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Abstract 
 

In this work, we investigate the pressure distribution of fluid in a 

bounded circular reservoir.  The diffusivity equation was used in the 

analysis.The finite element method (FEM) was used as a mathematical tool 

in the analysis. The domain was discretized into ten Lagrange quadratic 

elements and was assembled to represent the cross section of the reservoir. 

The analysis was done with the assumption that before the well begins 

production, there was uniform distribution of pressure throughout the 

reservoir and that the well has been producing long enough to attain the 

steady state flow. Thus, this work covers the steady state case when the 

pressure at different locations in the reservoir is constant at all time, i.e., the 

change in pressure with time is zero.The result shows that there is an 

increase in pressure from the wellbore to the external boundary of the 

reservoir. This increase was very pronounced around the vicinity of the 

wellbore and flattens out within the region of the external boundary. The 

results obtained from this analysiswere compared with the results obtained 

from the exact differential equation method. The comparison shows that 

there wasa strong agreement between both methods
. 
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 Nomenclature: 

B  Formation volume factor, RB/STB 
c  Compressibility, psia-1 

h  Thickness, ft 

K  Stiffness matrix 

k  Permeability, md 
n  Number of elements 

P  Pressure, psi 

DP
 Dimensionless pressure 

iP
 Initial reservoir pressure, psi 

Q
 Terminal flow rate 

q
 Volumetric flow rate, STB/D 

r  Radius, ft 

 

1.0     Introduction 
There are basically three types of flow regimes that exist in describing the flow behaviour of fluids and pressure distribution 

as a function of time in reservoirs. These flow regimes are: steady-state flow, pseudo-steady-state flow, and unsteady-state 

flow. 
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Dr  Dimensionless radius 

er  External radius, ft 

eDr
 Dimensionless external radius 

wr  Wellbore radius, ft 
t  Time, hr 

Dt  Dimensionless time 
w  Weight function 

  For all 

Greek letters 


 Porosity, fraction 


 Viscosity, cp 

  Pi 


 Interpolation function 
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In pseudo-steady-state flow regime, the pressure at different locations in the reservoir is declining linearly as a function of 

time, i.e., at a constant declining rate. Mathematically, this definition states that the rate of change of pressure with respect to 

time at every position is constant[1]. 

The unsteady-state flow frequently called transient flow is a fluid flow condition that occurs when the rate of change of 

pressure with respect to time at any position in the reservoir is neitherzeronor constant. This definition suggests that the 

pressure derivative with respect to time is essentially a function of both position and time. In the unsteady-state flow cases, it 

is assumed that a well is located in a very large reservoir and producing at a constant flow rate. This rate creates a pressure 

disturbance in the reservoir that travels throughout this infinite-size reservoir. During this transient flow period, reservoir 

boundaries have no effect on the pressure behaviour and this is often very short in duration. 

As soon as the pressure disturbance reaches all drainage boundaries, it ends the transient (unsteady-state) flow regime. A 

different flow regime begins that is called pseudo-steady state flow. As soon as the entire reservoir pressure has been 

affected, an unexpected situation arises. The change in pressure with respect to time at all radii in the reservoir becomes 

uniform. Therefore, the pressure distributions at subsequent times are parallel [2]. It is necessary at this point to impose 

different boundary conditions on the diffusivity equation and derive an appropriate solution to this flow regime. 

In literature on Petroleum Engineering Research,solutions to analytical flow equations for an elliptical flow domain with 

vertical fracture at the wellbore are abundant [3 – 10]. However, much work has not been done for circular reservoir[11]. 

Van der Ploeg et al.[12]developed a closed-form solution for steady saturated flow into a fully penetrating well in elliptical 

flow geometry. Van der Ploeg et al.’s work was related to water flow in a confined elliptical aquifer. Steady state solutions 

were developed for various well locations using gravity flow. Results and flow nets were presented for several cases. The 

essence of the approach was to derive orthonormal functions for the specific problems using method of Powers et al.[13]. 

Although Van der Ploeg et al. presented solution for different well locations, only the solution for a well at the centre is 

considered here. 

The flow regime is said to be identified as a steady-state flow if the pressure at every location in the reservoir remains 

constant, i.e., does not change with respect to time. In reservoirs, the steady-state flow condition can only occur when the 

reservoir is completely recharged and supported by strong aquifer or pressure maintenance operations. 

In well testing analysis, there are four solutions that are useful: solution for a bounded circular reservoir; the solution for an 

ideal reservoir with a well consider to be a line with zero wellbore radius; the pseudo-steady state solution; and the solution 

that includes wellbore radius for a well in an infinite reservoir. This paperaddresses the case of a fluid in steady state flow 

regime.Research in the field of reservoir using FEM is sparse. Therefore, the finite element method (FEM) was used in this 

work to analyse thecase of a steady state flow of fluid in abounded circular reservoir.  

 

2.0 Theory 
The law of conservation of mass, Darcy’s law and the equation of state has been combined to obtain the following partial 

differential equation: 
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with the assumptions that compressibility, c, is small and independent of pressure, P; permeability, k, is constant and 

isotropic; viscosity,  , is independent of pressure; porosity,  , is constant; and that certain terms in the basic differential 

equation (including pressure gradients squared) are negligible. Eq. (1) is called the diffusivity equation and the term 

k

c

000264.0


 is the inverse of the diffusivity constant, . 

In this work, the diffusivity equation is analysed for bounded circular reservoirs, the case in which the well is assumed to be 

located in the centre of a cylindrical reservoir and also, the flow is assumed to be in steady state where the pressure does not 

vary with respect to time. 

 

3.0 Governing Equation 
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Initial and boundary conditions: 

i. iPP =  at t = 0   r        (2) 
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3.1 Dimensionless Variables 
Eqs.(1) – (4) incorporate physical parameters such as permeability, and it would be irrelevant to solve this problem for a 

particular combination of values for these parameters. Dimensionless variables are designed to eliminate the physical 

parameters that affect quantitatively, but not qualitatively, the reservoir response. Eq. (1)is in Darcy units, and the 

dimensionless terms will render the system of units employed irrelevant. For this model, three dimensionless variables are 

required. In US Oilfield units, distance, time and pressure are replaced as follows: 
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2
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w
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Dimensionless pressure ( )PP
qB

kh
P iD −=

2.141
      (7) 

By defining dimensionless variables in this way, it is possible to create an analytical model of the well and reservoir, or 

theoretical ‘type-curve’, that provides a ‘global’ description of the pressure response that is independent of the flow rate or of 

the actual values of the well and reservoir parameters. 

Eq. (1) can be transformed by substituting the following dimensionless variables in Eqs.(5) – (7) into eq. (1) and this 

becomes: 
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In this case, the governing equation is analysed assuming that the flow is steady i.e., 
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By substituting eq. (9) into eq. (8), we have: 
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The boundary conditions become: 

At DwDDwD PPrr == ,  and        (11) 

DeDDeD PPrr == ,          (12) 

Eq. (10) can also be written in a condensed form as: 
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Eq. (13) represents the steady state equation of the dimensionless form of the diffusivity equation. 

 

4.0  Finite Element Formulation 

4.1 Weak Formulation 
In the development of the weak form, we assumed a quadratic element mesh and placed it over the domain and applied the 

following steps: 

Multiply eq. (13) by the weight function ( )w and integrate the final equation over the domain. 
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Mathematically, 
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Substitute eq. (15) into eq. (14) 
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Integrating eq. (16) with respect to z , then , over the limits, we have; 

0
1

2 =

























B

A

r

r

DD

D

D
D

DD

drr
r

P
r

rr
w        (17) 

Eq. (17)can be simplified by integrating by part, 
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Where 
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4.2 Interpolation Function 

The weak form in eq. (19) requires that the approximation chosen for DP  should be at least quadratic in Dr  so that there are 

no terms in eq. (19) that are identically zero. Since the primary variable is simply the function itself, the Lagrange family of 

interpolation functions is admissible. We proposed that DP  is the approximation over a typical finite element domain by the 

expression: 
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Substituting eq. (21) into eq. (20), we have; 
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In matrix form we can represent the semi-discrete finite element model thus, 
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Here, eq. (24) is known as the finite element model. 

Using Quadratic Lagrange Interpolation functions for a quadratic element: 
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The coefficient matrix can be easily derived by substituting the Lagrange interpolation functions into eq.(25)accordingly. The 

matrices are shown below: 
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4.3 Shape Assembly 
For the purpose of this work, 10 quadratic elementswasused to represent the entire reservoir, 

( )hnrr DwDA 1−+=          (30) 

Where n = number of elements 

In this analysis, we have withheld the computational details of the finite element analysis (FEA) used. However, the authors 

would be glad to interact with researchers who may want to refer to the computational mathematics involved. 

 

5.0 Results and Discussion 
Eq. (13) can be analysed using exact differential equation method. This can be done by integrating twice and then imposing 

the boundary conditions in eqs. (11) and (12) [1]. The result of the analysis is shown in eq. (31). 
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For the radial geometry in a reservoir, flow can be described under what is referred to as the steady state condition. This 

implies that, for a well producing at a constant rate q; the change in pressure with respect to time is zero at all points within 

the reservoir. Thus the outer boundary pressure DeP  and the entire pressure profile remain constant with time. This condition 

may appear to be artificial but is realistic in the case of a pressure maintenance scheme, such as water injection, in which one 

of the aims is to keep the pressure constant. In such a case, the oil withdrawn from the radial cell is replaced by fluids 

crossing the outer boundary at DeD rr = .In addition, for simplicity, the reservoir will be assumed to be completely 

homogeneous in all its parameters and the well perforated across the entire formation thickness. 

In reservoirs, the steady-state flow condition can only occur when the reservoir is completely recharged and supported by 

strong aquifer or pressure maintenance operations. 

Table 1: Parameters for analysis 

DwP  DeP  Dwr  Der  

0.5 5 1 41 

When the reservoir has been producing for quite a long time, a time will come where the fluid that is leaving the reservoir 

will be equal to the fluid entering the reservoir. At this time, the flow is said to be in its steady state. In this state the change 

in pressure is not a function of time but a function of position. This is to say that at this stage, the dimensionless pressure does 

not change with time but it varies in the radial direction. 

Fig.1 shows the results obtained for change in dimensionless pressure against the change in dimensionless radius for both the 

finite element method and the exact differential equation method. It can be seen that the variation in pressure within the 

vicinity of the wellbore was very pronounced and later becomes almost uniform outside the region of the wellbore radius to 

the reservoir external boundary. 

 

Table 2: Numerical results using FEM  

Dr  1 3 5 7 9 11 13 15 17 19 21 

DP  0.5000 1.7798 2.4198 2.8315 3.1402 3.3862 3.5912 3.7667 3.9202 4.0566 4.1794 
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Table 2: Contd 

Dr  23 25 27 29 31 33 35 37 39 41 

DP  4.2910 4.3932 4.4876 4.5753 4.6571 4.7338 4.8059 4.8741 4.9387 5.0000 

 

 
Fig. 1: A graph of dimensionless pressure against radial displacement 

 

This is maintained throughout the flow of the fluid due to the fact that the reservoir is been recharged by a very strong 

aquifer. The sudden change in the pressure within the region of the wellbore radius is due to the fact that, as the fluid is been 

withdrawn from the reservoir through the wellbore, there is adirect reduction in the pressure within the region of the 

wellbore. This disturbance as a result of the change in pressure quickly corrected by replenishing the lost fluid from the 

region outside the wellbore radius and the overall effect spread through the entire reservoir. When this pressure disturbance 

gets to the external reservoir boundary, it fades out. This is because the pressure drop as a result of withdrawing fluid from 

the reservoirhas been replaced by the strong aquifer thereby maintaining the pressure within the reservoir all through the 

steady state flow regime. 

InFig.1, the plot of the two results almost completely merged due to the high accuracy of the results.To ascertain the accuracy 

of this analysis, the same problem was analysed using the exact differential equation method. It was realized that the two 

results obtained converged. To test for the degree of convergence, the percentage error between the two methods was 

calculated. It was observed that the two results converge but with high percentage error at the region close to the wellbore. 

This was due to the fact the there was much pressure variation within the region around the wellbore radius. The percentage 

error around the reservoir external boundary was minimal because there was no much sudden change in the pressure within 

that region. Table 3 shows the dimensionless radius and their corresponding percentage error between the results obtained 

from the finite element method and the exact differential equation method. 

 

Table 3: Comparison between the FEM and the exact method in eq. (31) using percentage error 

Dr  1 3 5 7 9 11 13 15 17 

% ERROR 0.0000 2.8081 1.2450 0.9285 0.7051 0.5720 0.4690 0.3927 0.3299 

 

Table 3: contd 

Dr  19 21 23 25 27 29 31 33 35 

% ERROR 0.2790 0.2354 0.1983 0.1657 0.1371 0.1115 0.0885 0.0676 0.0485 
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Table 3: contd 

Dr  37 39 41 

% ERROR 0.0310 0.0149 0.0000 

 

6.0 Conclusion 
In this work, we have formulated the Finite Element Model and the model was used to analyse thediffusivity equation for 

bounded circular reservoir which is rarely seen in literature. The result obtained from the analysis was used to describe the 

pressure distribution across a reservoir from its wellbore to the external boundary in the steady state flow regime. It was seen 

that thedimensionless pressurein the reservoir increases from the wellbore to the external boundary. The results obtained 

from this work were validated by comparingit with the results obtained from the exact differential equation method.The 

accuracy of the results obtained shows high degree of correlation between the formulated finite element model and the exact 

differential equation method. 
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