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Abstract 
 

In this work, a Susceptible-Exposed-Infected-Recovered-Susceptible 

(SEIR) epidemic model with saturated incidence rate is investigated. We 

established the disease-free equilibrium and endemic equilibrium states of the 

model and analyses for the local and global stabilities of the disease free 

equilibrium using matrix and Lyapnnov function methods respectively when 

the basic reproduction number, 
10 R

were also studied. We proved that 

when 
,10 R

 the endemic state is locally asymptotically stable. The studied 

can be viewed as an extension of the work of Kuniya and Nakata to include 

saturated incidence rate. The effect of initial state of the disease was also 

studied. At the end, initial state of the disease knowledge play a vital role in 

disease eradication.Some numerical results were presented to compare our 

results with existing results
. 
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1.0     Introduction 
The research in infectious diseases can be basically classified as descriptive, analytic, experimental and theoretic. Epidemic 

dynamics study is an important theoretic approach to investigate the transmission dynamics of infectious diseases. The 

mathematical models formulated are based on population dynamics, behaviour of disease transmissions, features of the 

infectious agents and the connections with other social and physiologic factors. Through quantitative and qualitative analysis, 

sensitivity analysis, and numeric simulations, mathematical models can give us good understanding of how infectious diseases 

spread, discover general principles governing the transmission dynamics of the diseases and identify more importance and 

sensitive parameters to make reliable predictions and provide useful control strategies and guidance. Several authors 

have worked in this area Liu [1] discussed dynamical behavior of epidemiological models 

withnonlinearincidencerates.Greenhalgh[2]consideredSEIR models that incorporate density dependence in the death rate. 

Hethcote and Tudor [3] studied endemic infectious disease models for which infection conferred permanent immunity with no 

disease-related mortality but with vaccination. The infectious period had a general distribution 

Cooke and van den Driessche [4] studied  bifurcations in models of the SEIRStype with density dependent contact rate and 

death rate with delays. Li and Muldowney [5] and Liu et.al. [6] studied the globaldynamics of the SEIR models with a non-

linear incidence rate and with a standard incidence, respectively. 

 Li et al.[7] analyzed the global dynamics of a SEIR model with vertical transmission and a bilinear incidence. Zhang et.al,[8] 

considered SEIR with saturating contact rate. In [9], Korobeinikov considers the global properties for SEIR and SEISbymeans 

ofLyapunov functions.Greenhalgh[10], Li andJin [11]considered the global stability ofthe SEI andSEIR model with 

infectiousforceinlatentandinfectedperiod with non permanent immunity. 

 Hethcote [12] discussed disease transmission models with density-dependent demographics. They considered SIS and SIRS 

models with a standard incidence
N

SI
, where N is the total number of individuals. Greenhalgh [13] considered an SIR  
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model with vaccination at birth and a transmission term 
N

SIN )(
. Greenhalgh [14] considered some SEIRS epidemiological 

models with vaccination and temporary immunity. He assumed that the average duration of immunity exceeded the infectious 

period and proved that there was a threshold parameter 0R which determined the dynamics of system. Li, Graef et.al, [15] 

studied a SEIR model for the transmission of an infectious disease that spreads in a population through direct contact of the 

hosts. The force of infection is of proportionate mixing type. 

For the case  )(N , they proved global stability results related to the results of Brauef and Driessche [16]. Classical 

epidemic models assume a transmission term of the form SI . This implies that the contact rate for a single individual is N
, linearly proportional to the number of individuals in the population. An alternative assumption is to take a transmission term 

N

SIN )(
which is nearer to models discussed by Anderson et. al, [17] for AIDS. This implies that the contact rate for a single 

individual is  , a constant, which is more suitable for sexually transmitted diseases.  

In a recent paper, Kuniya and Nakata [18] studied the long time behavior of a nonautonomous SEIRS epidemic model. They 

obtained new sufficient conditions for the permanence (uniform persistence) and extinction of infectious population of the 

model.  In this paper, we extend the work done by Kuniya and Nakata [18] to include saturated incidence rate. We present our 

result in form of basic reproduction number and theorems are used to prove the local and global stabilities of the disease free 

equilibrium. By numerical simulation, we study the effects of initial state of the diseases 

 

2.0 Mathematical Formulation 

A population of size )(tN is partitioned into subclasses of individuals who are susceptible, exposed (infected but not yet 

infectious) infectious and recovered with sizes denoted by )(tS , )(tE , )(tI  and )(tR respectively. The sum )()( tItE 

is the total infected population. If is assumed that all immigrant individuals are susceptible and vertical transmission can be 

assumed to acquire temporary immunity in which recovered individual goes back to the susceptible class again. 

Kuniya and Nakata (2012) considered a non autonomous SEIRS epidemic model as below: 

.
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                                                                                        (1) 

The parameter 0)(  t  is the birth rate, 0)( t  is the disease transmission coefficient, 0)( t  is the mortality/death 

rate, 0)( t  is the rate of developing infectivity, 0)( t  is the recovery rate, 0)( t  is the rate of losing immunity

 

where 0m  is the saturation is rate and 0)(0 tI  is the initial infectious state of the disease. All other parameters are as 

defined in the model of Kuniya and Nakata (2012) 

The following differential equations are solved based on the basis assumptions and we have our new model as stated below in 

equation (2) 
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(2) 

with initial value S(0)> 0, E(0)≥ 0, I(0_> 0, R(0) ≥ 0 
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3.0 Derivation of 0R  Using the Next Generation Matrix 

Let G be a next generation matrix. It comprises of two parts F and 
1V  where 














j

i

i
dx

xf
F

)( 0
          (3)   


















j

i

i
x

xV
V

)( 0
         (4) 

iF is the new infections, while the iV  transfers of infections from one compartment to another. 0X is the disease free 

equilibrium state. 

0R is the dominant Eigenvalue of the matrix 

1 FVG            (5) 

Though there are two disease states but only one way to create new infections. Hence, we are concernedwith E and I 

compartment of the model. Thus; 

E
mI

SI

dt

dE
)(

1 0









         (6) 

IE
dt

dI
)(    

From which we obtain: 
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(7) 

Clearly, It is easy to see that the dominant eigenvalue gives the 0R  


   )1( 0

0
mI

R









       

(8) 

 

4.0 Method of Solution 
 Equilibrium / Critical Points: Let  

 ...0
dt

dR

dt

dI

dt

dE

dt

dS
to obtain the equations below     (9) 

0 =
1 0

RS
mI

SI






  

.0)(
1 0




E
mI

SI




        (10)

 

.0)(  IE   

.0)(  RrI   

Solving equations (10) simultaneously for S, E,I,R respectively yields two equilibrium points namely 

  







 0,0,0,1,1,1,1




RIES and

 

*S  = 


 )()()()( 0000

22 tmItmItmItmI 
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where  

),,,( 1111 RIES and ),,,(  RIES are the infection free and infection equilibrium respectively. 

 

5.0 Local Stability of the Disease-Free Equilibrium 
We shall now linearize the system of the equations in (2) as follows 

Let   xSS  1 , EE  , II  , RR   

 0SxS   
dt

dx

dt

dS
  

So the system (2) can now be written as  
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By linearization, we have     
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The resulting Jacobian matrix is 
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Let   

A =  
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The characteristic equation is |𝐴 −  | = 0is written as 
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    (16) 

 By solving the equation (16) we have, 

1 =  ,   2 ,  D
2

1

22
3 


 , D

2

1

22
4 


   (17) 

Where 

0000

222 44442 RRRRD       (18) 

Theorem 1: If 
,10 R
the disease free equilibrium is locally asymptotically stable; if 

,10 R
the disease free equilibrium is 

stable ; if 
,10 R

the disease free is unstable. 

Proof: 

Now Since ,0,0,0,0    and if 10 R , it follows that 321 ,,   and 4 are all negative, hence the 

disease – free equilibrium is asymptotically stable.
 

Equation (16) becomes 

           22
 = 0 

 ,1     2 and    22
 = 0     (19) 

,03  and    24  

Since ,03  meaning all the eigenvalues are not all negative, the result follows immediately that the disease-free equilibrium 

is unstable when 10 R  

Also if 0,0,0,0    and ,10 R  then from equation (19) 

   ))(         0

2 12 R   = 0  (20) 

It follows that   

,1     2  

We now applyDescartes’ rule of signs      0

2 12 R   = 0  

So we have: 

      012 0

2  R
      (21)

 

If 0,0,0    and 10 R  

Clearly, there is only one sign change, which implies that we have at least one positive root. That is, not all eigenvalues are 

negative. 

Also if we replace   by    and if 0,0,0,10  R  in (21) we have  
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     12 0

2  R  = 0     (22) 

Again there is exactly one sign change, which implies that one of the Eigen values is positive and so not all Eigen values are 

negative, hence the disease free equilibrium  1111 ,,, RIES  = 






 
0,0,0,


 is unstable. 

6.0 Global Stability of the Disease Free Equilibrium 
We consider the lyapunov function defined thus 

L    =       EI  
        (23)

 

1L  =   11 EI    

   

=   















01 mI
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If 10 R  

01 L  

Hence the disease free equilibrium is globally asymptotically stable. 

 

7.0 Local Stability of the Disease Equilibrium 
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It follows by linearization that (26) can be written in term of its linear and non-linear parts as 
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The characteristics equations is given by  
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We now use theorem the stated theorem to analyze the nature of the roots of equation (30) as follows: 

If 0,0,0,0,0,0,0,0 *

1

*

10  SII  then there are no sign change in equation, which implies 

that there are no positive roots of (30)  i.e all eigenvalues are negative. Also ,if we replace   by    in equation (30) we 

obtain 
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(31) 

If 0,0,0,0,0,0,0,0 *

1

*

10  SII
,
 then equation (31) has 4 sign changes i.e. there are 4 

negative roots or 2 negative roots. This implies that all eigenvalues are negatives, hence, the disease equilibrium is 

asymptotically stable. 

 

8.0 Numerical Simulation 
The result of the numerical simulations of the models are given below: 
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9.0 Conclusion 
The simulation result displayed in Figure 1 with parameter set as shown in the Figure, reveals the asymptotic stability of the 

disease free equilibrium when Ro<1. It was also observed from that the susceptible class increases as the Exposed and  
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infected classes decreases which show the effect of initial state of the disease in the model and disease eradication. 

Hence the higher I0( initial state of the disease),the better stability and at a point the disease will die out. 

Figure 2. reveals the unstable nature of disease free equilibrium because, Susceptible class decreases as the Exposed and 

Infected classes increases. This shows the effect of  initial state of the disease in the model and disease eradication 

We also reveal that in Figure 3, transmission rate of the diseases 𝛽 plays a vital role in the spread of the diseases i.e. if the 

transmission rate is increased as observed in fig 3, the spread of the disease is also increased. We observed that there exist a 

linear relationship between 𝛽 and Ro. We see that Ro< 1 only when a smaller value of 𝛽 is consider as show in Figure 3. 

It is therefore recommended that medical practitioners need a very good knowledge on the initial state of a particular disease 

for better controlling and eradication. 
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