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Abstract 
 

The focus of this study is on efficiency of the second order spherical 

kernels. A formula for the efficiency using the epanechnikov kernel as the 

basis for the optimum based on the fundamentals of AsymptoticMean 

Integrated Squared Error (AMISE) is constructed. The resultant expression 

is a d-dimensional efficiency of the second order spherical kernels
. 
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1.0     Introduction 

The term density estimation is simply using a random variable X obtained from an observed data to construct an estimate f̂  

of an underlying density function f [1,2]. The estimation of the unknown density function can be achieved using either the 

parametric or the nonparametric methods. The parametric methods to density estimation assumes a functional form for the 

density, and the maximum likelihood technique, for example, can then be used to estimate the unknown parameters. Unless 

we use the form of the density a priori, assuming a functional form for a density could lead very often to erroneous inference 

[3]. 

 Sometimes, when the distribution isunknown, then the nonparametricdensity estimation, like the histogram or the kernel 

estimator is applied. This approach allows the data to speak for itself [4,5]. The nonparametric methods are flexible and 

computationally intensive. The trauma associated with the tedious computations in the nonparametric approach has been 

considerably reduced via the advent of easily fast computing power in the twentieth century [6]. In this work, we concentrate 

on one class of nonparametric density estimators, namely, the kerneldensity estimator. This kernel density estimator is a more 

reliable statistical technique that deals with some of the problems associated with histogram which are discussed in[4,7,8]. 

Kernel density estimation has found relevance inestimating geographic customer densities [9] and recently in the area of 

human motion tracking or pattern recognition [10,11,12],for data lying on a d-dimensional torus 






 1d [13],in huge 

computational requirementfor large-scale analysis [14,15], and in the area of multivariate cluster sampling kernel approach to 

multivariate density estimation [16]. 

Acommon term in kernel density estimation is the bandwidth or window width which is analogous to the bin width in 

histogram. The bandwidth determines how much smoothing is done. Generally, a narrow bandwidth implies that more points 

are allowed and this lead to a betterdensity estimate. This technique, also known as the Parzen window estimator, was studied 

in the seminal paper by [17], although, the basicidea was independently discussed in[18,19]. 

For a d - variate random variable dXXX ,,, 21   drawn from a density f the generalized kernel estimation is given 

by Wand and Jones [5] as  

( )
=

− −=
n

i

iHKnHf
1

1);( Xxx                         (1.1)  

where ( )Tdxxx ,..., 21=x and ( ) nixxx
T

idiii ,...,2,1,,..., 21 ==X  In this case ( )•K is assumed to be the 

multivariate (d – dimensional) kernel. This kernel is assumed to be a spherical symmetric probability density function. H  is 

the bandwidth matrix which is symmetric and positive – definite. The scaled and unscaled kernels are related by  
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( ) ( )xx 2

1

2

1
−−

= HKHKH . 

An equal bandwidth h in all directions as in (1.1) corresponds to
dIhH 2=

, 
where  is the dd   identity 

matrix. This leads to the expression 

( ) ( )( )
=

− −=
n

i

id
hK

nh
hf

1

11
;ˆ Xxx         (1.2) 

 The parameterization 
dIhH 2= can effectively be used if the components of the data vector are commensurate. Two 

transformation approaches have been suggested to overcome this problem [4,6,20]. These transformations involve either pre-

scaling each axis (that is, normalize to unit variance, for instance) or pre- whitening the data (that is, linearly transform to 

have unit covariance matrix). A detailed study of this can be found in [21].The transformation guarantees the use of the form 

involving single bandwidth as in (1.2). 

Many of the studies in density estimation have been centred on the univariate kernel density estimators [4]. The focus of this 

paper, however,is on the multivariate settings with emphasis on the generalizedexpression for the efficiency of the second-

order d-dimensionalspherical kernelsusing the epanechnikov kernel as the basis for the optimum. The choice of epanechnikov 

kernel is based on the fact that it minimizes MISE. Other kernels are not that suboptimal [5]. The efficiency concept is used 

in kernel density estimation to analyse the effect of second-order multivariate kernels so that an appropriate kernel can be 

chosen. 

The choice of (1.2) is that it enablesone to obtain closed form expressions for the optimal bandwidth and the asymptotic 

mean integrated squared error (AMISE). Hencethe generalized expression for the efficiency of second-order d-dimensional 

kernel is derived. Throughout this paper,   is the shorthand for dR
 .  

The concept of efficiency in kernel density estimation has not received much attention and as such literature in this area is 

quite scanty. The efficiency for univariate kernels popularized by [4]is the efficiency of other kernel function relative to the 

epanechnikov kernelwhen using other kernel function. This represents the ratio of sample sizes necessary to obtain the same 

minimum AMISE (for a given kernel function) when using the epanechnikov as when using any other kernel. In the case of 

multivariate kernels [5] based their approach on the ratio of spherically symmetric kernel relative to the product kernel. A 

new computational approach for the efficiency of second-order multivariate product kernels was developed by [22]. The 

epanechnikov kernel was used as a theoretical underpinning for deriving the efficiency formula. Thus, in this work, the 

generalized efficiency of the second-order d-dimensional spherical kernels is derived. This work is motivated by the works of 

[4,5,22]. 

The rest of the paper is organized as follows. In section 2, we introduce AMISE for the d-dimensional kernel which is very 

germane to the derivation of the proposed efficiency formula. Section 3 is dedicated to the derivation of the proposed 

efficiency of the second –order d-dimensional spherical kernel. Section 4 finally concludes with brief discussion on further 

study. 

 

2.0 The Amise for the Multivariate Kernel Density Estimator 
To have a good understanding of the performance of the Kernel Density Estimator (KDE), a measure of distance is needed. 

Though several criteria abound in the literature for measuring this distance, but one common criterion that can be used to 

achieve this, which can be manipulated easily, is the Integrated Squared Error (ISE), otherwise known as the 2L -norm.The 

ISE between the estimate )(ˆ xf and the actual density )(xf is given by 

xxxxx dffffISE 2)}()(ˆ{)}(),(ˆ{  −=       (1.3) 

Equation (1.3) can be averaged over the realized n points to obtain the MISE which is defined as 

( ) ( )( ) −= xxxxx dffEffMISE
2

ˆ)}(),(ˆ{                                                                        (1.4) 

This equation (1.4) is a measure of the average performance of the KDE, averaged over the support of the density and the 

different realized n points.Thus, from [5], the expression (1.4) can be written as a sum of integrated square bias and 

integrated variance of )(ˆ xHf . That is,  

( )  ( )  ( )( ) ( )  +−= xxxxxxx dfVardffEffMISE HHH
ˆˆ)(,ˆ

2
          (1.5)  
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This last expression (1.5) is cumbersome to solve analytically, so we resort to an asymptotic large sample approximation for 

this expression (1.5) which is usually derived via the Taylor”s series expansion referred to as the Asymptotic Mean 

Integrated Squared Error (AMISE). 

Based on the assumption that the kernel functionis symmetric about the origin (i.e.,  = 0xww dk )( ) and has finite second 

moment (i.e., ))( 2 dIdk = wwww
T

, where 0 is a d x 1 vector of zeros and ww dkwi )(
2

2 = is independent of i 

[23,4]. Then, setting
dIhH 2= , the AMISE between the actual density and the estimate can be shown to be  

( )( )
( )

( )( ) += )16()(
!2

1)(
)(,ˆ 2242

22
xxxx dfhk

nh

kR
ffAMISE

dh   

where xx dkkR =
2)()( , 

= 


=

n

i ix

f
f

1
2

2
2 )(

)(
x

x  and xx dkxk )()( 2

12 =  

From the AMISE expression the optimal bandwidth AMISEh  can be obtained by differentiating (1.6) wrt the bandwidth h and 

setting it to zero, we have 

 

 

                                                                                              (1.7) 

 

  

Substituting (1.7) into (1.6), it can be shown that the minimum AMISE for the d-dimensional kernels is  

( )( ) ( ) ( )( ) ( )( )
4

1

42242

2
4

4
)(,ˆ

+














 







 +
= −


d

ndfkdRk
d

d
ffAMISE

d
d

h xxxx     (1.8) 

The expression (1.7) is a closed form solution for the bandwidth which minimizes the expression for the AMISE obtained in 

(1.8). Moreover, observe that the optimal bandwidth is of order 4

1

+
−

dn and the optimal AMISE is of order 4

4

+
−

dn .  The 

detailed derivations of equations (1.7) and (1.8) respectively are found in [5,22]. 

 

3.0 Efficiency for the Second Order D-Dimensional Spherical Kernels 
In this section, the AMISE expression so derived is used to develop the generalized expression for the efficiency of second 

order multivariate kernels. 

One way of obtaining the multivariate forms of any univariate kernel, apart from the other method discussed in [22] is by 

using the spherical symmetric kernel method which is given by[5] as; 


=

xxx

xx
x

d
k

Ts

Ts
s

)}{(

)}{(
)(




        (3.1)  

where  is a univariate symmetric kernel. 

The efficiency of the univariate symmetric kernel defined by [4]is 

( )
( )

4

5

)(








=
kC

kC
kEff e      (3.2) 

where ( ) ( )  ( ) = xxxx dkdkxkC
22

1

5

2

 is any given kernel constant under discussion and  

( )  ( ) = xxxx dkdkxkC eee

22

1

5

2

)( is the  epanechnikov kernel constant. 

An inspiration is drawnfrom (3.2) so that the general expression for the efficiency of multivariate kernels based on the 

spherical approach is now defined as   

( )( ) ( )
( )

4

4

2

2

+









=

d

s

d

s

eds

kC

kC
kEff x

   

(3.3) 
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where ( ) ( )  ( )  4

4

4

2

22

1

2 ++

=
dd

d

dkdkxkC sss

d xxxx  is the d-dimensional spherical form of any given second order 

kernel constant and ( ) ( )    4

4

4

2

22

1

2 )(
++

=
dd

d

dkdkxkC s

e

s

e

s

ed xxxx is thed-dimensional spherical form of the 

epanechnikov kernel constant. 

 

Theorem1. If equation(3.3) holds, then the efficiency for the second order d -dimensional kernel is  

  ( )
( ) ( )

( ) ( )
( )

( )( ) ( )( ) 
















+

+









+


=

−

+ 
1

22

1

2
2

2

2|

2

2254

2

42

5
)( xxxxx dkdkx

d

dd

d

d
kEff s

d

s
d

d

d

d
s

dd


 

Proof: 

The univariate epanechnikov kernel as defined in [4]is  

( ) 55,
5

1
54

3 2

−







−= x

x
xK  

Hence, the multivariate version using (3.1) is 

( )
( ) ( ) 

22
2

54

5)2( 22

2

2

12

dd

d
d

s

e

xxxdd
k


+



+++−+
=


x               (3.4) 

The expression (3.4) and the subsequent derivations are made possible by [23] who gave the polar coordinates in d -

dimension. From (2.1), set 

 

( )  ( )  4

4

4

2

22

1

++

=
dd

d

dkdkx xxxx
       

(3.5)  

Re-write equation (3.5) to reflect (3.3). That is, 

( ) ( )  ( )  4

4

4

2

22

1

2 )(
++

=
dd

d

X
s

e

s

e

s

ed dkdkxkC xxxx
      

(3.6) 

and  

( ) ( )  ( )  4

4

4

2
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1
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dd

d

dkdkxkC sss

d xxxxx
     

(3.7) 

Thus 
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(3.8) 

Equation (3.8) can be expressed in its Spherical Polar Coordinate and to do this, recognize that the change of variables to 

spherical polar coordinate consist of the transformation, as contained in [23],from the dxxx ,...,, 21  coordinates to 

the 121 −dr    coordinates by 
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where r  is the radius, a base angle 1−d  ranging over ( )2,0 , and 2−d angles 
221 ,, −d  each ranging over 

( )22 ,− . This gives the Jacobian 
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(3.9) 

Writing (3.6) in its polar coordinate form, we have 
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(3.10) 

Using the identity relation between the gamma and the beta functions on (3.10), we have 
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Substituting (3.11) and (3.7) into the numerator and denominator respectively of (3.5), we obtain. 
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Equation (3.12) is the generalized efficiency of the second-order d -dimensional kernels using the spherical method. 

4.0 Conclusion 
In this paper, an expression has been developed for the efficiency of second-order d-dimensional spherical kernels. This was 

achieved by using the epanechnikov kernel as the basis for the optimum which was based on the fundamentals of the AMISE 

for the d-dimensional kernels. Our future work would include the relatively straightforward but more involved extension of 

the current procedure to handle the d-dimensional spherical forms of some second-order polynomial kernels that would be 

considered in this work. Consequent upon this the efficiency (in terms of the numerical values) of some of the second-order 

polynomial kernels would be obtained and as a result enable us to see if there would be any loss or gain in efficiency as the 

dimension increases. 
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