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Abstract 
 

In this research work, we shall obtain the analytical solution of non-linear 

Black-Sholes equation with transaction cost measure and portfolio risk 

measure. We will reduce the Black-Scholes Partial Differential Equation 

(PDE) to a form of the Sturm–Liouville equation and obtain solutions given 

different boundary conditions. In each case we obtain a series solution which 

is a sequence of special functions. Furthermore we discuss the dynamic 

stability of equilibrium of the solution.It is observed that the equilibrium is 

dynamically stable if and only if the portfolio value (or the time path) 𝒖(𝒙, 𝒕) 

is convergent under the condition that the eigenvalue and minimized total 

risk𝒉𝒊 < 0. 

 
 Keywords: Black-Scholes PDE ,Eigenvalue problems,Transaction cost measure,Portfolio risk measure Sturm-

 Liouville Boundary Value Problem. 

 

1.0     Introduction 
Modern finance started with Black –Scholes Linear partial differential equation[1],which was obtained under several model 

restrictions.(e.g no transaction costs,agents are price takers and there are no feedback effects from the trading activity,the 

market is perfectly liquid, etc.)are relaxed then the linear Black-Scholes equation needs to be replaced by anonlinear 

one.Several models have been proposed to address the case of the price impact effect from large traders [2, 3, 4].In these last 

decades many different methods aimed at solving Black-Scholes partial differential equation have appeared.The PDEs arising 

from the generalized option pricing model pose three challenges to the numerical approximation: the degeneracy of the 

equation, the coefficients being time and space-dependent and also unbounded in the space variables. The aim of this 

research to obtain an analytical solution of Black-Scholes equation with transaction cost and volatile risk measures using the 

Sturm –Liouville method. Sturm-Liouville problem is a second-order ordinary differential equations problem where two 

boundary conditions are specified, but where no unique solution exists. These problems may be regular or singular at each 

endpoint of the underlying interval [1]. In [4] the nth eigenvalue as a function on the space of self-adjoint regular Sturm–

Liouville problems with positive leading coefficient and weight functionswas considered. In [7] a method of computing 

accurate approximations to the eigenvalues and Eigen functions of regular Sturm–Liouville differential equationswas derived.  

The minimized sum of the optimal length of the hedge interval –time lag is the time-lag between two consecutive 

transactions which the transaction costs as well as the volatile portfolio risk depends on [8]. If transaction costs are taken into 

account perfect replication of the contingent claim is no longer possible. Modeling the short rate r = r(t) by a solution to a 

one factor stochastic differential equation, 

dS = μ(s, t)dt + σ(x, t)dw,            (1.1) 

where μ(S, t)dt represent a trend or drift of the process and σ(x, t) represents volatility part of the process, the risk adjusted 

Black-Scholes equation can be viewed as an equation with a variable volatility coefficient 

∂tu +
σ2(x,t)

2
x2 (1 − μ(x ∂xu)

1

3) ∂x
2u + rx ∂xu − ru = 0,                (1.2) 
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where σ2(x, t) depends on a solution u= u(x, t) and  μ = 3 (
C2R

2π
)

1

3
, since 

σ̂2(x, t) = σ2(1 − μ(x ∂x
2u(x, t))

1

3.                                                    (1.2a) 

Incorporating both transaction costs and risk arising from a volatile portfolio into equation (1.2) we have the change in the 

value of portfolio to become. 

∂tu +
σ̂2(x,t)

2
x2 ∂x

2u + rx ∂xu − ru = (rTC + rVP)x,          (1.3) 

whererTC =
C|Γ|σ̂x

√2π

1

√∆t
is the transaction costs measure, rVp =

1

2
Rσ̂4x2Γ2Δt is the volatile portfolio risk measure and Γ =

∂s
2V.Minimizing the total risk with respect to the time lag ∆t yields; 

 min
∆t

(rTC + ruP) =
3

2
(

C2R

2π
)

1

3
σ̂2|x ∂x

2u|
4

3. 

For simplicity of solution and without loss of generality, we choose the minimized risk as  

{min
∆t

(rTC + ruP)}

3

2
= Ax2 ∂x

2u,                                (1.4a) 

with                        

A = (
3

2
)

3

2 (
C2R

2π
)

1

2
σ̂3.                                                            (1.4b) 

They change in the value of the portfolio after minimizing the total risk with respect to time lag is given as 

     ∂tu +
σ̂2(x,t)

2
x2 ∂x

2u + rx ∂xu − ru = Ax2u.                           (1.5) 

For simplicity of solution and without loss of generality, let  

f(x) =
σ2

2
x2, rx = g(x), k(t)u =

3

2
(

C2R

2π
) σ2|x ∂x

2u|
4

3. 

Then equation (1.5) becomes  

f(x) ∂x
2u + g(x) ∂xu − r(x)V = − ∂tu + k(t)u .                        (1.6) 

In this work we investigate equation (1.6) with the view of obtaining the analytical solution subject to the conditions 
  u(a, t) = u(b, t) = 0 

u(x, 0) = s(x)
}                           (1.7) 

by the method of Sturm- Liouville Equation. 

The strength, and beauty, of the approach developed by Sturm and Liouville is that considerable general information, and 

some specific detail, can be obtained without ever finding the solution to the problem.  

 

2.0 Sturm-Liouville Equation 
A classical “Sturm- Liouville equation”, is a real second –order linear differential equation of the form  
d

dx
[p(x)

dy

dx
] + q(x)y = λr(x)y,                                                                                                                         (2.1) 

In the simplest of cases all coefficients are continuous on the finite closed interval [a, b], p(x) has continuousderivative. In 

this case y is called a ‘’solution’’ if it continuously differentiable on (a, b) and satisfies the equation (2.1) at every point in 

(a, b).In addition, the unknown function y  is required to satisfy boundary conditions. The function  r(x)  ,is called the 

‘’weight’’  or ‘’density’’ function. 

We introduce the Sturm-Liouville operator as 

L[y] =
d

dx
[p(x)

dy

dx
] + q(x)y 

and consider the Sturm-Liouville equation 

L[y] + λr(x)y = 0,                                                                                                                                                (2.2) 

where p > 0, r ≥ 0 and  p, q, and r are continuous functions on the interval [a,b]: along the with BC  

Ba[y] = α1y(a) + α2p(a)y′(a) = 0            Bb[y] = β1y(b) + β2p(b)y′(b) = 0                                    (2.3) 

where α1
2 + α2

2 ≠ 0 and β1
2 + β2

2 ≠ 0 

The problem of finding a complex number λ = μ such that BVP (2.2)-(2.3) has a non –trivial solution is called Sturm 

Liouville problem.The value λ = μis called an eigenvalue and the corresponding solution y(: , μ) is called an eigenfunction. 

 

3.0    Application 
In this section we solve equation (1.6) by the proposed method under different boundary conditions. 

Let us apply separation of variable, which in doing we must impose that  

u(x, t) = X(x)T(t) 
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The Equation (1.3) may be written as 

L̂X(x)

X(x)
=

M̂T(t)

T(t)
 

where  

L̂ = f(x)
d2

dx2
+ g(x)

d

dx
+ r(x) and  M̂ =

d

dt
+ K 

Since ,by definition,L̂ and X(x) are independent of time and M̂ and T(t) are independent of position x,then both sides of the 

above equation must be equal to a constant that we call λ .In such case: 

L̂X(x) = λX(x)                                                                                                                                                      (3.1) 

X(0) = X′(π) = 0                                                                                                                                                (3.2) 

M̂T(t) = λT(t)                                                                                                                                                      (3.3) 

The first of these equation must be solved as a Sturm Liouville problem(SLP) to be able to obtain the eigenvalue 𝜆𝑛and 

eigenfunctions𝑋𝑛. 

We call the operator 𝑀 the adjoint to 𝐿, and 𝑀(𝑡)  = 0 is then the adjoint equation. Ingeneral, the differential operators 

𝑀 𝑎𝑛𝑑 𝐿 are not identical, but if 𝑀 ≡ 𝐿 then the equation 𝐿(𝑥) = 0 is said to be self –adjoint. 

The eigenvalue 𝜆 have to be non-negative.We consider their separate cases 𝜆 < 0, 𝜆 = 0, 𝜆 > 0 

Solving for  

𝐿̂𝑋(𝑥) = 𝜆𝑋(𝑥). 

The problem is the eigenvalue problem and since we seeking for bounded solutions, then the   

eigenvalue 𝜆𝑛 could be written as 

𝜆𝑛 =
(2𝑛−1)2

4
, 𝑛 = 0, ±1, ±2, …,                               (3.4) 

and the eigenfunctions are  

𝑋𝑛 = 𝑠𝑖𝑛(√𝜆𝑛𝑥), 𝑛 = 0, ±1, ±2, ….                    (3.5) 

Equation (3.3) issolved analytically to obtain 
𝑑

𝑑𝑡
𝑇𝑛(𝑡) = (𝜆𝑛 − 𝑘)𝑇𝑛(𝑡) 

or  

  𝑇𝑛(𝑡) = 𝑎𝑛𝑒−(𝜆𝑛𝑡−∫ 𝑘𝑑𝜏
𝑡

0 )
.          (3.6) 

For each 𝑛 ∈ 𝑍+, the 𝐿- equations 𝐿̂𝑋(𝑥) + 𝜆𝑋(𝑥) = 0 can also have another independent eigenfunctions  

𝑋𝑛 = 𝑐𝑜𝑠(√𝜆𝑛𝑥), 𝑛 = 0, ±1, ±2, … .          (3.7) 

So that the general series solution to equation (1.6)is the linear combination of (3.5) and (3.7)together with (3.6) 

𝑢(𝑥, 𝑡) = ∑ (𝑎𝑛𝑠𝑖𝑛 (√
(2𝑛−1)2

4
) 𝑥 + 𝑏𝑛𝑐𝑜𝑠 (√

(2𝑛−1)2

4
) 𝑥)𝑛 𝑒𝑥𝑝 {− ((

(2𝑛−1)2

4
𝑡 − ∫ 𝑘𝑑𝜏

𝑡

0
))}.   (3.8) 

We have by the boundary condition equations (1.7) 

𝑢(0, 𝑡) = 𝑢(𝜋, 𝑡) = ∑ 𝑏𝑛𝑛 𝑒𝑥𝑝 {− ((
(2𝑛−1)2

4
𝑡 − ∫ 𝑘𝑑𝜏

𝑡

0
))} = 0, 

𝑢(𝑥, 0) = ∑ (𝑎𝑛𝑠𝑖𝑛 (√
(2𝑛−1)2

4
) 𝑥 + 𝑏𝑛𝑐𝑜𝑠 (√

(2𝑛−1)2

4
) 𝑥)𝑛 = 𝑆(𝑥).  

So that 

𝑢(𝑥, 𝑡) = ∑ 𝑎𝑛𝑠(𝑥)

𝑛

𝑒𝑥𝑝 {− ((
(2𝑛 − 1)2

4
−

3

2
(

𝐶2𝑅

2𝜋
) 𝜎2|𝑥𝜕𝑥

2𝑢|
4

3) 𝑡)} 

= ∑ (𝑎𝑛𝑠𝑖𝑛 (√
(2𝑛−1)2

4
) 𝑥 + 𝑏𝑛𝑐𝑜𝑠 (√

(2𝑛−1)2

4
) 𝑥)𝑛 𝑒ℎ1(𝑡),         (3.9) 

where𝑎𝑛 =
(𝑋𝑛(𝑥)𝑠(𝑥))

(𝑋𝑛(𝑥),𝑋𝑛(𝑥))
=

∫ 𝑋𝑛(𝑥) 𝑆(𝑥) 𝑑𝑥
𝑏

𝑎

∫ 𝑋𝑛
2𝑑𝑥

𝑏
𝑎

, 

and ℎ1(𝑡) = (
(2𝑛−1)2

4
−

3

2
(

𝐶2𝑅

2𝜋
) 𝜎2|𝑥𝜕𝑥

2𝑢|
4

3) 𝑡  and is =, < 𝑜𝑟 > 0  depending whether 
(2𝑛−1)2

4
−

3

2
(

𝐶2𝑅

2𝜋
) 𝜎2|𝑥𝜕𝑥

2𝑢|
4

3  is =, <

𝑜𝑟 > 0. 

If instead the boundary conditions becomes 
  𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0 

𝑢(𝑥, 0) = 𝑠(𝑥)
}.                    (3.10) 

 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 307 – 312 



 

310 

 

An Application of Sturm…           Osu, Olunkwa, Akpanta and Onwuegbula    Trans. of NAMP 
 

then the eigenvalues are given as 

⅄𝑛 =
𝑛2𝜋2

𝐿2
, 𝑛 ∈ {1,2, … }, 

and the correspondingindependent eigenfunctions are 

𝜑𝑛 = 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) , 𝑛 ∈ {1,2, … }.𝜑𝑛 = 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
) , 𝑛 ∈ {1,2, … }, 

so that the general series solution will now be 

𝑢(𝑥, 𝑡) = ∑ (𝑎𝑛𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) 𝑥 + 𝑏𝑛𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
) 𝑥)𝑛 𝑒𝑥𝑝 {− ((

𝑛𝜋

𝐿
𝑡 − ∫ 𝑘𝑑𝜏

𝑡

0
))}.      (3.11) 

Therefore  by the boundary condition of equations (3.10), we have; 

𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = ∑ 𝑏𝑛𝑛 𝑒𝑥𝑝 {− ((
𝑛𝜋

𝐿
𝑡 − ∫ 𝑘𝑑𝜏

𝑡

0
))} = 0, 

𝑢(𝑥, 0) = ∑ (𝑎𝑛𝑠𝑖𝑛 (
𝑛𝜋

𝐿
) 𝑥 + 𝑏𝑛𝑐𝑜𝑠 (

𝑛𝜋

𝐿
) 𝑥)𝑛 = 𝑆(𝑥).  

And  

𝑢(𝑥, 𝑡) = ∑ 𝑎𝑛𝑠(𝑥)𝑛 𝑒𝑥𝑝 {− ((
𝑛𝜋

𝐿
−

3

2
(

𝐶2𝑅

2𝜋
) 𝜎2|𝑥𝜕𝑥

2𝑢|
4

3) 𝑡)}      (3.12) 

The eigenfunctions expansion of 𝑆(𝑥) is then Fourier cosine series expansion of 𝑆(𝑥): [0, 𝐿] → 𝑅 

𝑆(𝑥) = 𝑎0 +  ∑ 𝑎𝑛
∞
𝑛=1 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
)                                 (3.13) 

with  

𝑎0 =
〈𝑔,1〉

〈1,1〉
=  

1

𝐿
∫ 𝑆(𝑥)𝑑𝑥

𝐿

0
. 

And  

𝑎𝑛>1 =
〈𝑆, 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
)〉

〈𝑐𝑜𝑠 (
𝑛𝜋𝑥

𝐿
) , 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
)〉

=
〈𝑠, 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
)〉

∫ 𝑐𝑜𝑠2 (
𝑛𝜋𝑥

𝐿
) 𝑑𝑥

𝐿

0

 

=
〈𝑆, 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
)〉

1

𝐿
∫ (1 + 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
)) 𝑑𝑥

𝐿

0

 

=
2 ∫ 𝑆(𝑥) 𝑐𝑜𝑠(

𝑛𝜋𝑥

𝐿
)

𝐿
0 𝑑𝑥

𝐿
 . 

So that 

𝑆(𝑥) =
1

𝐿
∫ 𝑆(𝑥)𝑑𝑥

𝐿

0
+ ∑

2 ∫ 𝑆(𝑥) 𝑐𝑜𝑠(
𝑛𝜋𝑥

𝐿
)

𝐿
0 𝑐𝑜𝑠(

𝑛𝜋𝑥

𝐿
)𝑑𝑥

𝐿

∞
𝑛=1  . 

This implies that the particular series solution based on the given boundary condition is 

𝑢(𝑥, 𝑡) = ∑
2 ∫ 𝑆(𝑥) 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
)

𝐿

0
𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥

𝐿
𝑛

𝑒𝑥𝑝 {− ((
𝑛𝜋

𝐿
−

3

2
(

𝐶2𝑅

2𝜋
) 𝜎2|𝑥𝜕𝑥

2𝑢|
4

3) 𝑡)} 

= ∑
∫ 𝑆(𝑥)(1−𝑐𝑜𝑠 2𝑥)

𝐿
0 𝑑𝑥

𝐿𝑛 𝑒𝑥𝑝 {− ((
𝑛𝜋

𝐿
−

3

2
(

𝐶2𝑅

2𝜋
) 𝜎2|𝑥𝜕𝑥

2𝑢|
4

3) 𝑡)}. 

= ∑
∫ 𝑆(𝑥)(1−𝑐𝑜𝑠 2𝑥)

𝐿
0 𝑑𝑥

𝐿𝑛 𝑒ℎ2(𝑡).                                                                 (3.14) 

Here ℎ2(𝑡) = (
𝑛𝜋

𝐿
−

3

2
(

𝐶2𝑅

2𝜋
) 𝜎2|𝑥𝜕𝑥

2𝑢|
4

3)  and is equal to, greater than or less than zero depending where  (
𝑛𝜋

𝐿
−

3

2
(

𝐶2𝑅

2𝜋
) 𝜎2|𝑥𝜕𝑥

2𝑢|
4

3) =, >, 𝑜𝑟 < 0. 

Again if instead the boundary conditions becomes 
  𝑢(1, 𝑡) + 𝑢΄(1, 𝑡) = 0 

𝑢(𝑥, 0) = 𝑓(𝑥)
}.                   (3.15) 

Thus we obtain an infinite number of eigenvalues 

⅄ = 𝜇𝑛
2 , 𝑛 ∈ {1,2, … }, 

with corresponding eigenfunctions          

𝜑𝑛 = 𝑠𝑖𝑛(𝜇𝑛𝑥). 

A function 𝑓(𝑥): [0,1] → 𝑅  that is piecewise continuous with piecewise continuous derivative 𝑓 ΄(𝑥) has an eigefunction 

expansion; 
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∑ 𝑐𝑛 𝑠𝑖𝑛(𝜇𝑛𝑥)

∞

𝑛=1

,   

where 

𝑐𝑛 =
〈𝑓(𝑥) , 𝑠𝑖𝑛(𝜇𝑛𝑥)〉

〈𝑠𝑖𝑛(𝜇𝑛𝑥), 𝑠𝑖𝑛(𝜇𝑛𝑥)〉
=

∫ 𝑓(𝑥) 𝑠𝑖𝑛(𝜇𝑛𝑥)𝑑𝑥
1

0

∫ 𝑠𝑖𝑛2(𝜇𝑛𝑥)𝑑𝑥
1

0

 

=
∫ 𝑓(𝑥) 𝑠𝑖𝑛(𝜇𝑛𝑥)𝑑𝑥

1

0
1

2
∫ (1 − 𝑐𝑜𝑠(2𝜇𝑛𝑥))𝑑𝑥

1

0

=
∫ 𝑓(𝑥) 𝑠𝑖𝑛(𝜇𝑛𝑥)𝑑𝑥

1

0
1

2
−

1

4𝜇𝑛
𝑠𝑖𝑛(2𝜇𝑛𝑥)

 

=
∫ 𝑓(𝑥) 𝑠𝑖𝑛(𝜇𝑛𝑥)𝑑𝑥

1
0

1

2
(1−

1

𝜇𝑛
𝑠𝑖𝑛 (𝜇𝑛𝑥) 𝑐𝑜𝑠(𝜇𝑛𝑥)

=
∫ 𝑓(𝑥) 𝑠𝑖𝑛(𝜇𝑛𝑥)𝑑𝑥

1
0
1

2
(1+𝐶𝑂𝑆2(𝜇𝑛𝑥))

 . 

Therefore 

∑ 𝑐𝑛 𝑠𝑖𝑛(𝜇𝑛𝑥) = ∑
2

1+𝐶𝑂𝑆2(𝜇𝑛𝑥)
∫ 𝑓(𝑥) 𝑠𝑖𝑛(𝜇𝑛𝑥) 𝑠𝑖𝑛(𝜇𝑛𝑥)𝑑𝑥

1

0
∞
𝑛=1

∞
𝑛=1 , 

so that 

𝑢(𝑥, 𝑡) = ∑
2

1 + 𝐶𝑂𝑆2(𝜇𝑛𝑥)
∫ 𝑓(𝑥) 𝑠𝑖𝑛2(𝜇𝑛𝑥)𝑑𝑥

1

0𝑛

𝑒−(𝜇𝑛𝑡−∫ 𝑘𝑑𝜏
𝑡

0 )
 

= ∑ (2 ∫ 𝑠𝑖𝑛(𝜇𝑛𝑥) 𝑑𝑥
1

0

)

𝑛

𝑒𝑥𝑝 {− (𝜇𝑛 −
3

2
(

𝐶2𝑅

2𝜋
) 𝜎2|𝑥𝜕𝑥

2𝑢|
4

3) 𝑡} 

= ∑
2(𝑐𝑜𝑠 𝜇𝑛 − 1)

𝜇𝑛
𝑛

𝑒𝑥𝑝 {− (𝜇𝑛 −
3

2
(

𝐶2𝑅

2𝜋
) 𝜎2|𝑥𝜕𝑥

2𝑢|
4

3) 𝑡} 

= ∑
2(𝑐𝑜𝑠 𝜇𝑛−1)

𝜇𝑛
𝑛 𝑒ℎ3(𝑡) ,              (3.16)     

where  

ℎ3(𝑡) = (𝜇𝑛 −
3

2
(

𝐶2𝑅

2𝜋
) 𝜎2|𝑥𝜕𝑥

2𝑢|
4

3) 𝑡.  

Notice that  ℎ3(𝑡) = 0 when  𝜇𝑛 =
3

2
(

𝐶2𝑅

2𝜋
) 𝜎2|𝑥𝜕𝑥

2𝑢|
4

3,ℎ3(𝑡) < 0 if  μn <
3

2
(

C2R

2π
) σ2|x ∂x

2u|
4

3 

and  h3(t) > 0 if μn >
3

2
(

C2R

2π
) σ2|x ∂x

2u|
4

3. 

 

4.0 Discussion and Conclusion 
We obtained in this work the solution of Black- Scholes  equation with transaction cost measure and volatile portfolio risk 

measure using  Sturm- Liouville solution method. Here we described first the nature of the eigenvalues and then, turn to the 

associated solutions (the eigenfunctions). 

It is noteworthy to observe that ansin (√
(2n−1)2

4
) x , ansin (

nπ

L
) x  and  cn sin(μnx)  and the sum (ansin (√

(2n−1)2

4
) x +

bncos (√
(2n−1)2

4
) x)are circular functions of (√

(2n−1)2

4
) x,(

nπ

L
) xand μnx respectively, with period 2π and amplitude 1. That 

is the value function u(x, t) will repeat its configuration every time(√
(2n−1)2

4
) x, (

nπ

L
) xorμnx increases by 2π. So equations 

(3.9), (3.12), (3.14) and (3.16) will also display a repeating cycle every time x increases. 

Had u(x, t) consisted only of the expression ansin(. )x in each case, the implication would have been that the time path of u 

would be a never-ending, constant amplitude fluctuation around the equilibrium value of u. But there is also a multiplication 

term ehi(t), (i = 1, 2, 3, for the equation under analysis).  

For instance  hi > 0 implies that ehi(t) increases continually ast increases then u(x, t) will deviate from the equilibrium value 

and the time path will be characterized by explosive fluctuation. If hi = 0, then ehi(t) = 1. This implies constant amplitude. 

That is u(x, t) will display a uniform pattern of deviation from the equilibrium and there will be uniform fluctuations. On the 

other hand if hi < 0 , then ehi(t) will continuously decrease as t  increases and each successive cycle will have smaller 

amplitude than the preceding one and  u(x, t) be characterized by damped fluctuations. 

The condition of convergence of u(x, t) is when hi < 0. Therefore the equilibrium is dynamically stable if and only if u(x, t) 

is convergent. 

 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 307 – 312 



 

312 

 

An Application of Sturm…           Osu, Olunkwa, Akpanta and Onwuegbula    Trans. of NAMP 
 

5.0 Acknowledgement 
This research is supported by TETFUND grant. 

 

6.0 References 
[1]  F. Black, M. Scholes, The pricing of options and corporate liabilities, J.Polit. Econ., 81 (1973), 637-659 

[2]  M. Kratka, No mystery behind the smile, Risk, 9 (1998), 67-71 

[3]  Osu B.O. and Olunkwa C. A solution by stochastic iteration method for nonlinear Black-Scholes equation with 

transaction cost and volatile portfolio risk in Hilbert space. International Journal of Mathematical Analysis and 

Applications. 1(3) (2014),43-48  

[4]  Q. Kong, H. Wu, A. Zettl, “Dependence of the nth Sturm–Liouvilleeigenvalue on the problem”, Journal of 

differential equations, vol. 156(2), 1999, pp. 328-354. 

[5]  R. Frey, A. Stremme, Market volatility and feedback effects from dynamic hedging, Math. Finance, 4 (1997), 351-

374 

[6]  R. Frey, P. Patie, Risk Management for Derivatives in Illiquid Markets:A Simulation Study, Springer, Berlin, 2002. 

[7]  S. Pruess, Estimating the eigenvalues of Sturm-Liouville problems byapproximating the differential equation. SIAM 

Journal on Numerical Analysis, 1973, vol. 10(1), pp. 55-68. 

[8] C. Olunkwa, C., B. O. Osu, Akpanta A. C.  and Onwuegbulam, C., Analytical Solution of Risk Adjusted Option 

Pricing Model By Variational Iteration method. To appear in J. NAMP.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 307 – 312 


