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Abstract 
 

In this work, we usedthe pseudo steady form of the diffusivity equation to 

investigate the pressure distribution in a bounded circular reservoir. The 

reservoir domain was discretized into ten Lagrange quadratic elements and 

was assembled to represent the cross-section of the reservoir. It was assumed 

that before the well begins production, there was uniform distribution of 

pressure throughout the reservoir and that the well has been producing long 

enough for the reservoir outer boundary to feel the disturbance created at the 

wellbore. Thus, this work addresses the pseudo-steady state flow when the 

pressure at different locations in the reservoir is declining linearly as a 

function of time, i.e., at a constant declining rate. The result shows that there 

was an increase in pressure from the wellbore to the external boundary of the 

reservoir. This increase was very pronounced around the vicinity of the 

wellbore and flattens out within the region of the external boundary. The 

results obtained from this analysis were compared with the results obtained 

from the exact differential equation method. The comparison shows that 

there was a strong agreement between both methods
. 
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1.0     Introduction 
Challenges to reservoir engineers begin when a reservoir is opened to production and the flow of hydrocarbons begins. At 

this point, reservoir pressure begins to drop, fluids comprising gas, oil, and water expands, phase equilibrium is disturbed, 

and alterations in the physical properties of the fluid phases occur in various degrees throughout the entire reservoir. With  

further withdrawal of fluids, changes continue and difficult second-order differential equations are needed to describe the 

unsteady state flow of expandable fluids [1]. 

In other to solve this second-order differential equations, the fluid flow have to be divided into three basic flow regimes 

which describes the fluid flow behaviour and reservoir pressure distribution as a function of time. These flow regimes are the 

steady-state flow, unsteady-state flow and the pseudo-steady-state flow. 

Steady-state flow occurs when the pressure at every location in the reservoir remains constant. In reservoirs, the steady-state 

flow condition occurs when the reservoir is completely recharged and supported by strong aquifer or pressure maintenance 

operations due to either natural water influx or the injection of some displacing fluid [2]. 

Unsteady-state flow occurs when the pressure at every location in the reservoir varies with time. In this case, it is assumed 

that a well is located in a very large reservoir and producing at a constant flow rate. This rate creates a pressure disturbance 

in the reservoir that travels throughout this infinite-size reservoir. During this transient flow period, reservoir boundaries 

have no effect on the pressure behaviour and this is often very short in length. This regime ends as soon as the pressure 

disturbance reaches all drainage boundaries. Pressure response in transient state for a well producing from a finite reservoir 

of circular, square, and rectangular drainage shapes has been studied in [3 – 12]. 

The pseudo-steady flow regime occurs soon after the transient state when entire reservoir pressure has been affected. The 

change in pressure with time at all radii in the reservoir becomes uniform. Therefore, the pressure distributions at subsequent 

times are parallel [13]. It is necessary at this point to impose different boundary conditions on the diffusivity equation and 

drive an appropriate solution to this flow regime. 

In the pseudo-steady state flow regime, the change in pressure with time becomes the same throughout the drainage area. 

This definition means that the rate of change of pressure with respect to time at every position is constant. This condition is 

also referred to as semi steady-state flow and quasi steady-state flow [2]. The condition of pseudo-steady state is most 

appropriately applied to describe reservoirs which have been under development for some time. 

There are four solutions that are useful in well testing analysis,: the solution for a bounded circular reservoir; the solution for 

an ideal reservoir with a well are considered to be a line with zero well bore radius; the pseudo steady-state solution; and the 

solution that includes well bore radius for a well in an infinite reservoir. 

Research in the field of reservoir engineering using Finite Element Method (FEM) is sparse. Therefore, this work presents 

the formulation of the finite element model to analyse the problem of a fluid in a bounded circular reservoir in the pseudo-

steady state flow regime. 

 

2.0 Theory 
The second order partial differential equation to represent pressure variation in a reservoir has been modelled from the 

combination of the law of conservation of mass, Darcy’s law and the equation of state: 
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with the assumptions that compressibility, c, is small and independent of pressure, P; permeability, k, is constant and 

isotropic; viscosity, , is independent of pressure; porosity, , is constant; and that certain terms in the basic differential 

equation (including pressure gradients squared) are negligible. Eq. (1) is called the diffusivity equation and the term 

k

c

000264.0


is the inverse of the diffusivity constant, . 

In this work, the diffusivity equation is analysed for bounded circular reservoirs, the case in which the well is assumed to be 

located in the centre of a cylindrical reservoir and also, the flow is assumed to be in pseudo-steady state where the pressure 

differential with respect to time is assumed to be constant. 

 

3.0 Governing Equation 
The governing second order partial differential equation for flow in porous media for a slightly compressible liquid is given 

as: 
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The significant assumptions made are: 

i. Slightly compressible liquid (constant compressibility) 

ii. Constant fluid viscosity 

iii. Single-phase liquid flow 

iv. Gravity and capillary pressure are neglected 

v. Constant permeability 

vi. Horizontal radial flow (no vertical flow) 

If we assume that the flow rate (q) is constant, then 
t

P




 is constant as well. 

Using the definition of the compressibility: 

dP
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V
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1
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Eq. (3) can be rearranged and differentiated with respect to time (t) to give: 
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Expressing the eq. (3) in oilfield units gives: 
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For a radial drainage system, the pore volume (V) is given by: 
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Eq. (9) is referred to as the pseudo-steady form of the diffusivity equation. This equation cannot be solved analytically except 

we introduce some boundary conditions. These are shown in eq. (10). 
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4.0 Finite Element Formulation 

4.1 Weak Formulation 
In the development of the weak form, we assumed a quadratic element mesh and placed it over the domain and applied the 

following steps: 

Multiply eq. (9) by the weighted function and integrate the final equation over the domain. 
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From mathematics, 
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Substitute eq. (12) into eq. (11) 

0
1

1

0

2

0

2
=








+
















  




e

w

r

r e

dzrdrd
r

C

r

P
r

rr
w       (13) 

Integrating eq. (13) with respect to z , then , and incorporate the limits, we have; 
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Simplifying eq. (14) by integrating by part, 
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Expand eq. (15), 
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Where 
r

P
rQ



=          (17) 

4.2 Interpolation Function 

The weak form in eq. (16) requires that the approximation chosen for  should be at least quadratic in  so that there are 

no terms in eq. (16) that are identically zero. Since the primary variable is simply the function itself, the Lagrange family of 

interpolation functions is admissible. We proposed that  is the approximation over a typical finite element domain by the 

expression: 
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Substituting eq. (17) into eq. (16), we have; 
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In matrix form we can represent the semi-discrete finite element model thus, 
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Eq. (21) is referred to as the finite element model. 
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Where nhrr we +=          (24) 

Also, 
n
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Where n = No of elements 

Using Quadratic Lagrange Interpolation functions for a quadratic element: 
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The coefficient matrix can be easily derived by substituting the Lagrange interpolation functions into eq.(22) respectively. 

The matrices are shown below: 
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4.3 Shape Assembly 
For the purpose of this work, ten quadratic elements has been used to represent the entire reservoir, 

( )hnrr DwDA 1−+=
         (31) 

Where n = number of elements 

In this analysis, we have withheld the computational details of the finite element analysis (FEA) used. However, the authors 

would be glad to interact with researchers who may want to refer to the computational mathematics involved in the shape 

assembly. 

 

5.0 Results and Discussion 
The pseudo-steady state form of the diffusivity equation as shown in eq. (9) can also be analysed using the exact differential 

equation method. This can be done by integrating twice and then imposing the boundary conditions stated in eq. (10) [2]. The 

result of the analysis is shown in eq. (32). 
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Table 1: Parameters for Analysis 

  
  

 

 

4500 10000 300 0.4 40 100 

The initial condition in the reservoir states that the pressure is uniform i.e., the pressure from the wellbore to the external 

boundary is the same at time t=0. In this pseudo state flow regime, the reservoir has been producing for a sufficient period of 

time so that the effect of the outer boundary has been felt. In this case, the influence of the reservoir boundaries or the shape 

of the drainage area has effect on the rate at which the pressure disturbance spreads in the reservoir. It is therefore considered 

that the well acts as if it is surrounded at its outer boundary by a solid "brick wall" which prevents the flow of fluids into the 

radial cell. This “brick wall” can either be in the form of a fault bringing about variation in the permeability of the walls of 

the reservoir or a high degree of anisotropy. 
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Table 2: Numerical Results Using FEM 

r 1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 

P 4500.0 4509.5 4512.6 4514.3 4515.5 4516.4 4517.1 4517.7 4518.2 4518.6 4518.9 

Table 2: Contd 

r 5501 6001 6501 7001 7501 8001 8501 9001 9501 10001 

P 4519.2 4519.5 4519.7 4519.9 4520.0 4520.1 4520.2 4520.2 4520.3 4520.3 

 

 
Fig. 1: A Graph of Pressure Against Radius 

Fig.1 shows the results obtained for change in pressure against the change in radius for the finite element method. It can be 

seen that the variation in pressure within the vicinity of the wellbore was very pronounced and later becomes almost uniform 

outside the region of the wellbore radius to the presumed “brick wall” which might not necessarily be the reservoir external 

boundary. Thus, for the same boundary conditions and , the constant well flow in the pseudo-steady state flow regime 

is slightly higher than the one obtained in the case of steady state flow regime and the difference is explained by the fact that 

most of the produced fluid travels a shorter distance in the pseudo-steady case than in the steady state flow regime.. 

The abrupt change in the pressure within the region of the wellbore radius is due to the fact that, fluid is been withdrawn 

from the reservoir through the wellbore, thereby increasing the pressure within the region of the wellbore. Therefore, Table 2 

shows the numerical values of the pressure at different points within the reservoir formation using the formulated finite 

element model. 

To test for the accuracy of this analysis, the same problem was analysed using the exact differential equation method. It was 

realized that the two results obtained converged. To test for the degree of convergence, the percentage error between the two 

methods was calculated. It was observed that the two results converged. Table 3 shows the radius and their corresponding 

percentage error between the results obtained from the finite element method and the exact differential equation method. 

 

Table 3: Comparison between the FEM and the exact method in eq. (32)using percentage error 

r (ft) 1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 

% Error 0.0000 0.3722 0.3667 0.3667 0.3665 0.3665 0.3664 0.3664 0.3663 0.3663 0.3663 

Table 3: Contd 

r (ft) 5501 6001 6501 7001 7501 8001 8501 9001 9501 10001 

% Error 0.3663 0.3662 0.3662 0.3662 0.3662 0.3662 0.3662 0.3662 0.3662 0.3662 

Examination of the expression in eq. (8) reveals the following important characteristics of the behaviour of the pressure 

decline rate during the pseudo-steady state flow: 

Pressure variation with fluid viscosity 

The reservoir pressure increases with an increase in the fluids viscosity and vice versa. This is shown in Fig. 2. The range of 

values of viscosity used varies from 0.1 to 0.9. 
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Fig. 2: A Graph of Pressure Against Radius for Increase in Viscosity 

Table 4: Parameters for Analysis for Increase in Fluid Viscosity 

  
 

 

 

4500 10000 300 40 100 

 

Pressure variation with fluid height 

The reservoir pressure increases with a decrease in the height of the fluid in the reservoir and vice versa. This is shown in 

Fig. 3. In the course of the analysis the range of values of the height of the fluid varies from 20 to 100. 

 
Fig.3. A graph of Pressure against radius for decrease in height 

 

Table 5: Parameters for Analysis for Variation in Height of the Fluid 

  
  

 

4500 10000 300 0.4 100 

Pressure Variation with Rock Permeability 

Permeability is a property of the porous medium that measures the capacity and ability of the formation to transmit fluids. 

The rock permeability, k, is a very important rock propertybecause it controls the directional movement and the flow rate of 

the reservoir fluids in the formation. From this analysis, it was observed that the reservoir pressure decreases with an increase 

in permeability and vice versa. This is shown in Fig. 4. 
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Fig. 4: A graph of Pressure against radius for increase in permeability 

Table 6: Parameters for Analysis for Increase in Permeability 

  
  

 

4500 10000 300 0.4 40 

 

6.0 Conclusion 
In this work, we have developed a Finite Element Model to analyse the diffusivity equation in bounded circular reservoir. 

The results obtained were used to describe the pressure distribution across a reservoir from its wellbore to the external 

boundary in the pseudo-steady state flow regime. It was seen that the pressure in the reservoir increases from the wellbore to 

the external boundary. It was observed also that the reservoir pressure increases with an increase in the fluids viscosity while 

the reservoir pressure increases with a decrease in the height of the fluid in the reservoir and the rock permeability and vice 

versa. 

The results obtained from this work were validated by comparing it with the results obtained from the exact differential 

equation method. The accuracy of the results obtained shows high degree of correlation between both methods. Therefore, 

the Finite element method can be used in analysing and evaluating well pressure distribution for pseudo-steady state flow in 

bounded circular reservoirs. 

The beauty of the developed finite element model is that it tells us the pressure history at different points in the entire 

reservoir formation from the well bore to the external boundary at a glance as against other numerical methods that involve 

continuous iterations. 
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