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Abstract 
 

The paper studies heat transfer in a lime kiln (a combustion furnace in 

which a chemical reaction occurs) when the reaction is highly exothermic. 

We revisit our previous results and investigate for the effects of some 

sensitive factors on heat transfer under highly exothermic condition. 

The paper specifically examines the effects of Frank-Kamenetskii parameter 

on temperatures of gas and materials, and also study the effect of thermal 

conductivities on temperatures of gas and materials. A computer program 

written in C++ language, was used to solve the resulting two-dimensional 

finite-difference scheme. The results show that Frank-Kamenetskii 

parameter and scaled thermal conductivity have appreciable effects on 

temperatures of materials and gas which are favorable in the formation of 

high quality quick lime. This work therefore establishes the fact that 

maintaining a high temperature of calcinations increases the furnace 

productivity
. 

 

1.0     Introduction 
Before we talk about what have been done in this study, it is necessary to review some basic terms in this theory for better 

understanding of the process of heat transfer in a lime kiln.. A lime shaft kiln is basically a moving bed reactor with the 

upward-flow of hot gases passing counter-current to the downward-flow of a feed consisting of limestone particles 

undergoing calcinations [1].The term calcinations refers to the process of limestone thermal decomposition into quicklime 

and carbon dioxide. The following chemical reaction takes place in the kiln with dolomitic limestone: 

CaCO3 + MgCO3 + HEAT           CaO + MgO + 2CO2         

Quick lime is a key industrial mineral used as a chemical additive by many industries. The industrial facilities that utilize 

lime in various forms are metal ore processing, metallurgy, steel, paper, pharmaceuticals, sulphur removal and water 

treatment. It is also used for generating many basic chemicals used to manufacture consumer goods. 

The rate of conversion of limestone into quicklime depends on the heat of reaction supplied to the limekiln. Heat is created in 

the kiln by burning pulverized coal, natural gas or oil. Kilns are normally operated at temperatures of 1100°C or higher to 

drive carbon dioxide from the limestone [1]. 
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Fig 1.1: Shaft Lime Kiln  ( Eular [2])   

A kiln (See Fig. 1.1) basically has three operating sections: the preheating, the burning and the cooling zone. The preheating 

zone is that part of the kiln where the limestone is heated to its dissociation temperature. The burning zone is that part of the 

kiln in which reaction of the burden takes place. The cooling zone is that part of the kiln in which the lime emerging from the 

burning zone is cooled before discharge. The most common fuels used in shaft kilns are coke, natural gas, weak gas and 

pulverized lignite. The majority of shaft furnaces for limestone calcination operate with counter-current flows of burden 

materials and gases. The furnace incorporates three technological zones: preheating, calcination and cooling from (top to 

bottom). 

Numerous heat transfer models for refractory kilns are available in the literature [3 – 8]. The heat transfer model from these 

previous works has to be solved numerically because of the two dimensional problems which consider the thermal heat 

conduction in radial and circumferential direction. Heat transfer mechanism is complicated in case of rotary kiln as it includes 

conduction, convection and radiation together. 

The first model for the prediction of the axial transport in a rotary cylinder was proposed by Sullivan in 1927 and then 

developed to study the isothermal transverse motion of a bed of particulate materials by Friedman and Marshall [9], Peary et 

al. [10]., Bui and Perron [3].    

A mathematical model described by Henein [11] predicted the conditions giving rise to the different forms of transverse bed 

motion in a rotary cylinder like slumping, rolling, slipping, cascading, contracting, and centrifuging. A 3D steady-state model 

of a rotary calcimine kiln was also  presented by Bui et al. [3] in 1993    

Many researchers have different approaches and the available mathematical models are not sound enough to describe the heat 

transfer between covered kiln wall and the particle in the bed. In general, a rotary kiln can be classified as internally heated 

and externally heated device. The heat transfer process in rotary kiln is complex; particularly a internally heated kiln.  

The majority of shaft furnaces for limestone calcination operate with counter-current flows of burden materials and gases [12 

– 15]. The furnace incorporates three technological zones: preheating, calcination and cooling (from top to bottom). Gordon 

et al. [16] developed the multi-dimensional mathematical model to optimize the furnace design and the process parameters. 

The developed mathematical model belongs to the group of essentially non-linear models. According to them, it is not 

possible to develop an analytical solution of the problem. The finite element method was used to provide a solution. 

In 2009, Olayiwola et al.[17] developed a mathematical model of calcination process. The developed model took into account 

the Arrhenius heat generation and chemical reaction. They provided an analytical solution of the model and investigated the 

effects of activation energy and Frank-Kamenetskii parameters on the gas and material temperatures. In 2013, Olayiwola et 

al.[1] extended the model developed in [17] to account for a situation where the reaction is not well stirred. They provided an 

analytical solution of the model and proved the existence and uniqueness of solution of the time-dependent problems. They 

also examined the properties of solution under certain conditions. 

In this paper, following our previous work in Olayiwola et. al[1], we investigated the effects of Frank-Kamenetskii 

parameters and scaled thermal conductivity on gas and material temperatures. The partial differential equations of the model 

were solved by finite difference methods. 

 

2.0 Problem Formulation 
Following Olayiwola et al.[1], the mathematical model of heat transfer in a lime kiln is given by the equations: 
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Satisfying; 

(x,0) = 0 (0,t) = 0    (1,t) = 0                                                                               

(x,0) = 0  (0,t) = 0    (1,t) = 0                                                                                        (2.03) 

 

Nomenclature 

Greek symbols Description 

  dimensionless temperature for gas

 

  dimensionless temperature for material

 

1  scaled thermal conductivity for material

 

2  scaled thermal conductivity for gas

 

1  Frank-Kamenetskii parameter for material

 

2
 

Frank-Kamenetskii parameter for gas 

21 ,  Scaled Heat sources parameters.  

Alphabets Description 

T Time variable 

X Space variable 

In this paper, we provide solutions to the above equations when the reaction is  highly exothermic ( 0→ ). This leads us to 

the following equations; 
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Satisfying; 
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By  finite difference method (Thomee [18]), equations (2.04) subject to initial and boundary conditions (2.07) become 
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where h, k are step lengths for time and space variables respectively. 

 

3.0    Numerical Results  

The numerical results obtained from a computer program written in C++ are presented  below; 
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4.0 Discussion of Results and Conclusion 

The figure 3.1 shows the plot of material temperature   against the position(x). The graph shows that as 1  increases, the 

maximum temperature of material increases. Figure 3.2 shows the plot of material temperature   against time(t). The graph 

shows that as 1  increases, the maximum temperature of material increases. Figure 3.3 shows the plot of gas temperature   

against position(x). The graph shows that as 2  increases, the maximum temperature of gas increases. Figure 3.4 shows the 

plot of gas temperature   against time(t). The graph shows that as 2  increases, the maximum temperature of gas increases. 

Figure 3.5 shows the plot of material temperature   against the position(x). The graph shows that as 1  increases, the 

maximum temperature of material decreases. Figure 3.6 shows the plot of material temperature   against the time(t). The 

graph shows that as 1  increases, the maximum temperature of material decreases. Figure 3.7 shows the plot of gas 

temperature   against the position(x). The graph shows that as 2  increases, the maximum temperature of gas decreases. 

Figure 3.8 shows the plot of gas temperature   against the time(t). The graph shows that as 2  increases, the maximum 

temperature of gas decreases.  
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In general, our results showed that as Frank-Kamenetskii parameter increases, the temperature increases with time and with 

space. The results also showed that as the scale thermal conductivity increases, the temperature of the system lowers with 

time and space.  

In conclusion, the entire results observations have agreed with the practical point of view that scale thermal conductivity and 

Frank-Kamenetskii parameters have appreciable effects on temperatures of materials and gas even when the reaction is 

highly exothermic. This also establishes the fact that maintaining a high temperature of calcinations increases the furnace 

productivity in the formation of high quality quick lime. 

 

5.0 References 

[1.] Olayiwola, R.O., Ph.D; A.O. Adesanya, Ph.D; A.M. Okedoye, Ph.D; and A.O Popoola, Ph.D. 

 (2013) “Lime Shaft Kilns: Modeling and simulation”. The pacific journal of science and 

 technology, Akama university, USA 14(1):206-215. 

[2.] Eula (2013): Kiln types, http://www.eula.eu/kiln-types. 

[3.] Bui R.T., Perron and Read M, (1993) "Mode- based optimization of the operation of the coke 

 calcining kiln", Carbon, 31(7): 1139-1147 

[4.] Gardeik, H. O. and Jeschar, R, (1979), "Simplified Mathematical Models for calculating the heat 

 transfer in Internally heated adiabatic rotary kiln ( convection models) Part I, Idealized rotary 

 kiln with infinitely large thermal conductivity coefficient of the wall", Cement lime Gypsum 

 International , 7 : 201- 210. 

[5.] Gardeike, H. O. and Jeschar, R, (1979), "Simplified Mathematical Models for calculating the 

 heat transfer in internally heated adiabatic rotary kiln (convection models) Part II, Rotating tube 

 with finite value of thermal conductivity of the wall", Cement lime Gypsum International. 7: 

 434-441. 

[6.] Goshdastidar, P. S., Rhodes ,C A ,Orloff, D. I. (1986) Heat transfer in a rotary kiln during 

 incineration of solid waste, ASME- Papers 8(85): 1-6. 

[7.] Pearce, K. W. (, 1973),"A Heat transfer model for Rotary kilns", J. of the Institute of Fuel, 7: 

 363- 371. 

[8.] Sass, A., (1967) "Simulation of the Heat transfer phenomenon in a Rotary Kiln, I and EC", 

 Process Design and Development, 6 (4):532-535. 

[9.] Freidman S. J, Marshall W R. J. (1949)," Studies in Rotary drying, Part II. Heat and Mass 

 transfer", Chemical Engineering Progress, 45(9): 573, 

[10.] Peary, K. E., Waddell, J.J. (1972), The rotary cement kiln, Chemical publishing co., New York. 

[11.] H. Henein., (1980), "Bed behaviour in Rotary Cylinders with Applications to Rotary Kilns". PhD 

 Dissertation, University of British Columbia, Vancouver, 

[12.] Boynton, R.S. (1980). Chemistry and technology of lime and limestone. John Wiley and sons, 

 Inc.: New York, NY. 

 
 

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 299 – 306 



 

306 

 

On Numerical Results of…           Popoola, Olayiwola and Raji    Trans. of NAMP 

[13.] Terruzzi, D. (1994). “Lime Shaft Kilns Using Two Way Pressure System”. ZKG International. 

 6:322-326. 

[14.] Tabunshikov, N.P. (1974). Lime Production, Chemistry Publishing House, Moscow, Russia. 

[15.] Monastirev, A.V and A.V Aleksandrov (1979) Furnace for Lime Production. Metallurgy: 

 Moscow Russia. 

[16.] Gordon, Y.M., M.E. Blank, V.V Madison, and P.R. Abovian. (2003). “New Technology and 

 shaft Furnance for High Quality Metallurgical Lime Production”. Proc. Of Asia Steel 

 International Conference, Jamshedpur, India. 9- 12. 

[17.] Olayiwola, R.O., A.T. Cole, D. Hakimi, and R.O. Ayeni. (2009). “Mathematical Modelling of 

 the Calcination Process”. J. Nig. Assoc. of Math/phys. 14(1):381 -388..  

[18.] Vidar Thomee. (1999). “From finite differences to finite elements, a short history of numerical 

 analysis of partial differential equations”. Journal of Computational and Applied Mathematics 

 128 (2001) 1–54  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 299 – 306 


