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Abstract 
 

Pointvortices on the surface of a sphere is studied by solving the 

Laplace-Beltrami equation using a Green’s function approach. The solutions 

are reconstructed in spherical polar coordinates. The fundamental Green’s 

function 
1

4
G


= −  is obtained where  depend on the relative position of 

the point vortices, 1( , , )P     and 2 ( , , )P x y z , such that

2 2 2( ) ( ) ( )x y z   = − + − + − . The expression   is reconstructed 

using spherical polar coordinates ( , , )R    where  is the azimuthal angle,

  the polar angle and R the spherical radius. The stream function G 

obtained using this method is plotted considering different values of the 

azimuthal angle   and the polar angle   on the surface while keeping R  

constant. It is found that there exist two equal point vortices at the North and 

South spherical poles respectively, in all the cases considered, thus flows on 

the surface of a sphere consists of uniform distribution of vorticity. 

 
 Keywords: Point vortices, Vorticity, Azimuthal angle, Vortex Motion, Closed surface, Green’s Function 

 

1.0     Introduction 
The problem of description of point vortex motion has a long history dating as far back as the 19 th century with Helmholtz 

initiating the two dimensional point vortex models. In the last two decades the problem has acquired renewed interest as there 

has arisen a need to incorporate curvature effects in both the structure and stability of vortex configurations in a view to 

understanding many atmospheric phenomena [1]. A number of theoretical and experimental studies have been devoted quite 

recently to the understanding of atmospheric vortices which are often observed in nature leading to a generalization of 

Euler’s two dimensional vortex solution to surfaces with constant Gaussian curvature. 

 

1.1  Vortex Flow 
Vortex dynamics is one of the essential physical mechanisms in fluid mechanics, and significant work has been done on the 

two-dimensional vortex models, initiated by Helmholtz in 1858 as cited in [2]. The point vortex model, particularly, has 

played a central role in all aspects of two-dimensional vortex problems. It was formulated as a Hamiltonian dynamical 

system by Kirchhoff [1]. Laplace-Beltrami operator on a toroidal surface was considered in [3]. They construct the green’s 

function for the Laplace-Beltrami operator on the surface of a three-dimensional ring torus and used a stereographic 

projection of the torus surface onto a planar annulus. They represent the Green’s function in terms of the Schottky-Klein 

prime function associated with the annulus and the dilogarithm function. An application of their result to vortex dynamics on 

the surface of a torus was also considered. 

The exact steady two-dimensional solutions of the Euler equation due to Stuart (1967) are generalized[4] to the surface of a 

sphere. It was shown, that mathematically in Stuart’s solution there is an accumulation point of vortices at infinity but this 

does not cause any problem in terms of the physical interpretation of the solution because the plane is not a closed compact  
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surface and the point at infinity is not a part of the surface. The sphere however is a closed compact surface; any physical 

meaningful generalization of Stuart’s solution might therefore be expected to have a finite collection of vorticity extrema 

distributed over the spherical surface [5]. 

Vortex motion on a hyperbolic surface is studied in [14].  It is shown that Abelian Higgs vortices on a hyperbolic surface 𝑀 

can be constructed geometrically from holomorphic maps 𝑓:𝑀 ⟶ 𝑁   where 𝑁  is also a hyperbolic surface. The fields 

depend on 𝑓 and on the metrics of 𝑀and𝑁. The vortex centres are the ramification points, where the derivative of 𝑓 vanishes. 

The magnitude of the Higgs field measures the extent to which 𝑓 is locally an isometry. Witten’s construction of vortices on 

the hyperbolic plane is rederived and new examples of vortices on compact surfaces and on hyperbolic surfaces of revolution 

is obtained in their work. 

Alobaidi and Mallier [9] considered flow on a spherical surface and used a stream function formulation to derive a nonlinear 

equation governing steady-state flow in that geometry. Some new vortex solutions were presented. Edwin [8] developed a 

mathematical framework for the dynamics of a set of point vortices on a class of differentiable surfaces conformal to the unit 

sphere. Other researchers [9] have considered streets of vortices on surfaces of revolution such as a sphere. With regards to 

distributed, have studied vortex patches on a sphere using numerical methods. 

Kirchhoff in 1876, first derived the equations governed by point vortices in the two-dimensional plane.  Such vortices have 

finite constant circulation but singular vorticity restricted to a point. Each vortex includes a singular velocity field entirely in 

the azimuthal component (with no radial component owing to zero horizontal divergence).  There is no self-induced motion 

instead vortices move in the flow field generated by all others [1]. Sun-Chul [16] Studied latitudinal point vortex ring on a 

Spheroid.  The point vortices on the same latitude(Called the point vortex ring) was investigate as an extension of the sphere 

case and the influence of a pole vortex was also discussed. Point Vortex Motion on the Surface of a sphere with impenetrable 

boundaries has been studied in [7] where a new example of the motion of a vortex around a straight barrier along a great 

circle on the spherical surfaces is presented, he studied in detail and finally a theoretical connection with a boundary value 

problem for a generalized Liouville-type quasilinear partial differential equation was made. 

In the present work we present new method of representing the fundamental Green’s function for a sphere by reconstructing 

 from Cartesian coordinate to spherical polar coordinate, we then for the first time plot the Green’s function obtained using 

this method by varying the azimuthal angle and the polar angle on the surface of a sphere which lead to interesting point 

vortices in both the north and south spherical polesas shown in the plots. 

 

2.0  Vortex Motion on a Spherical Surface  
Consider vortex motion on the surface S of a sphere. The sphere is non-rotating, without loss of generality. We assume it has 

unit radius, in terms of standard spherical polar coordinates ( , , )r    with the latitude angle  measured from the axis 

through the North Pole and  is the azimuthal angle, analogous to longitude in terms of earth measuring coordinates the 

velocity vector has the form. 

( , , )ru u u u =
         (2.1) 

Where u and u  are the zonal and the meridional components of the velocity field respectively. The incompressible nature 

of the flow allows the introduction of a scalar stream function ( ),    via  

ru e= 
          (2.2)

 

Where re  is the radial unit vector, it is then possible to define a scalar vorticity field ( , )w    such that; 

rwe u=
          (2.3)

 

Where 2w = −
         (2.4)

 

2

 Is the spherical Laplace – Beltrami operator defined by  

2

2

2

2

sin

1
sin

sin

1




 


+
















=

      (2.5)

 

In terms of stream function  u,  and v  are given by 













=




−=

sin

1
vu        (2.6) 
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In the steady case, the material conservation of vorticity is expressed by  

0
sin

=











+




wv

u








         (2.7) 

With the use of (2.6) above we can write (2.7) as 

0
sin

1
=
















+








−


















       (2.8)

 

 

3.0  Green’s Function for a Sphere 
Consider the Laplace’s equation on spherical surface 

2
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=

GGG
G

    (3.1) 

Where G , is the Green’s function 

The Green’s function G  depends only on the relative position of 1P  and 2P and 2 1( ) ( )G G P P G = − =  Then the 

problem for G  becomes 

2

2

1
( )

4
G  


 =

         (3.2)

 

Because the problem is invariant under rotations we expect G  to be radially symmetric, since 
2

  and ( )  are, so we 

look for a function ( )G   

In which 3.1 becomes; 

( )2

2 2

1 1
( )

4

G
  

   

 
=

 
   For 0, ( ) 0   = ,     (3.3) 

Carsten G [4]  

So we find that  

( ) B
A

G +−=


   (For 0  )        (3.4) 

Where A  and B  are constants, since 0as0 =→→ BG   

Now consider the figure 1                                                        
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Figure 1: The Unit Area on the Surface of a Sphere 
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The outward normal to the surface is just unit vector pointing from the origin to the point on the surface and so  

2

G G A

n R

 
= =

 
         (3.6) 

on the surface R=  on the sphere. 

For any volume V that includes the origin by the divergence theorem we have. 

2 1
S V

G
dS GdV

n



=  =

 
        (3.7) 

Where S is the surface of V 

The unit area dS  is given by R2 sin d d  so that 

2
2

0 0
sin 1

G
R d d

 

  



=

 
       (3.8)

 

Thus  

  =
 


2

0 0
1sin ddA

       (3.9)
 

4

1
= A

(3.10)

 

Now put A in (3.5) to get 

4

1
−=G           (3.11)  

Consider two point vortices P1 and P2 where 1P  is the sink and 2p  as the source point, as shown in the figure 2  
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Figure 2: The Motion of Point Vortices on a Sphere 
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From the figure 2 1 1OP =  and 

2 2OP = , with 
2

1 2 a  =  i.e 
2

1 2( )OP OP a• =
      

(3.12) 

( ) ( ) ( )
2 2 2

2 1OP OP x y z   = − = − + − + −
     (3.13)

 

We can now write  

( ) ( ) ( )
2 2 2

1 1

4
G

x y z   

 
 = −
 − + − + −        (3.14)

 

Where 1 1 1sin cosx   = 1 1 1sin siny   = 1 1cosz  =
    (3.15)

 

And

2

2 2

1

sin cos
a

  


=
2

2 2

1

sin sin
a

  


=
2

2

1

cos
a

 


=

    (3.16) 
2 2 2

4
2 2 2 2 2 2
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4
2 2 2 2 2 2
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4
2 2 2 2
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( ) ( ) ( )

sin sin 2 sin sin cos cos sin cos

sin cos 2 sin sin sin sin sin sin

cos 2 cos cos cos

x y z

a
a

a
a

a
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 − + − + −

= − +

+ − +
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2 2 2 2 2

1 1 1 1 1

sin (cos sin ) cos

2 sin sin (cos cos sin sin ) cos cos

sin (cos sin ) cos
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 = + + 

− + +

 + + + 

 

 
4

2 2

1 2 2 1 1 2 12

1

2 sin sin cos( ) cos cos
a

a       


= − − + +
 

Now to fix   at the surface we take 1 a R = =  where R the radius of the sphere. 

Thus; 

 

 

4
2

1 2 2 1 1 22

2

1 2 2 1 1 2

2 sin sin cos( ) cos cos

2 1 sin sin cos( ) cos cos

R
R

R

R

     

     

= − − +

= − − −
     

(3.17) 

 

Therefore, by substituting (3.17) in to (3.14) we have 

 1 2 1 2 2 1

1 1

4 2 1 cos cos sin sin cos( )
G

R      

 
 = −
 − − −     (3.18) 

The Green’s function G we have just obtained is the stream function describing a flow with single point vortex surrounded 

by a uniform distribution of vorticity.  

Let’s now deduce the stream function   for this system. Suppose the point vortex is at ( )2 2,   on the surface of the 

sphere. Then   satisfies; 
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( )2

1 1 2 22

1
, , ,

4
     


 =

        (3.19)

 

Thus identify   as the Green’s function of the Laplace-Beltrami operator on the sphere, hence G  .  

 

4.0  Analysis of the Solution 

We consider different cases by keeping 1  and 1  constant, that is keeping 1P fixed and 2P is moving on the surface, taking 

different values of 2  and 2  

We also observe that the solution has two equal points-vortex singularities at the North and South spherical poles. 

To study the solution, it is natural to fix the latitude angle 1  at which number of vortices extrema occur. We assume 

10 / 2    so that the layer of vorticity extrema is situated in the northern hemisphere, this is done without loss of 

generality because the circulations of the two antipodal point vortices are identical. Solutions corresponding to 

1/ 2 0   can be obtained simply by turning the sphere upside down 

The circulations of the point vortices at the north and south poles are equal and are given by 2 ( 1)N SN = − =   where 

N  is the number of point vortices at the latitude angle [5]. 

 Using this Crowdy’s formula we can easily determine the number of point vortices for a given circulation, conversely we 

can get the circulation for a given number of point vortices. Consider for example case 1, the given circulation is 6N  =  

implies 6 2 ( 1)N = − , thus 4N = . Clearly it can be seen from the contour plot and this is applicable to all the cases 

considered.  

 

 
Figure 3: Showing point vortices at the northern  

hemisphere with polar angle 6  

The case when there are point vortices, each of circulation 6  at the northern hemisphere and these correspond to 4N = , 

while 1 2 1 2/ 6 ( , ), ( , ) 6        

The case when there are point Vortices, each of circulation 8  at the northern hemisphere and these correspond to

5N = ,while 1 2 1 2/ 5 ( , ), ( , ) 8      
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Figure 4: Showing point vortices at the northern  

hemisphere with polar angle 5  
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Figure 5: Showing point vortices at the northern  

hemisphere with polar angle 4  

The case when there are point Vortices, each of circulation 10  at the northern hemisphere and these correspond to

6N = , while 1 2 1 2/ 4 ( , ), ( , ) 10        

The case when there are point Vortices, each of circulation 12  at the northern hemisphere and these correspond to

7N = , while 1 2 1 2/ 3 ( , ), ( , ) 12        

 

 
Figure 7: Showing point vortices at the northern  

hemisphere with polar angle 3  

The case when there are point Vortices, each of circulation 4  at the northern hemisphereand these correspond to 3N =

, while 1 2 1 2/ 3 ( , ), ( , ) 4        

The case when there are point Vortices, each of circulation 14  at equator and these correspond to 8N = , while 

1 2 1 2/ 2 ( , ), ( , ) 4      
 

 

 

 

 

 

 

 

 

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 49 – 58 

 
Figure 6: Showing point vortices at the northern hemisphere 

with polar angle 3  

 
Figure 8: Showing point vortices at the equator with polar 

angle 2  

Figure 10: Showing point vortices at the southern 
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Figure 9: Showing point vortices at the southern  

hemisphere with polar angle 6−  

The case when there are point Vortices, each of circulation / 6  at southern hemisphere and these correspond to
13

12
N =  , 

while 1 2 1 2/ 6 ( , ), ( , ) / 6     −    

The case when there are point Vortices, each of circulation / 4  at southern hemisphere and these correspond to
9

8
N =  , 

while 1 2 1 2/ 4 ( , ), ( , ) / 4     −    

 

 
Figure 11: Showing point vortices at the southern  

hemisphere with polar angle 2−  

The case when there are point Vortices, each of circulation / 2  at southern hemisphere and these correspond to
5

4
N =  , 

while 1 2 1 2/ 2 ( , ), ( , ) / 2     −    

The case when there are point Vortices, each of circulation   at southern hemisphere and these correspond to
3

2
N = , while 

1 2 1 2/ 3 ( , ), ( , )     −  
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Figure 12: Showing point vortices at the southern 

hemisphere with polar angle 3−  

Figure 10: Showing point vortices at the southern 

hemisphere with polar angle 4−  
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Figure 13: Showing point vortices at the southern  

hemisphere with polar angle 3−  

The case when there are point Vortices, each of circulation 2  at southern hemisphere and these correspond to 2N = , 

while 1 2 1 2/ 3 ( , ), ( , ) 2     −    

The case when there are point Vortices, each of circulation 2  at southern hemisphere and these correspond to 2N = , 

while 1 2 1 2/ 6 ( , ), ( , ) 2     −    

 

5.0  Summary and Conclusion 
A point vortex is a model of a flow in which the vorticity is zero except at the point itself where the vorticity is infinite so that 

there is no zero circulation around the point. 

The study of point vortices on two dimensional manifolds such as the cylinder, sphere and torus, has a long history, dating 

back to Helmholtz, initiating the point vortex model and Kirchhoff and Lin formulating it as a Hamiltonian dynamical 

system.  

In this paper we are concerned with the point vortices on spherical surfaces, using the Green’s function approach. We present 

new method of representing the fundamental Green’s function for a sphere by reconstructing  from Cartesian coordinate to 

spherical polar coordinate. We obtained the free space green’s function by solving the Laplace’s equation on a sphere and 

reconstructed the solution in spherical coordinates which is termed the stream function, the solution was plotted for the first 

time by considering different cases varying the azimuthal angle   and the polar angle   while keeping R  constant as the 

unit radius 

Flows on a sphere are very important because of its applications to planetary atmosphere. Spherical surface consists of one or 

more periodic rows of point vortices, the simplest of which is a single infinite row of identical vortices. These have important 

applications in engineering and geophysics.  
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Figure 14: Showing point vortices at the southern 

hemisphere with polar angle 6−  
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