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Abstract 
 

The equations of thermo-elasticity are solved involving non-dimensional 

parameters and the results are obtained in integral forms.  It is observed that 

the stresses are exponential in character and vanishes quickly with the 

cylindrical pore. 

 

1.0     Introduction 
The problem of a cylindrical hole embedded in an infinite medium is of significance in obtaining the results approximately 

valid for a thin hollow cylinder of finite height.  The problem of the hollow cylinder in classical elasticity was first solved by 

Lame [1].  He obtained the results for the stress system submitted to uniform pressure on the inner and the outer surfaces.  

In thermo-elasticity,  the problem of circular hole within a cylinder was also solved in the steady state by with the surfaces 

free from external load.  Liu and Chang [2] solved the dynamic problem of an infinitely long hollow cylinder subjected to an 

internal  

axisymmetric blast and a sudden change in temperature, using the method of treating the time-dependent boundary conditions 

developed by Mindlin and Goodman [3].  Several other attempts had been made by different authors.  

The general solution of steady-state two-dimensional non-axisymmetric mechanical and thermal stresses and mechanical 

displacements of a hollow thick cylinder made of fluid- 

saturated functionally graded porous material was solved byM. Jabbari et al [4].   Jabbari et al [5] studied a general solution 

for mechanical and thermal stresses in a functionally graded hollow cylinder due to non-axisymmetric steady-state load 

Theyapplied separation of variables and Complex Fourier Series to solve the heat conduction and Navier equation. 

Poultangari et al.[6] presented Functionally graded hollow spheres under non-axisymmetric thermo-mechanical loads. 

Shariyat et al.[7]  presented nonlinear transient thermal stress and elastic wave propagation analyses of thick temperature-

dependent FGM cylinders, using a second-order point-collocation method.   Lü Chen and Lim [8]  presented elastic 

mechanical behavior of nano-scaled FGM films incorporating surface energies..   Lutz M.P., Zimmerman R.W.,[9] studied 

thermal stresses and effective thermal expansion coefficient of functionally graded sphere.  

In this paper, a similar problem of a cylindrical pore in a thin plate of infinite radius is solved.  The dynamic theory of 

thermo-elasticity is employed in which the heat conduction equation is taken independent of elastic field.  The plate is 

assumed to be unstressed and initially to be at zero temperature.  Then suddenly a uniform and constant temperature is 

applied on the inner surface of the hole. The heat thus flow through the plate parallel to the planes.  The problem then reduces 

to one of a one-dimensional type and we are to find the stresses thus developed in the system. The method of solution is 

based on a simple theory of operators whereby  much difficulties are avoided.  The thermo-elastic equations are solved in 

terms of non-dimensional variables and the expressions for the stresses and displacements are in integral forms. It is possible 

to carry out the numerical computation of this of the results but this would be the subject of another paper. 

 

2.0 Mathematical Formulations 

The equation of motion in cylindrical polar coordinate system(r,  , z), when the displacement vector ( ),, zr uuu   is 

uniaxial is given by Nowaki [10] 
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Where, 
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The heat conduction equation when the temperature field is given as T = T  (r, t ) is,  
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Where k is the coefficient of thermal diffusity.   

The components of stress in this case will be  
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The non-dimensional variables are introduced as follows:  
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Putting ,=u  in equation ( 2.7) and integrating once with respect to 𝜌, we get  
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where   is the non-dimensional displacement potential.   The equations (3) – (4) also reduce to the forms  
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where   is the Poisson’s ratio. 

 

3.0  Method of Solution 
Eliminating 𝜃 from equations (8) and (9), we get, 
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The solution of this equation can be taken in the form  

21  +=           (14) 

where 1  is the solution of the equation      
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And 2 is that of  
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Substituting equation (14) in equation (9) and using (15), we get  
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Subtracting equation (r17) in equation (16), we have 
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The solution of equation (18) is  

  rdeefef rderr


−−+=  )()( 212      (19) 

where )()( 21  fandf are the functions of 𝜌  only and are such that equation (19) satisfies equation (16).   

Substituting equation (19) into equation (16), we get 
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where  )(  is a known function of 𝜌 only and is given as 
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Thus by solving equations (20) and (21) 
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where  
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The general solution of equation (15) can be taken in the form  
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   (26) 

where 𝛿 is small.  Since the solution does not exist at 𝛼 = 0, the value at 𝛼 = 0 is excluded from the general solution (26).  

Thus the complete solution of equation (13) is  
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where the term )(2 fe r
is merged in the value of ∅1.  The constants A and B and the function 𝑁(𝛼) and 𝑀(𝛼) can be 

determined by the boundary conditions of the problem.   

    

4.0     Boundary Conditions 
The surface of the hole is assumed initially at zero temperature and then suddenly heated and maintained at constant 

temperature T0 uniformly.  The surface is, otherwise, assumed to be free from external traction.  The boundary conditions are 

therefore,  

RrandtT = ,0,0         (28) 

,0,,0 == tandRrTT         (29) 

0,0 →= tallforrasT        (30) 

0,0 →= tallforRratrr        (31) 

and all stresses should be zero at infinity. 

In the form of non-dimensional variables, given as in equation (6), these boundary conditions reduce to : 

0,0 =           (32) 

0,,1 







=== 

b

E
       (33) 

0,0 →=  allforas       (34) 

and 

  == at0          (35) 

where R is the radius of cavity and 𝛼 is the non-dimensional radius.   

 

5.0   Solution 
For finite displacement and to satisfy the regularity conditions at infinity, we equate 𝑁(𝛼) to zeroin the equation (27).  Hence 

∅ becomes  

    .)(log)()( 0 rdeeFBAdKMe −+++= −
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The solution of the heat conduction equation (8) with the boundary conditions (32) to (35) is given as in ( Carslaw and 

Jeagar, (1969)[11] 
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Substituting the value of  from equation (37 into equation (36) and simplifying, we get  
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The integral from 0 to 𝛿2 can be neglected as the integrand → 0 as 𝑥 → 0.  Substituting the value of 𝜃in  )(  and then in 

F (  ), we have 
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Replacing 𝑥2𝑏𝑦𝛼 and substituting the value of the function )(F  from equation ( 39 ) in equation (38), we get 
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Differentiating equation (40) with respect to𝜌, we have 
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Now substituting from equations (41a) through (41b) into equation (10), we have 

 
 

)42(
)()(

)()()(),()1(

)()()()(

1
.

1

)()(

)()()()(

.
)1(2

2

1

21
.

2
1

2

1
)(

1
.

1
)(

2

0

2

0

0000

0000

2

0

2

0

0000

200







































YaJ

xd

aYaxJaxYxJ

aYaJaYJ

YaJ

YaJaYJ

e

A
dxKKeM

+






























−++

−

−
+













+

−

+
−

−

−








+−










−

+=






−


−

 

Using the boundary conditions in equation (34) in equation (42), we have  
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Thus we have, 
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Substituting the value of 𝑀(𝛼) and A in equation (41 a), we obtain the displacement as: 

 

)48().(
2

1

)()(

)()(

)())((

)(.
1

211
)(

).(
.

1

21
.

2

)1(2

2
),(

22

2

0

2

0

10

01

10

1

2

2































−−
+











































−
+

−

−
+

−

−
−

+
=




= 


−

a
YaJ

xd

aYJ

aYJ
a

aK
a

ak

aK

a
e

TU

 
Substituting the values of equations (41a.b),(44) and (45)  into equations (4) and (5), we have, 
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6.0    Conclusion 
In this paper, the equations of thermo-elasticity are solved involving non-dimensional parameters and the results are obtained 

in integral forms.  It is observed that the stresses are exponential in character and vanishes quickly with the cylindrical 

pore.The research work offers an in-depth explanation of characteristics of thermo-elastic  materials and expressed them 

mathematically. This could offer great assistance to the industrialists and engineers to better their production and service 

delivery. It could also be a reference material to scholars of solid mechanics  
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