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Abstract 
 

In this paper, the simultaneous occurrence of multicollinearity and 

legitimate contaminant in Y-space due to non-normality of error variable is 

considered. To handle the problem of multicollinearity and legitimate 

contaminants in the data, a new class of modified Winsorized shrinkage 

estimators (MWSEs) is proposed and their performance is evaluated through 

estimated mean square error (EMSE) sense. A simulation studies reveal that 

the MWSEs show consistently minimum EMSE among the considered 

shrinkage estimators. 

 
 Keywords: Multicollinearity, legitimate contaminant, Winsorization, mean square error, multiple linear regression. 

 

1.0     Introduction 
The standard multiple linear regression model is expressed as 

 += Xy           (1) 

where y
 
is an 1n vector of response variable, X is a design matrix of order n p ,   is a  1p  vector of regression 

coefficients and  is a 1n  vector of random error, which is normally distributed with mean vector 0   and variance 
nI2 . 

Here nI is identity matrix of order n . The least square estimator (LSE) of β is a linear function of y and is defined as 

( ) yXXX III −

=          (2)  

and the covariance matrix of 


  is obtained as 

( ) II XXCov
−

=






 2       (3) 

According to the Gauss-Markov theorem, LSE of   yields the best linear unbiased estimate (BLUE) provided the following 

assumptions hold: 

A1:  += Xy  

This assumption states that there is a linear relationship between y and X . 

A2: X is a n p  matrix of full rank. 

This assumption states that there is no perfect multicollinearity. In other words, the columns of X are linearly independent. 

This assumption is known as the identification condition. 

A3: 0E X  =   

This assumption (the zero conditional mean assumption) states that the disturbances average out to 0 for any value of X . Put 

differently, no observations of the independent variables convey any information about the expected value of the disturbance. 

The assumption implies that ( ) .E y X=
 
This is important since it essentially says that we get the mean function right. 
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A4: ( ) 2E X I  =  

This captures the familiar assumption of homoscedasticity and no autocorrelation. 

A5: X may be fixed or random, but must be generated by a mechanism that is unrelated  to  

A6: ( )INX 2,0~|   

It is well known that when the normality assumption holds with absence of multicollinearity, the ordinary least squares 

(OLS) estimator becomes a maximum likelihood estimator and the best linear unbiased estimator of the unknown regression 

parameters and has the smallest variance in the class of all linear unbiased estimators with stable coefficients. The traditional 

view that OLS estimator is robust to deviations from the assumptions of normality and moderate multicollinearity 

discourages users from applying other methods. In instances where the model adequacy diagnostics reveal a poor least 

squares fit due to outliers and multicollinearity, the practitioner is faced with the problem of specifying the correct model. 

In the literature, the effect of violation of assumptions has been discussed by many authors [1-4]. Moderate multicollinearity 

may not be problematic. However, severe multicollinearity is a problem. Various techniques are available in the literature to 

deal with the problem of multicollinearity. Those of Hoerl and Kennard [5, 6], Hoerl et al. [7], Liu [8], and Liu [9] are 

praiseworthy. Similarly, the assumption of normally distributed errors is not required for multiple regression to provide 

regression coefficients that are unbiased and consistent, presuming that other assumptions are met [10]. Further, as the 

sample size grows larger, inferences about coefficients will usually become more and more trustworthy, even when the 

distribution of errors is not normal. This is due to the central limit theorem which implies that, even if errors are not normally 

distributed, the sampling distribution of the coefficients will approach a normal distribution as sample size grows larger, 

assuming some reasonably minimal preconditions. This is why it is plausible to say that regression is relatively robust to the 

assumption of normally distributed errors. However, when non-normality is caused by outlier rather than skewness, violation 

of this assumption has more serious consequences [11].   

Another important problem that has received considerable attention is the presence of outliers in Y- space. Huber [12] and 

Rousseeuw and Leroy [13] as cited in [14], pointed out that the presence of outliers significantly affect the performance of 

the OLS estimator. Jadhav and Kashid [14] pointed out that outliers in Y- space are due to heavy tailed distribution of error 

variable. There are influential observations that occur as a result of either a faulty distributional assumption (i.e., when the 

data turns out with different structure than originally assumed) or as a result of a function of the inherent variability of the 

data (see [15, 16] for more details). These types of influential observations or outliers otherwise known as legitimate 

contaminants in this study are not as obvious or easily identified as ordinary outliers. Though this type of observation may 

have a legitimate place in the data set, but if non-randomly distributed can result in small but reasonable deviation from 

normal error distribution and may distort the least squares fit [12, 17]. Many robust parameter estimation methods available 

in the literature are proposed to handle the problem of outliers in the data. Another effective alternative is the use of 

Winsorization approach. Winsorization regression is an effective alternative to the least squares estimation method which 

reduces the effect of contamination on regression coefficient [14]. But how cases such as legitimate contaminants might be 

taken into consideration prior to building a multiple regression model has not been considered in the literature by statisticians 

or by methodologist. This is the main trust of this work. 

In this paper, the simultaneous occurrence of multicollinearity, outliers and/or legitimate contaminants in Y-space resulting in 

non-normality of error variable is considered. To handle the problem of multicollinearity, outliers and/or legitimate 

contaminants in the data, a new class of Winsorized shrinkage estimators using a modified winsorization approach is 

introduced and their performance is evaluated through estimated mean square error (EMSE) criterion. A simulation study is 

conducted to evaluate the performance of the proposed estimators. 

 

2.0 Some Estimators Used in Dealing with Outliers and Multicollinearity 

The data in a linear regression model consist of n  set of observations ),,...,,( 211 ipii yxxx  representing a random sample 

from a population. Traditionally, these observations are assumed to be independent and normally distributed with constant 

error variance, ( )INX ,0~  . The canonical form of the multiple regression model is given as 

 += Zy           (4) 

where  IQXQZ == ,   and ( )
pqqqQ ,..,., 21=  is an orthogonal matrix of eigenvectors 

pqqq ,..,., 21
 

corresponding to the eigenvalues  0,...,, 21 p  of  ( )XX I
 matrix, respectively. Also, IQQ I =  (identity matrix) 

and ( )XX I
 refers to ( )

pdiag  ,...,, 21=  of ( )XX I
. Given the regression model in (4), the aim is to find suitable 

estimate 


  for the parameter   that minimizes the error sum of squares 
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( )( )II ZyZyee  −−=         (5) 

Many methods are available in the literature for finding this estimate. Majority of the research on alternatives to least squares 

estimation in the presence of outliers and correlated regressors has addressed either the nonnormal issue or the collinearity 

issue but seldom addressed the combined problem and the possible contamination of the data set by legitimate contaminants. 

We give a brief review of some notable estimators. 

2.1  Ordinary Least Squares (OLS) Estimator  

When ( )IN 2,0~  , then the optimal estimator of regression parameters is the OLS estimator [14]. Given the multiple 

linear regression in canonical form (4), the OLS method aims at finding the estimator 


  that minimizes equation (5). It is 

denoted by  

YZ I
OLS

1−


=          (6) 

where ( )pdiag  ,,...,, 21= .  

The mean squares error of the OLS is given by  

( ) II
OLS ZZMSE

−

=






 2         (7) 

2.2 Ordinary Ridge Regression (ORR) Estimator 
Among the several methods proposed to overcome the problem of multicollinearity, the ordinary ridge regression estimator 

(ORR) proposed by Hoerl and Kennard [5, 6] is one of the most popular biased estimators for regression parameters. By 

adding a biasing parameter of the ridge estimator, k to the diagonal elements of ( )XX I
, the system then acts more like an 

orthogonal system. It is defined as  

( ) OLS
I

ORR kI


−


+= 
        (8)

 

where k > 0 is a ridge parameter and I is an identity matrix of an order p×p. Because, the ORR estimator is biased, the MSE 

of ORR estimator is defined as  

( ) ( ) ==



+
+

+
=







 p

j

j

jP

J
j

j
ORR

k
k

k
MSE

1 2

2

1

22










     (9)

 

where 
p ,...,, 21

 are the eigenvalues of ( )
pp

III IdiagXQXQZZ ====  ,...,, 21  . The first term on the 

right hand side is the sum of the variances of ( )k



  , and the second term is the square of the bias. If 0k , note that the bias 

in ( )k



  increases with k .The ridge parameter k plays an important role in minimizing the MSE of the ORR estimator. 

Various choices for estimator of k are available in the literature, but the estimator proposed in [7] is widely used. 

2.3 Liu Estimator 

Liu [8] proposed another biased estimator of   known as LIU estimator and is given by 

( ) ( ) OLSLIU dII


−


++= 
1

        (10) 

where 10  d , is  LIU parameter. The advantage of the LIU estimator is that LIU



 is a linear function of d [14].  

Consequently, it is easier to choose d in LIU



  than to choose k in ORR



 .  

The MSE of LIU estimator is defined as 

( )
( )

( )
( ) = =



+
−+

+

+
=







 p

j

p

j

j

j

jj

j
LIu d

d
MSE

1 1 2

2

2

2

2

2

1
1

1 






       (11) 

The unknown parameters  and 
2 are replaced by their unbiased OLS estimates OLS



  and OLS



  respectively. 
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2.4 Winsorized Least Squares Estimator 
Yale and Forsythe [18] introduced various methods of Winsorization. Winsorization is one of the robust techniques that aim 

to diminish the effect of outliers in the data. Their general Winsorization procedure proposed for simple linear regression can 

be easily generalized to the multiple regression. The general Winsorized least squares (WLS) procedure proposed in [18] 

involves, first obtaining LS estimates and the predicted values 






 

iY  of Y niYi ,...,2,1, = , as well as obtaining the 

residual values as iii YYr


−=  and ordering them such that nrrr  ...21  is the ordered LS residuals (see [14] for 

details). Further study in Winsorization can be found in [19, 20].  

 

3.0  The Proposed New Class of Estimators 

3.1  The Modified Winsorization Method 

Generally, % Winsorization is achieved by replacing observations below the %  value in a given dataset and values 

above ( )%100 −  observation by the percentile value. Thus, we could still be substituting outlying observations for the 

Winsorized values and subsequently maintaining the contamination. However, the median, which is the 50 th percentile of any 

given set of observations, is a robust estimator. Therefore, we propose a new method of Winsorization by the substitution of 

the median for the Winsorized observations which will result in a substantial reduction of outliers, as well as eliminate 

contamination proportion of legitimate contaminants in the dataset. 

Algorithm for the Modified Winsorization Method (MWM) 

Given a set of n observations nyyy ,...,, 21 , to achieve a %  winsorization, the following algorithm is employed: 

Step 1:  Sort the observations in an increasing order such that nyyy  ...21  represent an ordered set of  

  observations. 

Step 2:  Find the median of the ordered dataset in step 1. 

Step 3:  Compute the   percentile of the set of the ordered n observations. 

Step 4:  Replace observations corresponding to the computed percentile at both extremes of the data with the  

  median obtained in step 2 to obtain the winsorized observations. 

Example  

For a sample of 15 observations (from 1x , the smallest, to 15x , the largest) the 10% winsorized data corresponds to: 

5.115
100

10
8 === percentilerequiredandxMedian   

Hence, the Winsorized observation is: 8813121110987654388 ,,,,,,,,,,,,,, xxxxxxxxxxxxxxx  

Based on the modified Winsorization approach, a new class of estimators’ is now proposed to handle the simultaneous 

occurrence of multicollinearity, outliers and legitimate contaminants in data. The proposed estimators are called “Winsorized 

Shrinkage Estimator”. In the following section, some Winsorized Shrinkage Estimators (WSE) is introduced and their 

modified MSE expressions are obtained based on the technique suggested in [21]. 

 

3.1.1  Winsorized Ordinary Ridge Regression (WORR) Estimator 

The Winsorized ordinary ridge regression (WORR) estimator of   based on the ORR estimator [5, 6] as defined in equation 

(8) is given as 

( )

( ) WLS
I

WLS

II
WORR

Ik

yZkI


−

−


+=

+=




        (12) 

WLSk is the unknown ridge parameter estimated using 

 
2

2

WLS

WLSp
k




=               (13) 

Where p  denotes number of regressor variables, WLS



  denotes the WLS estimate of   and 
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pn

ZyZy WLS

I

WLS

WLS

−









−








−

=







2

       (14) 

is the estimator of variance 
2  based on the WLS  estimator. 

The modified MSE is given by: 

( ) ( ) = =



+
+

+
=







 p

j

p

j

WLSj

j

WLS

WLSj

j
WORR

k
k

k
MSE

1 1 2

2

22








    (15) 

The unknown parameters 
2 and  are replaced with their WLS estimators, 

2

WLS



 and
2

WLS , respectively. 

 

3.1.2  Winsorized Liu (WLIU) Estimator 
The Winsorized Liu Estimator based on the LIU estimator [8] is defined as 

( ) ( ) 10,1 ++=


−


dd WLSWLS

I
WLiu        (16) 

where the LIU parameter WLSd  is obtained using 

( )
 =














+

−
=

p

j

j

j

j

WLSd
1 2

2

22







        (17) 

where the unknown parameters 
2 and   are replaced by their WLS estimators. 

2

WLS



 and WLS



 , respectively.  

The modified MSE is given by: 

( )
( )

( )
( ) = =




+
−+

+

+
=







 p

j

p

j

j

j

WLS

jj

WLSj
WLS d

d
MSE

1 1 2

2

2

2

2

1
1

1 






    (18) 

where the unknown parameters are replaced by their corresponding estimates based on the WLS estimator. 

 

3.2  Risk Functions for the New Class of Estimators 

Let 

2









−



  be the quadratic loss function, then 

2









−



E is termed as the risk function of the estimator, which in fact is 

the Mean Square Error (MSE) of estimator 


  of parameter . In this section, we present the risk functions of the OLS 

estimator, ORR estimator and the LIU estimator. 

 

3.2.1  Risk Function of OLS Estimator 
The risk function of OLS estimator is giving as, 

( ) 

( )

p

pr

p

I

I

r

I

ItRisk

IZZLet

ZZtRisk

2

2

12







=

=








=

=










−

        (19) 

 

3.2.2  Risk Function of ORR Estimator 
The risk function of ORR estimator is giving as, 
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( ) ( ) ( )
  0,0,

111

222

2

2

2

222

2

2

+
+

+
+


+

+
=







 

kkp
kk

k

k

p
Risk k


    (20) 

where, 
2 is defined as the divergence parameter. It is the sum of squares of the normalized coefficients. 

 

3.2.3  Risk Function of LIU Estimator 
The risk function of Liu estimator is giving as, 

( ) ( )
( ) ( )  0,0,11

44

1

4

1 2222
222222

−++=
−

+
+

=






 

ddpd
dpd

Risk d


  (21) 

where
2  is defined as the divergence parameter. 

 

4.0 Simulation Study 
A Simulation study was carried out to evaluate the performance of the proposed new class of estimators by comparing the 

performance of the new class of estimators (i.e., using the modified winsorized approach) with the existing estimators. 

Different ridge estimators corresponding to different values of ridge parameter k are considered under several degrees of 

multicollinearity ( )  and contamination proportion ( ) . The regressor variables are generated using a simulation design 

proposed in [22] as  

( ) .,...,2,1;,...,2,1;1 2

1
2 pjniZZX ipijij ==+−=      (22) 

where, 
ijZ  is independent standard normal pseudo-random numbers and   is linear correlation between any two 

explanatory variables. The following regression model is used to generate n  observations on the response variables: 

1 2 3 410 4 6 2 8Y X X X X = + + + + +
  

where the error variable ε is generated using the contaminated normal distribution. The %  contamination is done using the 

following mixture of normal distributions: 

( ) ( ) ( ) ( )210,01,01~ NNf
ii +−=     

For δ = 0%, 10% , 20% and 30%, and n = 500, the different degrees of multicollinearity have been achieved by generating 

regressor variables using the model given in (22) for   = 0.5, 0.7 and 0.9. The 0.2n points are winsorized at each extreme to 

reduce the effect of outlier and legitimate contaminants observations. Hence, the 20% Winsorized estimators of OLS, ORR 

and LIU are obtained respectively. Also, the estimated MSE’s (EMSE) of OLS, ORR, LIU, WLS, WORR and WLIU 

estimators are obtained by replacing the values of unknown parameters with their suitable estimates in their respective MSE 

expressions. 

For the sample size (n), degree of multicollinearity (ρ) and low contamination proportion ( ) , the above simulation 

experiment is repeated 1,000 times and the average EMSE (AEMSE) of these estimators are obtained and reported in the 

Tables 1- 4 

 

Table 1: Winsorized and Un-Winsorized Estimators for Delta=0.3 

 Winsorized 

 Estimators 

n=500, delta=0.3 Un-Winsorized 

 Estimators 

n=500, delta=0.3 

P=0.5 P=0.7 P=0.9 P=0.5 P=0.7 P=0.9 

MSE. WLS 

MSE.WORR 

MSE.WLIU 

0.007667 

0.005327 

0.001072 

0.010996 

0.010992 

0.000908 

0.069997 

0.069683 

0.037177 

MSE. LS 

MSE. ORR 

MSE. LIU 

0.181477 

0.181476 

0.005237 

0.638747 

0.638722 

0.005237 

1.737099 

1.736531 

0.005237 

 

Table 2: Winsorized and Un-Winsorized Estimators for Delta=0.2 

Winsorized 

 Estimators 

n=500, delta=0.2 Un-Winsorized 

 Estimators 

n=500, delta=0.2 

P=0.5 P=0.7 P=0.9 P=0.5 P=0.7 P=0.9 

MSE. WLS 

MSE.WORR 

MSE.WLIU 

0.007829 

0.007828 

0.002274 

0.015706 

0.015698 

0.001136 

0.019227 

0.019196 

0.002767 

MSE. LS 

MSE. ORR 

MSE. LIU 

0.319029 

0.319025 

0.016764 

0.747888 

0.747853 

0.034082 

0.031963 

0.031950 

0.338747 
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Table 3: Winsorized and Un-Winsorized Estimators for Delta=0.1 

Winsorized 

 Estimators 

n=500, delta=0.1 Un-Winsorized 

 Estimators 

n=500, delta=0.1 

P=0.5 P=0.7 P=0.9 P=0.5 P=0.7 P=0.9 

MSE. WLS 

MSE.WORR 

MSE.WLIU 

0.022316 

0.022275 

0.000346 

0.010614 

0.010610 

0.001281 

0.010539 

0.010529 

0.004050 

MSE. LS 

MSE. ORR 

MSE. LIU 

0.036300 

0.036283 

0.000676 

0.495127 

0.049512 

0.000723 

0.865632 

0.086586 

0.000723 

 

Table 4: Winsorized and Un-Winsorized Estimators for Delta=0.0 

Winsorized 

 Estimators 

n=500, delta=0.0 Un-Winsorized 

 Estimators 

n=500, delta=0.0 

P=0.5 P=0.7 P=0.9 P=0.5 P=0.7 P=0.9 

MSE. WLS 

MSE.WORR 

MSE.WLIU 

0.008159 

0.008157 

0.002384 

0.016198 

0.016190 

0.001172 

0.025634 

0.025581 

0.002083 

MSE. LS 

MSE. ORR 

MSE. LIU 

0.028226 

0.028227 

0.004026 

0.038572 

0.038554 

0.000778 

0.991980 

0.991919 

0.000723 

 

The first section of Tables 1 to 3 shows the estimated MSE’s for the Winsorized estimators that was obtained using our 

proposed modified Winsorization approach, for various degree of correlation (  ) and proportion of  outliers and/or 

legitimate contaminants ( ) . Similarly, the second section of Tables 1 to 3 also shows the estimated MSE’s for the existing 

or Un-Winsorized estimators.  While the first and second sections of Table 4 show the estimated MSE’s for the Winsorized 

and existing estimators with zero contamination proportion. A cursory look at Tables 1 to 4 show that the Winsorized 

estimators have a significant reduction in their MSE’s compared to that of the existing or Un-Winsorized estimators even 

with as low as 10% contamination proportion ( ) . Also in Tables 1 to 4, it was observe that the MSE’s for the LIU 

estimators under both conditions are smaller when compared to that of OLS and ORR respectively. 

 

5.0 Conclusion 
A modified winsorized form of the OLS estimator, ORR estimator, LIU estimator is proposed.  A cursory look at Tables 1 to 

4 reveal that increase in the contamination proportion ( )  and the increase in degree of correlation ( )  between the 

independent variables have a negative effect on the MSE, in the sense that it also increases. Also, the simulated study shows 

that the modified Winsorized biased estimators (i.e., WLS, WORR and WLIU) gave better performance in terms of their 

MSE values when compared to their corresponding OLS, ORR and LIU estimators. Specifically, the Winsorized LIU 

estimator with appropriate   might be considered over the ridge regression counterpart, as observed from the simulated 

results.  
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