝑥1

𝜕𝐵
+  0(휀2)                                                                              (29) 

𝜕𝑥

𝜕𝑆
= 

𝜕𝑥0

𝜕𝑆
 +   휀

𝜕𝑥1

𝜕𝑆
+  0(휀2).                                                                             (30) 

By substituting equation (27), (29) and (30) into (26), gives  
𝜕𝑥0

𝜕𝐵
+  휀

𝜕𝑥1

𝜕𝐵
+  휀

𝜕𝑥0

𝜕𝑆
+ 휀2

𝜕𝑥1

∂𝑆
= − 𝑥0(𝐵 −

𝜋
2⁄ , 𝑆) −  휀𝑥1(𝐵 −

𝜋
2⁄ , 𝑆) +  휀𝜇 

𝜕𝑥0𝑑

𝜕𝐵
+                     휀2𝜇 

𝜕𝑥1𝑑

𝜕𝐵
 휀 𝜋 2⁄

𝜕𝑥0𝑑

𝜕𝑆
+

 휀2 𝜋 2⁄
𝜕𝑥1𝑑

𝜕𝑆
 +  0(휀2),                                                         (31) 

𝜕𝑥0

𝜕𝐵
+ 𝑥0(𝐵 − 

𝜋
2⁄ , 𝑆) = 0,                                                                                                (32) 

𝜕𝑥1

𝜕𝐵
+ 𝑥1(𝐵 − 

𝜋
2⁄ , 𝑆) =  𝜇 

𝜕𝑥0𝑑

𝜕𝐵
+ 𝜋 2⁄

𝜕𝑥0𝑑

𝜕𝑆
− 

𝜕𝑥0

𝜕𝑆
 .                                                         (33) 

Equation (32) has a periodic solution (since (24) is autonomous) 

𝑥0 = 𝑅 (𝑆) 𝑐𝑜𝑠(𝐵 − 𝜃(𝑆)),                                                                                 (34) 

where as usual in this method 𝑅(𝑆) (the approximated amplitude of a periodic motion of stock) and 𝜃(𝑆) (the frequency of 

the bifurcated periodic solution) are yet undetermined function of slow times 𝑆. 

Taken 𝑥0𝑑 = −
𝜕𝑥0

𝜕𝐵
   in equation (33) 

𝜕𝑥1

𝜕𝐵
+ 𝑥1(𝐵 −

𝜋
2⁄ , 𝑆) =  − 

𝜇𝜕2𝑥0

𝜕𝐵2
− 𝜋 2⁄

𝜕2𝑥0

𝜕𝐵𝜕𝑆
− 

𝜕𝑥0

𝜕𝑆
  .                                            (35) 

Substitute equation (34) into (35) 
𝜕𝑥0

𝜕𝐵
= −𝑅 𝑠𝑖𝑛(𝐵 − 𝜃),  

𝜕𝑥0
𝜕𝑆

=  𝑅𝜃′ 𝑠𝑖𝑛(𝐵 − 𝜃) + 𝑅′ 𝑐𝑜𝑠  (𝐵 − 𝜃), 

𝜕2𝑥0

𝜕𝐵2
= −𝑅 𝑐𝑜𝑠 (𝐵 − 𝜃), and 

𝜕2𝑥0
𝜕𝐵𝜕𝑆

= −[− 𝑅𝜃′ 𝑐𝑜𝑠(𝐵 − 𝜃) + 𝑅′ 𝑠𝑖𝑛(𝐵 − 𝜃)] 

=  𝑅𝜃′ 𝑐𝑜𝑠(𝐵 −  𝜃) − 𝑅′ 𝑠𝑖𝑛(𝐵 − 𝜃).  

Let 𝐵 −  𝜃 = 𝜓, 𝑏𝑦 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 
𝜕𝑥0

𝜕𝐵
,
𝜕𝑥0

𝜕𝑆
,
𝜕2𝑥0

𝜕𝐵2
 𝑎𝑛𝑑 

𝜕2𝑥0

𝜕𝐵𝜕𝑆
 in (35), we have 

𝜇𝑅 𝑐𝑜𝑠(𝜓) − 𝜋 2⁄ 𝑅𝜃′ 𝑐𝑜𝑠(𝜓) + 𝜋 2⁄ 𝑅′ 𝑠𝑖𝑛(𝜓) − 𝑅𝜃′ 𝑠𝑖𝑛(𝜓) − 𝑅′ 𝑐𝑜𝑠(𝜓) =
𝜕𝑥1

𝜕𝐵
+ 𝑥1(𝐵 −

𝜋
2⁄ , 𝑆) .(36) 

Equating coefficient of sin (𝜓) and cos (𝜓)  to zero 

𝜇𝑅 − 𝜋 2⁄ 𝑅𝜃′ − 𝑅′ = 0                                                                 (37) 
𝜋
2⁄ 𝑅′ −  𝑅𝜃′  = 0.                                                                          (38) 

From equation (38) 

𝜃′ = 
𝜋𝑅′

2𝑅
  .                                                                                        (39) 

Plug equation (39) in equation (37) 

𝑅′ = 
4𝜇𝑅

𝜋2+4
.                                                                                       (40) 

Plug (40) in equation (39) 

𝜃′ = 
2𝜋𝜇

𝜋2+4
 .                                                                                       (41) 

From equation (40), we have; 
1

𝑅
 𝑑𝑅 =  

4𝜇

𝜋2 + 4
 𝑑𝑠 , 

so that  

𝑙𝑛 𝑅  =   
4𝜇𝑆

𝜋2 + 4
   +     𝐾, 
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and 

𝑅(𝑆) =  𝑅0 𝑒𝑥𝑝 (
4𝜇𝑆

𝜋2+4
)  .                                                  (42)  

Similarly 

𝜃(𝑆) =  
2𝜋𝜇𝑆

𝜋2+4
 +   𝜃0.                                                          (43) 

Substitute R(s) and θ(s) in equation (34) 

𝑥 ≈  𝑥0 = 𝑅0 𝑒𝑥𝑝 (
4𝜇𝑆

𝜋2+4
) 𝑐𝑜𝑠 (𝑡 − (

2𝜋𝜇𝑆

𝜋2+4
+ 𝜃0))  .                                           (44) 

It is not difficult to show from (5) and (6) that  

𝐵 = 𝐵0𝑒
𝑟𝑡,                                                                                                         (45) 

and    

𝑆 = 𝑆0𝑒
(𝜇−

𝜎2

2
)𝑡+ 𝜎 𝑤𝑡

 ,                                                                                         (46)  

respectively.       

Solving for 𝑡 in (45) and plugging it in (44) using (46), we have (25) as required.  

Theorem 5.1 

An exact solution of DDE (Delay Differential Equation) which undergoes a Hopf bifurcation at 휀 = 0 behaves similar to 

Black-Scholes differential equation involving a term 𝑥′′(𝑆). 
Proof. 

Let 𝑆 = 휀𝑡 in equation (46), we have  

𝑆0 = 휀𝑡𝑒𝑥𝑝 [(
𝜎2

2
− 𝜇) 𝑡 − 𝜎𝑊𝑡].                                                                        (47) 

Plugging (47) into (25) we arrive at; 

𝑋0 = 𝑅0 𝑒𝑥𝑝 (
4𝜇 𝑡

𝜋2+4
) 𝑐𝑜𝑠 (𝑟−1 𝑙𝑛 𝐵𝐵0

−1 −(
2𝜋𝜇 𝑡

𝜋2+4
+ 𝜃0)).                                    (48) 

Notice that 𝑆0 → 0 as 휀 → 0 and 𝑋0 fluctuate according to 𝑟.  
Remark 1  

The periodic solution derived from two way variable expansion method (25) proves that, if the time is delayed, the oscillatory 

movement of the price of stock can be monitored and instability controlled and stabilized using the slow time 𝑆 = 휀𝑡. 
 

6.0 Formulation of Stochastic Algorithm 
We consider the finite dimensional variation problem: find 𝑣 ∈ 𝐷 (𝜑) 
 such that  

𝐿𝑣 + 𝜕𝜑(𝑣) ∋ 𝑏  ,                                                                              (49) 

subject to equation (18), where (𝜑) is convex function, 

𝐷 (𝜑) = [𝑣 ∈ 𝑅𝑛: 𝜑(𝑣) < ∞] ≠ ∅, then for 𝑣 ∈ 𝐷 (𝜑), the sub gradient 𝜕𝜑 of 𝜑: 𝑅𝑛 → 𝑅 at 𝑣 is defined as;  

𝜕(𝜑) = 〈𝑔 ∈ 𝑅𝑛: 𝑓 (𝑣 + 𝑡) −  𝑓(𝑣) ≥ 〈𝑔, 𝑡〉〉  ∀ 𝑣 + 𝑡 ∈ 𝐷(𝜑).                                          (50) 

It is well known that if a function 𝑓 𝑜𝑛 𝑅𝑛  is differentiable, then there exists 𝑑 𝜖 𝑅𝑛  such that 𝑓(𝑣) −  𝑓(𝑣0) = (𝑑  , 𝑣 −
 𝑣0) + || 𝑣 − 𝑣0||  , 

where 𝑑 =  
𝜕𝑓(𝑣)

𝜕𝑣
  is the gradient of the function f. 

Denote 𝜕𝑓𝑘 = 
𝜕𝑓(𝑣𝑘)

𝜕𝑣
 ,
𝜕2𝑓(𝑣𝑘)

𝜕𝑣𝑟𝜕𝑣𝑠
= 𝜕𝑟,𝑠

2 𝑓𝑘 , as in [23], we constructed a sequence of random vector 𝑑𝑘 ∈ 𝑅𝑛  that strongly 

approximate 𝜕𝑓𝑘 = 𝜕𝑓(𝑣𝑘) for each 𝑘 in the sense that 

𝐸‖𝑑𝑗
𝑘 − 𝜕𝑓𝑘‖ = 0, 

and their expected Euclidean distance 

𝐸‖𝑑𝑗
𝑘 − 𝜕𝑓𝑘‖

2
= 𝑀−1𝜎2,  

is minimum so that a search in the direction of the random sequence 〈𝑑𝑗
𝑘〉 approximate a search through the true gradient 

𝜕𝑓𝑘 and this is expected to lead to the non-zero global minimizing factor if it exists. To this end, we consider the natural 

Taylor’s expansion of a quadratic function 𝑓 about point 𝑣0 given by 

𝑓(𝑣) − 𝑓(𝑣0) = 〈𝜕𝑓(𝑣0), 𝑣 − 𝑣0〉 +
1
2⁄ (𝑣 − 𝑣0)𝐻(𝑣𝑐)(𝑣 − 𝑣0),                                (51) 

where 𝑣𝑐 is on the line segment between 𝑣 and 𝑣0 and 𝐻(𝑣𝑐) is the Hessian of 𝑓 at 𝑣𝑐. 
Equation (51) can also be represented as  

𝑓(𝑣) = 1 2⁄ (𝐿𝑣, 𝑣) − (𝑑, 𝑣).                            (52)        

Given that  

𝐸 (𝑒(𝑣𝑗)) = 0 for each j, 
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and 

𝐸 (𝑒(𝑣𝑖) 𝑒(𝑣𝑗)) =  𝜎
2𝛿𝑖𝑗, 0 < 𝜎

2 < ∞. 

Let 𝑌(𝑣1) , 𝑌 (𝑣2), … , 𝑌 (𝑣𝑚) be real-valued independent observable random variable performed on 𝑣1, 𝑣2,…,𝑣𝑛 , 𝑛 + 2 <

𝑚 <
1

2
 𝑛(𝑛 + 1) chosen in the neighbourhood of 𝑣𝑘  for a fixed K, then  

𝑌𝑗 = 𝑌 (𝑣𝑗) =  𝑓 (𝑣 + 𝑡𝑗) −  𝑓(𝑣𝑗), 

=  〈𝜕𝑓(𝑣𝑘), 𝑡𝑗〉 + 
1

2
∑ ∑ 𝑡𝑘𝑗𝑡𝑟𝑗𝜕𝑘𝑟

2  𝑓 + 𝑒(𝑣𝑗)
𝑚
𝑟=1

m
𝑘=1 ,                                                 

is identifiable with (49) so the fixed 𝑡𝑗 ∈ 𝑅
𝑛 satisfying 𝛴𝑖=1

𝑚 𝑡𝑖𝑗 = 0, 𝑀
−1∑ 𝑡𝑖𝑗

2∞
𝑖=1 linearizes 𝑓, [24] and hence the least square 

approximation. 

𝑑𝑘 = 𝑀−1∑ 𝑡𝑗𝑌𝑗 ,
𝑚
𝑗=1    𝑀 =  ∑ 𝑡𝑗𝑡𝑗

′𝑚
𝑗=1 ,                                                                         (53) 

exist and is adequate for approximating 𝜕𝑓 such that Euclidean distance 

𝐸||𝑑𝑘 −  𝜕𝑓(𝑣𝑘)||   = 0  for each k, also yield 

𝐸|| 𝑑𝑘  − 𝜕𝑓(𝑣𝑘)||2  =  𝑀−1𝜎2. 
In the sequel we assume without loss of generality that 𝜎2 = 1. 〈𝑑𝑘〉 is thus, a sequence of independently and identically 

distributed random vector and determines the direction of search.  

It follows that by letting 𝑣0 be an initial point, the sequence of path produce by {𝑣𝑘}𝑘=0
∞  through its definition  

𝑉𝑘+1 = 𝑉𝑘 − 𝑝𝑘𝑑𝑘,                                                                             (54) 

by successive iteration, is the trajectory of the point 𝑣0 and any limiting point of the sequence is therefore attractor of  𝑣0. 

 

6.1     Getting the Domain of Attraction 

Let 𝑅
𝑛
𝑡
− 𝑁(𝑂) be petitioned into exclusive segment, S𝑗 ,  

𝑗 = 1,2, … , 𝑡, 𝑛 < 𝑡 ≤ 2𝑛. Let 𝑣𝑗 be chosen randomly in 𝑆𝑗, such that 𝑓(𝑣𝑗) > 0 ∀  𝑗. Let 𝑃𝑗 = 𝑃(𝑣𝑗 = 𝛼) be the probability 

that 𝑣𝑗 = 𝛼 so that  

𝑃𝑗 ≥ 0, ∑ 𝑃𝑗
𝑡
𝑗=1  = 1,                                                                          

put  

𝑃𝑗 =
𝑓(𝑣𝑗)

𝑡


𝑗=1
𝑓(𝑣𝑗)

 , 

so that�̅� =

𝑡


𝑗 = 1
𝑣𝑗𝑃𝑗  

=

𝑡


𝑗 = 1

𝑣𝑗𝑓(𝑣𝑗)

𝑡


𝑗=1
𝑓(𝑣𝑗)

 .          

It is shown in [23] that if 

�̂� = 𝑣 − 𝑝𝑑, 𝑝 > 0,                                (55) 

where d is as (53), then 

𝑓(�̂�) = 𝑚𝑖𝑛 {𝑓(𝑣𝑗): 𝑣𝑗  ∈ 𝑆}. It follows that the segment 𝑆𝑇 if when �̂�  ∈ 𝑆𝑇  contains 𝑣 > 0 for which 𝑓(𝑣) is minimum and 

hence we have  

𝜑(𝑈𝑣) ⊂  𝑆𝑇 so that if 〈0〉 is the attractor of the point 𝑣 and  

𝜑(0) ∩ 𝜑(𝑈�̅�)  = ∅ then 𝑁(0) ∩  𝑁 (𝑈�̂�) = ∅ or else 𝑁(0) =  𝑁 (𝑈�̂�)  with global domain of attraction 𝜑(0) = 𝜑(𝑈�̅�). 
Where 𝑈𝑣∗ = {𝑣

∗ ∈ 𝑅𝑛 ∶  𝑣∗ > 0: 𝜕𝑓(𝑣∗)= 0}                                                                      (56)    

is a way of stochastically solving problem (53). Thus we have  

Lemma 6.1 [23] 

Suppose that 𝑈�̂�  ≠  ∅. Thus there exist a neighborhood 𝑁(𝑈�̂�)  ⊆  𝐷(𝜕𝑓) of 𝑈�̂� such that for any initial guess �̂�  ∈ 𝜑 (𝑈�̅�), 
the non-negative minimizer 𝑈�̂� is obtained as a limit of iteratively constructed sequence  〈𝑣𝑗〉𝑗=1

∞  generated from �̂�by 𝑉𝑗+1 =

𝑉𝑗 − 𝑝𝑗𝑑𝑗. Then with�̂� as our starting point we search for the minimizer of 𝑓 as follows: 

Starting at �̂� as in equation (55) 

1. Compute the 𝑑𝑘 as in equation (53) 

2. Compute the corresponding 𝑝 as specified below 

3. Compute 𝑉𝑘+1 = 𝑉𝑘 − 𝑝𝑘𝑑𝑘. 

Has the process converge? i.e. ‖𝑉𝑘+1 − 𝑉𝑘‖ <  𝜎, 𝜎 > 0,  if yes then  

𝑉𝑘+1 = 𝑉𝑘. If no return to (1) 
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Theorem 6.1 [23]  

Let (𝑝𝑘) be a real sequence such that  

i. 𝑝0 = 1, 0 < 𝑝𝑘 < 1, ∀ 𝑘 > 1 

ii. ∑ 𝑝𝑘 =  ∞∞
𝑘=0  

iii. ∑ 𝑝2𝑘 <  ∞∞
𝑘=0  . 

Then the sequence 〈𝑣𝑘〉𝑘=0
∞  generated by �̂�  ∈ 𝜑 (𝑈�̂�)  ⊆  𝐷 (𝜕𝑓) and defined iteratively by 𝑉𝑗+1 = 𝑉𝑗 − 𝑝𝑗𝑑𝑗  remain in 

𝐷 (𝜕𝑓) and coverage strongly to 𝑈�̂� . 

Proof: 

Let 𝑏𝑘 = 𝑝𝑘  ||𝑑𝑘 − 𝜕𝑓𝑘|| 
Then 〈𝑏𝑘〉𝑘=1

∞ is a sequence of independent random variable and 𝐸(𝑏𝑘) =  0, for each k. 

Noticing that the sequence of partial sums 〈𝑆𝑘〉𝑘=1
∞ , 𝑆𝑘 = ∑ 𝑏𝑗

𝑘
𝑗=1  is a martingale. Therefore  

𝐸(𝑆𝑘
2) =  ∑  𝐸(𝑏𝑗

2) =  ∑ 𝑃2𝑗  𝐸|| 𝑑𝑗 − 𝜕𝑓𝑗||2 = 𝑀−1𝜎2∑ 𝑝2𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑘
𝑗=1  , 

,, 

and  

∑  𝐸(𝑏𝑗
2) < ∞,𝑘

𝑗=1 since ∑ 𝑝2𝑗 < ∞𝑘
𝑗=1  . 

Hence by a version of martingale convergence theorem in [25], we have 

𝑙𝑜𝑔
𝑘→∞

𝑆𝑘 = ∑ 𝑏𝑗 <  ∞
∞
𝑗=1  , 

so that  

𝑙𝑜𝑔
𝑘→∞

𝑝𝑘|| 𝑑𝑘 − 𝜕𝑓𝑘|| = 0. 

Noticing that in (49), L is positive definite so that 𝑓(𝑣) is convex and hence 𝜕𝑓 is monotone. But an earlier result in theory of 

monotone operators, due to  [26], shows that the sequence 〈𝑉𝑘〉 generated by 𝑉0 ∈  𝐷(𝜕𝑓) and defined iteratively by 

𝑉𝑘+1 = 𝑉𝑘 − 𝑝𝑘  𝜕𝑓𝑘, 

remain in 𝐷(𝜕𝑓) and converges strongly to 〈𝑣∗ ∶  𝜕𝑓(𝑣∗) = 0〉.  It follows from this result that our sequence converges 

strongly to  𝑈𝑣∗  𝑖𝑓  𝑈𝑣∗ ≠ 0. 
 

7.0 Numerical Experiment 
In our numerical example, we price American put options using stochastic algorithm. The parameters we used for the Black-

Scholes model are the same as in  [20] and they are defined below: 

 

Table 1: Estimated Parameters for the Black-Scholes Model  

Parameter Notation Value 

Risk free interest rate r 0.2 

Dividend yield  q 0.1 

Strike price  k 7 

Volatility  𝜎 0.3 

Time to expiry  T  2 

Spot price S0 10 

Ratio of Nodes 𝜗 30 

We illustrate the method in a concrete setting, by first plugging the parameter in table 1 in (44) which gives  𝑋0 ≈ 17 a 

positive periodic solution, satisfying that the stock price is positively correlated with the market. Hence substituting in (13) 

and (15), with time nodes 3𝑥103 and space nodes 9𝑥104 satisfying the ratio of nodes 𝜗 as stipulated, we have the financial 

matrix 

 (3 by 3 tri-diagonal coefficient matrix). 

 L =  (
   0.2     0.05 0
−0.1     0.2 0.1
 0 −0.15 0.2

) . 

By using the equation of total investment return; 

𝑟 = 𝑑 + 𝑞,                                                                                               (57) 

where 𝑟  is the risk adjusted discount rate for V (the worth); 𝑞  is the dividend yield ( or convenience yield in case of 

commodities) and 𝑑 is the drift (or capital gain rate). Hence 𝑑 = 0.1  for  𝑞 = 0.1  and  𝑑 = 0.2 for  𝑞 = 0.0  (No dividend 

yield). 

From (20), we have  

(
    0.2   0.05 0
−0.1 0.2 0.1
  0 −0.15 0.2

) (

𝑣1
𝑣2
𝑣3
)    =    (

0.2
0.2
0.2
), 
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𝐿𝑣= (
    0.2   0.05 0
−0.1 0.2 0.1

  0 −0.15 0.2
) (

𝑣1
𝑣2
𝑣3
)    , 

(𝐿𝑣, 𝑣) = (

0.2𝑣1 + 0.05𝑣2 + 0
−0.1𝑣1 + 0.2𝑣2 + 0.1𝑣3

    0 − 0.15𝑣2 + 0.2𝑣3

)(

𝑣1
𝑣2
𝑣3
).            (58) 

From (52) with (58), we have ; 

𝑓(𝑣) =
1

2
[0.2v1

2 − 0.05v1v2 + 0.2v2
2 − 0.05v2v3 + 0.2v3

2] − [0.2v1 + 0.2v2 + 0.2v3].     (59) 

 From (55) with (59), we have  

f(v̂) =
1

2
0.02p2 − 0.12p,           (60) 

∂f(v̂)

∂p
= 0.02p − 0.12, 

from (56)  
∂f(v̂)

∂p
= 0, hence p = 6. 

For k = 0 in (54)v0 = 0, d0 = −0.2 and p0 = 6, hence V1 = 1.2. 

Given that the actual solution in [20] is V(S, t) = 1.171339, the PDE result is 0.14459568, which [27] is given as0.14275. 
Approximations such as in [27] are not accurate enough to test the accuracy of the finite difference scheme.  

The stochastic approximation method above (54) starting at V0 = (0  0  0)  gives a fixedpoint V∗(S, t) =  1.2,  after one 

iteration for both values of the drift. This solution is the same as in [20]. 

This shows that a stochastic approximation method can be used on a discretized financial PDE to price an American option 

with a considerable success. 

 

8.0 Conclusion 
In this work we considered a stochastic algorithm and multiple scale method on a drifted financial derivative system for 

pricing American options under the Black-Scholes model. For the Black-Scholes partial derivative, we employed central 

finite-difference approximation into first-order ordering differential equation and later transformed to a drifted financial 

derivative system. The multiple scale method was adopted in calculating the periodic solution resulted from a Hopf 

bifurcation of a discretized generic PDE to monitor and stabilize the oscillatory movement of the market price of 

stock.Thereafter a stochastic algorithm was formulated to price an American option under the Black-Scholes model through a 

drifted financial derivative system. In numerical experiment, we formed a financial matrix and the value of the drift 

parameter using Table 1. With finer discretization, positive periodic solution; space nodes, and time nodes, we have 

demonstrated that the drifted financial derivative system can be efficiently and easily solved with stochastic approximation 

method. This approach in turn, yields a fast method of pricing American option.We used the multiple scale method to obtain 

the periodic solution which in turn is used to identify the movements of two parameters responsible for oscillatory behavior 

of the system to be risk-free in conjunction with the stock price. It is discovered that as the stock price decreases, the periodic 

solution fluctuates according to risk-free rate.  
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