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Abstract 
 

This work is concerned with numerical solution of linear and nonlinear 

Fredholm integro-differential equations (FIDEs)using orthogonal 

collocation method.Here we constructed the orthogonal polynomials involved 

in the interval [0,1] with respect to the weight function w(x)=1. The 

orthogonal polynomials we constructed gave a good rate of convergence. The 

method is implemented on some selected problems for experimentation and 

the results obtained show that it is effective with excellent rate of 

convergence when compared with the exact solutions available in literature. 
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1.0     Introduction 
This paper concerns the development of orthogonal collocation approach with orthogonal polynomial basis function for the 

numerical solution of linear and nonlinear FIDEs. The orthogonal collocation method has found extensive application in 

recent years presented in series of papers, for examples, in [1] for the case of line collocation for the solution of partial 

differential equations in two variables with collocation being applied in one variable, and [2] for the case of the numerical 

solution of ODEs . Collocation at the zeros of orthogonal polynomials was first investigated by Fox and Pascal [3] for the 

case of Chebychev orthogonal collocation method for the numerical solution of ordinary and partial differential equations 

together with integral equations.Whereas Adeniyi [4] engaged the well behaved Chebychev polynomial as basis function in a 

perturbed collocation approach. The orthogonal collocation method was developed by Villadsen et al [5]. It was then 

subsequently studied and applied to many chemical engineering problems by several authors [6 – 8]. However, the 

effectiveness of these integral solvers depends on the types of basis function used in developing the schemes. Various basis 

functions such as the Chebyshev polynomials Tn(x), the Legendre polynomial Pn(x), the monomials xr and the canonical 

polynomial (Qr(x), r ≥ 0) of the Lanczos Tau method in a perturbed collocation approach have been employed for this 

purpose[9 - 12]. Much interest in the solution of integro-differential equations has been vented by many authors due to its 

applicability in many areas of science and engineering, especially in areas like electric circuit, inhibitory and exhibitory 

interactions, damping laws, diffusion processes. Several different approaches have been proposed in the literature to handle 

integro-differential equations such as the Variational iteration method (VIM), Adomian decomposition method (ADM), 

Homotopy perturbation method (HPM) and  Differential transform method (DTM) etc. [13], which do not offer compact 

solution form. 

The method of orthogonal collocation has played a significant role in the solution of integro-differential equations available 

in literature where Chebychev polynomials, Hermite polynomials, Lagrange polynomials, etc, are adopted as trial functions. 

In this paper, we construct orthogonal basis functions in the interval [0,1] with respect to the weight function w(x) = 1such 

that it is continuous, positive and converges rapidly. We employ the constructed polynomials as basis function in the 

approximation of the analytic solution. The proposed method is employed to solve linear and nonlinear FIDEs, in details, in 

section 3. Section 4 presents numerical experiments of linear and nonlinear FIDEs to verify the proposed method. The results 

of each numerical example indicate convergence and error analysis are discussed. Finally, the conclusion is presented in 

section 5. 
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2.0 Derivations of Orthogonal Polynomials 
Let 𝑃𝑛(𝑥)  denotes the class of polynomials. Then, 𝑃𝑛(𝑥)  is orthogonal if𝑃𝑛(𝑥)as defined over a range [a,b]  obey an 

orthogonality relation 

∫ ѡ(x)𝜑𝑚(𝑥)𝜑𝑛(𝑥)dx = hnδmn
𝑏

𝑎
          (1) 

with the Kronecker delta δmn defined as 

δmn = {
0,       m ≠ n
1,       m = n

 

where the weight function w(x) is continuous and positive on [a, b] such that the moments 

∫ ѡ(x)𝑥𝑛dx,        n = 0,1,2,3, …
𝑏

𝑎
         (2) 

exist. 

Then the integral, 

〈𝜑𝑚, 𝜑𝑛〉 = ∫ ѡ(x)𝜑𝑚(𝑥)𝜑𝑛(𝑥)dx
𝑏

𝑎
         (3) 

denotes an inner product of polynomials 𝜑𝑚(𝑥)𝑎𝑛𝑑𝜑𝑛(𝑥). 
For orthogonality, 

〈𝜑𝑚, 𝜑𝑛〉 = ∫ ѡ(x)𝜑𝑚(𝑥)𝜑𝑛(𝑥)dx
𝑏

𝑎
= 0,    𝑚 ≠ 𝑛, [0,1]      (4) 

Mamadu and Njoseh [14] constructed their orthogonal polynomials in the interval [-1,1] with respect to the weight 

function𝑤(𝑥) = 1 + 𝑥2 . In this work, we adopt the weight function 𝑤(𝑥) = 1  such that it is continuous, positive and 

converges rapidly on [0,1].The construction of 𝜑𝑟 , 𝑟 = 1, 2, 3,… of the approximant: 


=

=
n

r

rr xyxaxy
0

)()()(~               (5) 

now follows: 

2.1 Construction of Orthogonal Basis Function 
To construct the basis function, we use the additional property that 

𝜑𝑛(1) = 1 

where 

𝜑𝑛(𝑥) = ∑ 𝐶𝑟
(𝑛)

𝑥𝑟𝑛
𝑟=0          (6) 

satisfies the orthogonality property (4). 

Thus, the first eight constructed orthogonal polynomials 𝜑𝑟(𝑥);  r =  0(1)8 valid in [0,1] are implemented with the aid of 

MAPLE 18 software and are given below. 

𝜑0(𝑥) = 1 

𝜑1(𝑥) = −1 + 2𝑥 

𝜑2(𝑥) = 1 − 6𝑥 + 6𝑥2 

𝜑3(𝑥) = −1 + 12𝑥 − 30𝑥2 + 20𝑥3 

𝜑4(𝑥) = 1 − 20𝑥 + 90𝑥2 − 140𝑥3 + 70𝑥4 

𝜑5 = −1 + 30𝑥 − 210𝑥2 + 560𝑥3 − 630𝑥4 + 252𝑥5 

𝜑6(𝑥) = 1 − 42𝑥 + 420𝑥2 − 1680𝑥3 + 3150𝑥4 − 2772𝑥5 + 924𝑥6 

𝜑7(𝑥) = −1 + 56𝑥 − 756𝑥2 + 4200𝑥3 − 11550𝑥4 + 16632𝑥5 − 12012𝑥6 + 3432𝑥7 

𝜑8(𝑥) = 1 − 72𝑥 + 1260𝑥2 − 9240𝑥3 + 34650𝑥4 − 72072𝑥5 + 84084𝑥6 − 51480𝑥7 + 12870𝑥8 

 

3.0  Mathematical Formulation of the Proposed Method 
In this section, we first consider the mathematical formulation of the proposed method. 

Case 1: The Linear aspect Of FIDEs. 

Given the linear FIDEs as 

+=

b

a

v dttytxkxfxy )(),()()(  , ],[ bax        (7) 

where v  is the order of the derivative, ),( txk  and )(xf are continuous functions, is a positive constant. 

Substituting equation (5) into equation (12) yields a residual of the form [16]: 

)()(~),()(~ xfdttytxkxy

b

a

v −  , ],[ bax                                  (8) 

We then collocate on the residual equation (8) at the zeros of the orthogonal polynomials 𝜑𝑟(𝑥) and obtain a set of (n+1)  
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equations in (n+1) unknown𝑎𝑟 . Note that r is chosen along the boundary conditions imposed so as to have equal number of 

𝑎𝑟in the trial solution so as cases of over-determined or under-determined equation will be overcome [15].Thus, a Matrix 

solver, which in this case,is the Gaussian elimination method, is employed to solve the resulting collocation linearalgebraic 

equations in conjunction with equations from the boundary conditions for a unique determination of the unknown 

coefficientsin the approximate. 

Case 2: The Nonlinear aspect Of FIDEs. 

We consider the nonlinear differential equation of the form: 

)()],([)],([ xrtxyNtxyL =+                             (9) 

with prescribed auxiliary conditions, where y(x,t) is unknown function, L is a linear operator and occurs to the highest order 

derivative, N is the non linear term, and r(x) is an non-homogeneous term.  

Let solution be given as 




=

=
0

)()(~

r

rr xaxy                                                             (10) 

The nonlinear operator is decomposed as [16] 




=

=
0

),,(),(
n

nN txAtxy

         

(11) 

where nA  is the Adomian decomposition polynomial (ADP) for all Nn  given by 

00!

1

=



=

















= 




 i

i

i

n

n

n yN
d

d

n
A                                            (12) 

Now, let the nonlinear FIDEs be given as  

+=

b

a

N

v dttytxkxfxy )(),()()(  , ],[ bax .                          (13) 

where )(tyN is the nonlinear term. Substituting equation (10) and (11) we get 

 


=

+=

b

a n

n dttAtxkxfxy
0

)(),()()(~  , ],[ bax
 

which implies that
 

+=

b

a

ndtAtxkxfxy ),()()(~  , ],[ bax ,       (14) 

where 
=

−=
n

r

rnrn yytA
0

)( . Thus, for every ,1n .0=nA  

We also collocate on the residual equation (14) at the zeros of the orthogonal polynomials 𝜑𝑟(𝑥) and obtain a set of (n+1) 

equations in (n+1) unknown 𝑎𝑟 . As stated earlier, r is chosen along the boundary conditions imposed so as to have equal 

number of 𝑎𝑟in the trial solution[15]. We then employ the Gaussian elimination method to solve the resulting collocation 

linear algebraic equations to determine the unknown coefficients. 

 

4.0   Numerical Examples 
To illustrate the effectiveness of this method, we use three numerical examples.We solved for 𝑛 = 5,for linear and nonlinear 

FIDEs. For all examples considered, the solutions are compared with the exact solutions available in the literature. The rate 

of convergence of each of the linear Fredholm integral equation is  

−= + )(~)(~
1 xyxyE iir

 

where )(~ xyi is the approximate solution by the proposed method using the nth  degree polynomial approximation and   

varies from 
510−

for 5=n  [14]. 

Example 4.1 

Consider the second-order linear FIDEs [16] of the form 
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−

−+−=−+

1

1

,)(sinsin2)()(')('' dttuxexexxuxxuxu tx ,1)0( =u .1)0(' =u
  (15) 

The exact solution is 
xexu =)( . 

Example 4.2 

Consider the third-order linear FIDEs[16] of the form 

−−= 2

0
)('sin)('''



dttxtuxxxu ,  ,1)0( =u ,0)0(' =u .1)0('' −=u
   

(16)         

The exact solution is .cos)( xxu =  

Example 4.3 

Consider the second-order nonlinear FIDEs of the form [16] 

 −−+=
1

0

22 ))()((coshsinh)('' dttutxxxxu , ,0)0( =u .1)0(' =u
   (17) 

The exact solution is .sinh)( xxu =  

Example 4.4 

Consider the second-order nonlinear FIDEs of the form [17] 

,sin)()('' 2

0
xxtxtyxy −=+ 



,1)0( =y .1)0(' =y
     (18) 

The exact solution is .sin)( xxy =  

Results are presented in Tables 1 - 4.  

 

Table 1: Computed Absolute Error of examples 4.1 for n=5 

X Exact Solutions Approximate Solutions Absolute Error 

0.00 1.0000000 1.0000000 0.0000e+00 

0.10 1.1051709 1.1053100 1.3913e-04 

0.20 1.2214028 1.2225823 1.1796e-03 

0.30 1.3498588 1.3538517 3.9929e-03 

0.40 1.4918247 1.5011905 9.3658e-03 

0.50 1.6487213 1.6667198 1.7999e-02 

0.60 1.8221188 1.8526201 3.0501e-02 

0.70 2.0137527 2.0611421 4.7389e-02 

0.80 2.2255409 2.2946179 6.7077e-02 

0.90 2.4596031 2.5554720 9.5869e-02 

1.00 2.7182818 2.8462319 1.2795e-01 

 

Table 2: Computed Absolute Error of examples 4.2 for n=5 

X Exact Solutions Approximate Solutions Absolute Error 

0.00 1.0000000 1.0000000 0.0000e+00 

0.10 0.9950042 0.9950032 9.3240e-07 

0.20 0.9800666 0.9800613 5.2755e-06 

0.30 0.9553365 0.9553244 1.2105e-05 

0.40 0.9210610 0.9210424 1.8643e-05 

0.50 0.8775826 0.8775600 2.2520e-05 

0.60 0.8253356 0.8253125 2.3088e-05 

0.70 0.7648422 0.7648204 2.1817e-05 

0.80 0.6967067 0.6966849 2.1811e-05 

0.90 0.6216100 0.6215835 2.6505e-05 

1.00 0.5403023 0.5402647 3.7596e-05 
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Table 3: Computed Absolute Error of examples 4.3 for n=5 

X Exact Solutions Approximate Solutions Absolute Error 

0.00 0.0000000 -0.0000000 1.8100e-12 

0.10 0.1001668 0.1000984 6.8372e-05 

0.20 0.2013360 0.2007929 5.4307e-04 

0.30 0.3045203 0.3026901 1.8302e-03 

0.40 0.4107523 0.4064192 4.3371e-03 

0.50 0.5210953 0.5126237 8.4716e-03 

0.60 0.6366536 0.6220128 1.4641e-02 

0.70 0.7585837 0.7353328 2.3251e-02 

0.80 0.8881060 0.8533984 3.4708e-02 

0.90 1.0265167 0.9771000 4.9417e-02 

1.00 1.1752012 1.1074153 6.7786e-02 

 

Table 4: Computed Absolute Error of examples 4.4 for n=5 

X Exact Solutions Approximate Solutions Absolute Error 

0.00 0.0000000 -0.0000000 5.3310e-11 

0.10 0.0998334 0.0998339 5.2613e-07 

0.20 0.1986693 0.1986699 5.8900e-07 

0.30 0.1986693 0.2955197 4.7850e-07 

0.40 0.3894183 0.3894162 2.1319e-06 

0.50 0.4794255 0.4794219 3.6026e-06 

0.60 0.5646425 0.5646379 4.5892e-06 

0.70 0.6442177 0.6442121 5.5608e-06 

0.80 0.7173561 0.7173485 7.5833e-06 

0.90 0.7833269 0.7833153 1.1580e-05 

1.00 0.8414710 0.8414540 1.6953e-05 

 

5.0 Conclusion 
We have usedcollocation method based on certain orthogonal polynomial basis which we constructed to solve linear and 

nonlinear FIDEs.The numerical results obtained using our polynomials show an excellent rate of convergent even as n 

increases, which is shown in Tables 1 - 4. Thus, the method is accurate, efficient and effective for the solution of integro-

differential equations of Fredholm type. 

It is also evident that the method offers several advantages which include, among others; 

(i) cost-effectiveness as no extra interpolation is required in other to achieve several output of solution; 

(ii) excellent convergence rate; and 

(iii) ease of implementation. 
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