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Abstract 
 

The effect of multi-irregular shaped stenoses on non-Newtonian fluid 

through an axially symmetric, laminar, steady, one-dimensional flow of 

blood in the artery has been investigated. Blood has been treated as a non-

Newtonian fluid obeying Bingham plastic fluid equation in which fluid does 

not flow beyond the yield stress value, and above the yield value, the fluid 

flow is possible. The artery is model as having irregular stenoses.The 

problem is solved using analytical techniques. The expressions for the flow 

characteristics, namely, the blood pressure gradient, the skin friction, the 

blood flow rate and velocity are obtained. Variations in volumetric flow rate 

with increasing axial variable for different blood viscosity and yield stress 

parameter have been shown graphically. It is observed that the flow rate 

increases with increasing yield stress values and decreases for increasing 

viscosity. We conclude that the multi-irregular shaped stenosis has more 

effect on non-Newtonian flow of blood than Newtonian fluid
. 

 
 Keywords: Non-Newtonian fluid flow rate, pressure gradient, shear stress, stenosis, wall shear stress. 

  

1.0     Introduction 
The unnatural and abnormal growth at various location along the conduits of the cardiovascular system under diseased 

conditions is known as stenosis [1].  This formation of lipids in the intima may cause stenosis of the lumen leading to 

hardening and thickening of the arterial walls[2].Pathology within the artery wall could be the cause of stenosis since the 

exact causes of stenosis have not been ascertained. When this is the case, serious complications may occur due to the 

significant changes in blood pressure, wall shear stress, flow rate and velocity within the artery [3, 4]. 

In this study we investigate the flow of blood in a multi-irregular shaped stenosed artery and regarding blood as a Bingham 

fluid. Several researchers have considered mathematical modeling of blood flow in narrow arteries. Singh and Singh [5] 

analyzed a fully developed one dimensional Bingham plastic flow of blood through a small artery having multiple stenosis 

and post dilation. Sanjeev and Diwaka [6] studied the effect of a post dilation and multiple stenosis on an arterial blood flow. 

They observed that the numerical values of the resistance to flow ratio vary from maximum radii of the two abnormal 

segments to the minimum radii.Pankaj et.al [7] investigated the non-Newtonian flow of blood through a stenosed artery 

segment using power law model. They concluded that the thermodynamic behavior of blood flow is influenced by the 

presence of the arterial stenosis.Yadav and Kuma [8] have studied the behavior of non-Newtonian blood flow through a 

stenosed artery using power law fluid model. It was ascertained that resistance to flow increases with stenosis size for 

different index values of flow index behavior. Sanjeev and Chandrashekhar [9] demonstrated the effect of size of stenosis on 

blood flow through an artery where blood behaves like a power law fluid in a uniform circular tube with axially non-

symmetric but radially symmetric stenosis. Ranadhir et. al [10] examine the characteristics of unsteady blood flow in an 

artery with a time dependent stenosis using power law fluid model.Sankar et. al [11] developed a mathematical analysis of 

single and two phase flow of blood in narrow arteries with multiple constriction. They analyze the pulsatile flow of blood in 

narrow arteries with multiple stenosis under body acceleration mathematically treating blood as single and two phase 

Herschel Bulkley fluid model. Kumar [12] considered the mathematical model for blood flow through a narrow artery with 

multiple stenosis. They discovered that shear stress increases as the stenosis height increases. Misra and Shit [13] 

investigated blood flow through arterial segment assuming blood asHerschel Bulkley fluid. They concluded that the skin  
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friction and the resistance to flow is maximum at the throat of the stenosis and minimum at the end. Sreenadh et.al [14] 

demonstrated the problem of steady flow of the Casson fluid through an inclined tube of non-uniform cross section with 

multiple stenosis. The analytical solution was evaluated for velocity, flow rate and resistance to flow. Venkatesan et.  al, [15]  

investigated the flow of blood through a narrow artery with bell- shaped stenosis, treating blood as Casson fluid. The result 

was compared with the results of Herschel-Bulkley fluid model obtained by Misra and Shit [13] for the same geometry. In 

their study they observed that the resistance to flow and skin friction increase with the increase of maximum depth of the 

stenosis but these flow quantities when normalized, decrease with the increase of the yield stress as obtained by Misra  and  

Shit [13].Srivastavaet. al [16] considered the effects of an overlapping stenosis on blood flow characteristics in a narrow 

artery. To account for the non-Newtonian behavior, blood has been represented by a Casson fluid. They discovered that the 

impedance increases with the non-Newtonian behavior of blood as well as with the stenosis size.The shear stress at the 

stenosis two throats assumes the same magnitude. The shear stress at the stenosis critical height assumes significantly lower 

magnitude than its corresponding value at the throats. With respect to any given parameter, the nature of the variations of 

shear stresses at the throats and at the critical height of the stenosis is similar to that of the flow resistance.Lokendra  et. al  

[17] investigated blood flow through an axially symmetric but radially stenosed artery  representing blood by a non- 

Newtonian  fluid obeying Casson fluid equation. They observed that the wall shear stress increases for the increases stenosis 

height. Wall shear stress decreases with increasing trend of shape parameter. Verma [18] examined the axially symmetric, 

laminar, steady, one-dimensional flow of blood through narrow stenotic vessel by considering blood as Bingham plastic 

fluid. It was shown that the wall shear stress and resistance to flow increase with the size of stenosis but this increase are 

smaller due to non-Newtonian behavior of the blood. 

 

2.0 Mathematical Formulation 
Let us consider an axially symmetric, laminar, steady flow of a non – Newtonian viscous fluid (blood). We consider the flow 

of blood in a multi irregular shaped stenosis when the blood is taken as a non – Newtonian. The blood flow is characterized 

by Bingham plastic model. The radius of the tube is represented by: 

𝑅(𝑧)

𝑅0
=

{
 
 

 
 1 −

2ℎ

𝑙𝑅0
(𝑧 − 𝑑),                                        𝑑 ≤ 𝑧 ≤ 𝑑 +

𝑙

2

1 +
2ℎ

𝑙𝑅0
(𝑧 − 𝑑 − 𝑙),                                    𝑑 +  

𝑙

2
< 𝑧 ≤ 𝑑 + 𝑙

1 −
ℎ

𝑅0
+

4ℎ

𝑙2𝑅0
(𝑧 − 𝑑 −

3𝑙

2
)
2

,                     𝑑 + 𝑙 < 𝑧 ≤ 𝑑 + 2𝑙

             (1) 

Where 𝑅(𝑧) is the radius of the artery with constriction, 𝑅0  is the constant radius, h the maximum height of the stenosis , d 

indicate the location and 2L is the total length of the stenosis. 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Geometry of Multi-Irregular Shaped Stenosed Artery. 

The constitutive equation for Bingham fluid model is expressed as: 

�̇� = 𝑓(𝜏) = −
𝑑𝑣𝑟
𝑑𝑟

 =  

1

𝜇
(𝜏𝑟𝑧 − 𝜏𝑏)      ,         𝜏𝑟𝑧 ≥ 𝜏𝑏 

𝑓(𝜏) = 0                                                                𝜏𝑟𝑧 ≤ 𝜏𝑏      (2) 

The approximation equation of motion governing the flow field in the tube is: 

0 = −𝑘 −
1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧)                                                                                                   (3) 

Where 𝑘 =  
𝜕𝑝

𝜕ƶ
  , z and r are axial and radial coordinate, 𝑣𝑟  is the axial velocity, 𝜏𝑟𝑧 and 𝜏𝑏 are the shear and yield stresses, p 

is the blood pressure and  𝜇 is the velocity. 

The appropriate boundary conditions are: 

𝑣𝑟 = 0        at      r = R(Z)         (4) 

𝜏𝑟𝑧 is finite        at     r = 0                                                                                         (5) 
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𝑣𝑟 = 0   at   r = 0                                                                                                       (6) 

The volumetric equation as given by Robinowitsch equation is: 

𝑄 = ∫ 2𝜋𝑟𝑣𝑟𝑑𝑟
𝑅

0
          (7)              

Now solving equation (3) under boundary conditions (4) and (6) and then using  

we get, 

𝑄 = 2𝜋 ∫ (−
𝑑𝑣𝑟

𝑑𝑟
)
𝑟2

2
𝑑𝑟

𝑅

0
         (8) 

Putting the value of  −
𝑑𝑣𝑟

𝑑𝑟
   in (2) we have: 

𝑄 = 𝜋 ∫ 𝑓(𝜏)
𝑅2

𝜏𝑤
2 𝜏𝑟𝑧

2 𝑅

𝜏𝑤
𝑑𝜏𝑟𝑧

𝑅

0
        (9) 

Since    𝜏𝑤 = −
𝑟𝑘

2
         (10) 

Substituting the value of   𝑓(𝜏) from equation (2) into equation (9) and then integrating , we have 

𝑄 =  
𝜋𝑅3

𝜇
[
𝜏𝑤

4
−

𝜏𝑏

3
]         (11) 

Putting equation (10), we have the flow rate which is dependent upon    𝑅4(𝑧)    and   𝜏𝑏 

Q =  −
𝜋𝑅4(𝑧)

8𝜇
(
𝑑𝑝

𝑑𝑧
) −

𝜋𝑅3𝜏𝑏

3𝜇
         (12)   

since 

𝜏𝑤 =
4𝜇𝑄

𝜋𝑅3
+

4𝜏𝑏

3
          (13)                                                                                     

invoking equation (10) into equation (13), we obtain the pressure gradient for stenotic region. 

𝑘 = −
2 

𝑅
[
4𝜇𝑄

𝜋𝑅3
+

4𝜏𝑏

3
]         (14) 

The skin friction for normal arteryat (R =   𝑅0   ,𝜏𝑏 = 0 and h = 0)  is obtained from (12) 

𝜏𝑁 = −
4𝜇𝑄

𝜋𝑅0
3          (15) 

If there is stenosis, skin friction will depend on the geometry of the artery. Using equation (1) and (13) we obtain: 

𝜏𝑤1 = [
4𝜇𝑄

𝜋{𝑅0−
2ℎ

𝑙
(𝑧−𝑑)}

3 +
4𝜏𝑏

3
]            at 𝑑 ≤ 𝑧 ≤ 𝑑 +

𝑙

2
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2ℎ
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3
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𝑙

2
< 𝑧 ≤ 𝑑 + 𝑙 
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2
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2
}

3 +
4𝜏𝑏

3
]    at 𝑑 + 𝑙 < 𝑧 ≤ 𝑑 + 2𝑙    (16) 
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3
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3

3𝜇𝑄
 

𝜏�̅�3 = 
𝜏𝑤

𝜏𝑁
= 

𝑅0
3

{𝑅0−ℎ+
4ℎ

𝑙2
(𝑧−𝑑−

3𝑙

2
)
2
}

3 +
𝜋𝜏𝑏𝑅0

3

3𝜇𝑄
       (17) 

Dividing equation (17) by  𝑅0
3   and using the interval at maximum height of the stenosis (𝑧 = 𝑑 +

𝑙

2  
)  we obtain the 

dimensionless skin friction: 

𝜏�̅�1 =        
1

(1−
ℎ

𝑅0
)
3  +  

𝜋𝜏𝑏
3𝜇𝑄

 

𝜏�̅�2 =          
1

(1−
ℎ

𝑅0
)
3  +  

𝜋𝜏𝑏
3𝜇𝑄

 

𝜏�̅�3     =        
1

(1−
ℎ

𝑅0
+
4ℎ

𝑅0
)
3  +  

𝜋𝜏𝑏

3𝜇𝑄
        (18) 

When 𝜏𝑏 = 0  in equation (13) the skin friction is same with Das et. al [19] for Newtonian fluid. 

Now, integrating  equation (2) in the region 𝜏𝑟𝑧 ≥ 𝜏𝑏  and since   
𝜏𝑟𝑧

𝜏𝑤
 =  

𝑟

𝑅
  ,  we obtain the blood velocity within the stenotic 

region. 
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−𝑣𝑟 =
𝑅

𝜇𝜏𝑤
[
𝜏𝑟𝑧

2

2
− 𝜏𝑏𝜏𝑟𝑧]

0

𝜏𝑤
        (19) 

−𝑣𝑟 =
𝑅

2𝜇
[𝜏𝑤 − 2𝜏𝑏]         (20) 

Substituting equation (13) into equation (20) we obtain 

𝑣𝑟 =
𝑅2

4𝜇
(
𝑑𝑝

𝑑𝑧
) +

𝑅𝜏𝑏

𝜇
         (21) 

 

3.0 Results and Discussion 
In order to illustrate the analytic expression of blood graphically, the following parameter values was used for the purpose of 

computation. 

Table 1: Parameter values. 

Parameter                                      Nominal value                                    Reference 

𝜇     1                                                [19] 

R0     2                                [20] 

𝜏𝐵                                                    0.2- 0.6                                    Assumed 

𝑙     1            [19] 

𝜇                                                  0.2 – 0.6                                       Assumed 

d                         1                               [19] 

h/R0     0.2 – 0.5                                      Assumed 

L                               10                                                  [19] 

3.1 Skin Friction 
Figure 2: described the effect of stenosis size on the skin friction (wall shear stress) at the surface of the stenosis from 

equation (18).  The wall shear stress was plotted against the axial variable for different values of stenosis  size (h/R0 =  0.2, 

0.3, 0.4  and 0.5) taking the yield stress  as constant. It is noticed that the wall shear stress increases with an increase in the 

value of stenosis size.  It also increases for increasing values of the axial variable up to the mid-point of the stenosis and then 

decreases after the stenotic region. 

 
Fig. 2: 

3.2 Pressure Gradient 

Figure 3: Illustrate the effect of viscosity of blood on the blood pressure. The graph of the pressure gradient |
𝑑𝑝

𝑑𝑧
|against axial 

variable z with different values of blood viscosity  𝜇 has been plotted from equation (14).  Taking  volumetric flow rate  Q 

and the yield stress 𝜏𝑏  as constant (Q=1 and 𝜏𝑏  = 0.02n/𝑚2). It is clear that the pressure gradient decreases within the 

stenotic region and then increases after the stenotic region for increasing values of  blood viscosity. 

 
Fig. 3: 
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figure 2: skin friction against axial variable for different s/R0 in the region d  z  d+l/2 ,d+l/2 < z  d+l and d+l < z  d+2l
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figure 3: pressure gradient against axial variable for variable viscosity () in the region d  z  d+l/2 ,d+l/2 < z  d+l and d+l < z  d+2l
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3.3 Flow Rate 
Figure 4: depicts the effect of yield stress on blood flow rate. From equation (12), the flow rate has been plotted against axial 

variable for different values of yield stress. Considering blood viscosity and pressure gradient as constant (𝜇 = 1,
𝑑𝑝

𝑑𝑧
= 1). It 

is obvious that the flow rate |Q| decreases with an increase in the value of the axial variable and decreases after the mid-point 

of the stenosis and then increases again. It is also clear that the flow rate increases for increasing values of yield stress. 

 
Fig. 4: 

Figure 5:  indicate the effect of viscosity on the flow rate for stenotic region for different values of viscosity. Here, we have 

taken the yield stress and pressure gradient has constant (𝜏𝑏 = 0.02n/𝑚2,
𝑑𝑝

𝑑𝑧
= 1). We have plotted the absolute value of 

blood  flow rate within the stenotic region from equation (12) against the axial variable (z). We put the different values of z in 

the geometry to obtain the relation for flow rate. It is obvious that |Q| decreases with the increase of z within the stenotic 

region and then increases after the stenotic region. Flow rate also decreases for increasing viscosity of blood within the 

stenotic region. 

 
Fig. 5: 

3.4 Velocity 
Figure 6: demonstrate the graph of axial velocity of blood against the axial variable for different values of viscosity (𝜇= 0.2, 

0.3, and 0.4). We have taken the pressure gradient and the yield stress as constant (
𝑑𝑝

𝑑𝑧
=1 and𝜏𝑏  = 0.02n/𝑚2). It is observed 

that axial velocity of blood decreases within the stenotic region with the increase in axial variable up to the mid-point and 

then increases again. It is also notice that as viscosity increases, velocity of blood also decreases. 

 
Fig. 6: 
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figure 4:  volumetric flow rate against axial variable for variable viscosity in the region d  z  d+l/2 ,d+l/2 < z  d+l and d+l < z  d+2l
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 figure 5: volumetric flow rate against axial variable for variable yield stress (o) in the region d  z  d+l/2 ,d+l/2 < z  d+l and d+l < z  d+2l
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 figure 6: variation of velocity against axial variable for variable viscosity in the region d  z  d+l/2 ,d+l/2 < z  d+l and d+l < z  d+2l
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In figure 7: We have examined the effect of yield stress on the blood velocity. The axial velocity obtained from equation 

(21) has been plotted against axial variable z for various values of the yield stress (𝜏𝑏 = 0.2, 0.4 𝑎𝑛𝑑 0.6).It is true that the 

velocity of blood decreases with an increase in the axial variable up to the mid-point of the stenosis and then increases after 

the stenosis with the increasing  yield stress values.  

 
Fig. 7: 

 

4.0 Conclusion 
The present study analyzed the steady flow of blood in a narrow arterial segment with multi-irregular shaped stenosis 

regarding blood to act as a non-Newtonian fluid, possessing a finite yield stress that is a Bingham plastic fluid in which the 

shear stress is proportional to the shear rate, and the result are compared with Das et al,2014 [18] for Newtonian fluid. We 

discovered that for Newtonian and non –Newtonian fluid: 

➢ Flow rate decreases with the increase in dynamic viscosity of blood. 

➢ Wall shear stress or skin friction increases for increase in stenosis size. 

➢ Blood pressure increases and decreases within the stenotic region for increasing blood viscosity. 

➢ Axial velocity of blood increases with the increase in axial variable within the stenotic region. 

The major findings of the present study for non-Newtonian fluid are listed below:  

I.Blood flow rate Q increases significantly with the increasing values of yield stress. 

II.The  blood velocity increases with the increasing  yield stress values. 

Therefore, the differences between the Newtonian and non-Newtonian models (Bingham fluid) show that the non-Newtonian 

behavior is an important factor and should not be neglected.  

Hence, the present analysis may be useful in analyzing blood flow in disease state. We conclude that the multi-irregular 

shaped stenosis have more effect on non-Newtonian fluid than Newtonian fluid. 
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