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Abstract

We have approximately solved the Dirac equation for the Shifted Tietz-
Wei potential including a Coulomb-like tensor interaction with arbitrary
spin-orbit coupling quantum number k. In the frame work of spin and
pseudospin symmetry, we obtained the energy eigenvalue equations and
their corresponding eigenfunctions in a closed form by using the
supersymmetric approach. We have equally computed the Shannon
entropy, Renyi entropy, Onicesu energy and Fisher information entropy of
the Shifted Tietz-Wei potential. The numerical results show that the
Coulomb-like tensor interaction removes degeneracies between spin and
pseudospin state doublets.
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1.0 Introduction
In the recent time, there has been a renewed interest in solving the Dirac equation analytically to describe the relativistic spin-

1/2 particles [1]. It is well known that the analytical solutions of the Dirac equation for kK =0 cannot be possible for some
potential models such as the Coulomb potential [2, 3], Harmonic oscillator [4], Yukawa potential [5, 6], inversely quadratic
Yukawa potential [7], Hellmann potential [8-11]. However, for k = 0, the analytical solutions can be obtained for a number

of potentials. The Dirac equation as well, is the most perfect example of a relativistic wave equation which is able to describe
in a simple manner, the relativistic effects due to the spin of particles [12]. In the strong coupling case, relativistic effects
have been rarely discussed, primarily due to difficulties involved in solving analytically the Dirac equation. Several model
potentials have been introduced recently to explore the relativistic energy spectra and wave function behaviour [13]. In the
case that the scalar potential equal to vector potential, Hu and Su [14] obtained the exact solution or the s-wave Dirac
equation for Hulthén potential. Hout et al. [15] and Chen [16] gave exact solutions of the Dirac equation with Morse and
wood-saxon potentials respectively. The Dirac equation has been studied under spin and pseudospin symmetry to explain the
features of deformed nuclei [17], superdeformation [18], magnetic moment interpretation [19, 20], identical bands [21, 22]
and establish an effective shell-model coupling scheme [23]. To the subject of our knowledge, the symmetry limits and
thermodynamic properties as well as the information entropy of the Shifted Tietz-Wei potential has not be studied yet. These,
call for further research studies. In this paper, we examine the spin and pseudospin symmetry with the Shifted Tietz-Wei
potential, the interaction of the potential

with the thermodynamic properties and the information entropy. The Shifted Tietz-Wei potential

have been studied by Falaye et al. [24] under the D-dimensional Schrédinger equation in the framework of exact quantization
rule. The shifted Tietz-Wei potential is related to the Tietz-Wei potential and the Morse potential model. The shifted Tietz-

Wei potential is closely related to the Morse potential function for large values of r in the regions I = I, and > I, but
different at  ~ 0 [24]. This potential (shifted Tietz-Wei potential) is as good as the traditional Morse potential and better

than the Tietz-Wei potential in stimulating the atomic interaction for diatomic molecules [26]. The shifted Tietz-Wei
potential is given as [24].
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where b, = ﬂ(l—Ch), I, is the molecular bond length, S is the Morse constant, D, is the potential well depth, C, is

the optimization parameter and r is the internuclear distance. This paper is organized as follows. In section 2, we briefly
introduce the Dirac equation with scalar and vector potential with arbitrary spin-orbit coupling quantum number K including
tensor interaction under spin and pseudospin symmetry limits. The energy eigenvalue equations and the corresponding
eigenfunctions are obtained in section 3. In this section, we obtained the non-relativistic limit of the spin symmetry. In
section 4, we calculate the thermodynamic properties. In section 5, we compute the information entropy, present numerical
results and some remarks. Finally, our conclusion is given in section 6.

2.0  Dirac Equation
In this section, we briefly review the Dirac equation. The Dirac equation with scalar S(r) andV (r) potentials in spherical
coordinates is given as [25-27]

[@.p+B(M+S(r))-(E-V(r))]w(F)
where P = —iV is the momentum operator, E denote the relativistic energy of the system, @ and £ are 4 x4 usual Dirac
matrice. For a particle in a spherical field, the total angular momentum operator j and the spin-orbit matrix operator

0, )

k= (O'.L +1), where o and L are the Pauli matrix and orbital angular momentum respectively, commute with the Dirac
Hamiltonian. The eigenvalues of k are k =—(j+1/2) for the aligned spin (S,,, Py, €tc)and k =(j+1/2) for the

unaligned spin( pl,z,dg,z,etc). The complete set of conservative quantities can be chosen as(H K, 32,7, ) The Dirac
spinor is [25, 26]

Fu(r) o1
fnk(r)} w09

= (3)
gnk (r)

l//nk (r) = ( ’
Callyi 0.9

where F,, (r) and G,, (r) are the radial wave functions of the upper and lower components respectively with Yj'm 6,9

and lem (8,9) for spin and pseudospin spherical harmonics coupled to the angular momentum on the z — axis. Now
substituting Eq. (3) into Eq. (2), we recast the following differential equations [25-28]

(j—}r—’i—uu)]ﬁk(r) = (M +E,, ~V(1)+5(1)G,, (1), @
[;j—;—r—’iw (r)JGnK(r) =(M =, +V(r)+S(r))F,.(r), 5)

which later give
dA(r)
) bl W
d_2_K(K2+l)+2_KU(r)_M_U2(r)+L(i+Ej FnK(r)’
dr r r r M+E, —A(r)\dr r

:[(M +Ep—A(r))(M ‘EnﬁZ(r)ﬂFnK(r), 6)

for x(+1)=£(£+1), 16(0,0),
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d) (r
v e o >()

L 250+ 90 oy —dr (4 &
arr r? +rU(r)+ r U(r)+M—EHK+Z(r)[dr rj Cuc(1)

:[(M +Ep —A(r))(M ‘EnﬁZ(r))}GnK(r)- %
for x(x—1) =2(2+1j, ro(0,0) , where A(r) =V (r)—S(r) and 2(r) =V (r) + S(r).

It is noted that Egs. (6) and (7) cannot be solved for kK # O without the use of approximation scheme. Therefore, in this
paper, we apply the following approximation-type [28].

1 1 e—aX e—Zax
—=~—|D,+D D 8
r2 rez 0 " ll—Che_ax - 2 (1_Che—ax)2 ( )
where o =byr,, X= -t , and the parameters D,, D, and D, in the approximation are given as

1-C,)| 3

D, :1+( » h)b(l_ch)_(mch)} ©)
D =2(1-C, | (2+C,)->(1-C,) (10)

1 a h h a h ’

1-C,)'[ 3
D, - %[;(1—Ch)—(1+ch )}. )

3.0 Dirac Equation in the Presence of Shifted Tietz-Wei Potential
In this section, we obtain the solutions of Dirac equation under spin and pseudospin symmetry with shifted Tietz-Wei

H
potential by using an elegant supersymmetric approach. For tensor term, we consider the Coulomb potential U (r) = ——.
r

3.1  The Spin Symmetry Limit
dA(X
To obtain the solution of the Dirac equation under spin symmetry limit, we take #:0 and A(X) =C,. Now,
X

substitute potential (1) and approximation (8) into Eq. (6) to have

d?F (x . .
#() = I:Veff (X) - Enk} Fn;( (X)’ (12)
where
oD, 6D ) 5
r—z(l—Che )-Cie |~2D, |e™* - 24D, T22+ D, (C2-2C, -1) [ 42D,
Vi (x) =2 pet RN GE)
“ 1-Cg¢ 1-ce™)
s oD,
—Es =8(M —Enk)+r—2, B=(M+E, -C,), 5=(k+H)(Kk+H +1), (14)

e
Here, we employ the basic concept of the supersymmetric approach [29-32] and the formula method to solve Eq. (12). The
ground-state wave function for the upper component is written as

For (X) = EXp(_IQ(X)dX)l (15)
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where Q(X) is called a superpotential function in supersymmetric quantum mechanics [33-36]. Substituting Eq. (15) into
Eq. (12) results to the following equation satisfied by the superpotential function Q(X)

Q-T2 v 0-E5 (15)

where Egk is the ground-state energy. In order to make the superpotential function Q(X) be compatible with the property of
the right hand side [37, 39] of Eqg. (16), we propose a superpotential function of the form

pze—ax
X) = -_, 17
Q( ) pl l—Che_aX ( )

where p, and p, are two parametric constants to be determine later. In view of the proposed superpotential function of

equation (17), we can construct a pair of supersymmetric partner potentials V., (X) and V_(X) in the following form:

dQ(X) 2 2ppf " Ps (p, +a)e™™ - p; (1— e ) e

V.()=Q* () +——==pf - —+ ., (18)
" 1-Cepe (l—Che’”‘Xe)2
—ax _ efax_ 2 1_e—ax e—ax
v (0020 - dQ(x) L 2epe” AL P ( ; ) )
1-Cie (1-C.ee)

In this work, we only consider the bound state solutions that demand the wave function Fnk(l’) satisfying the boundary

conditions: F, (0) = F,, (c0) =0. These regularity conditions yield the restriction conditions that p, >0 and p, > 0. By

substituting the superpotential function into Eq. (16) and compare the two sides of the equation, we easily deduce the values
of the two parametric constants in the following form:

ol =B(M-E,)r}+5D, (20)
46D, +44D,r? (1-C
p, =2 11\/1 i ﬂZC"Z (1-C.) , (21)
h

1 o
BD, (l—cz}—Cz(DlCh - D2)+p22
h h
: (22)
2p,
With the help of the two partner potentials given in Egs. (18) and (19), we can now write the following relationship satisfied
by the shape invariance condition

V. (x,3y) =V_(%,8,) +R(a,), (23)

where @, is a new parameter uniquely determine from an old parameter &, and @, is a function of a, , i.e

PL=

a, = f(a,) =a, —a. The residual term R(@,) is independent of the variable X However, Egs. (18), (19) and (23) show
that the partner potentials are shape invariant. By using the shape invariant approach [35], we can determine exactly, the
energy eigenvalues equation of the shape invariant potential V_(X) as we obtain the following equations

2 2
. S 1 5 1
+CZ(D1Ch—D2)+ﬁDe(1—C:] a’+ CZ(Dc -D )+ﬂD{1—C:] (24)

R(a)= - 2] - ) :
r 5 1T 5 1T
af+cz(D1Ch—D2)+ﬂDe[l—Czj a22+cz(D1Ch_D2)+ﬂDe[l_ch (25)
R(a ): h h _ h h
(2, 2a, 2a '
2
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o
an24+F(DICh -D,)+ fD, (1_2J

1
Gy

o 1
aerC—hz(DlCh -D,)+ D, {1— c?

)

Idiodi and Onate Trans. of NAMP

2

R _ h
(aﬂ ) 2an71

2a

n

(26)

Following the formalism of shape invariance approach, the energy levels of the system can be determine as

£l =Ei ) +Ej =D R(a

i=1

ES, =0.

S
+ Eo =

a

n

1

h h

&

o
2 +§(D1CZh -D,)+ D, (1— .

2a

n

This gives energy equation for the spin symmetry as

(-ES% +M?)r7 +C, (E,

S(DlCh _D2)+ Derez(M +E, —CS)

2n2 2n2
a'Cy a'Cy

~M)r?+6D, =

11
+n+=+=4 1+
2 2

[502 +Dp2(1-C, Y (M +E,, —cs)}

2n2
aCy

4[5D2 +DP?(1-C, ) (M +E, —C, )}

2n +1+\j1+

In other to compute the corresponding wave function using Formula method, we write a differential equation of the form [39]

2n2
aC,

e
o, ..
as ’ ’

-NNn+2(e+g)+—=-L2s+a, 0,z

d FnK(Z)+ aZZ anK(Z) AZZ +A‘12+A\)
dz’ s(1 a,z) dz (2(1-a,2))’
the wave function is given as [39]
F(z)=N,z° (1-a,z) Zpl(
2
ot % fla o
2 2 2a 2 2 2a a,a,

2

(27)

2

(28)

(29)

(30)

(1)

_(-a) +J(1-a) -4A,

AzAlAb

a;

)

2

Defining a variable of the form S = Che“” and substitute it into Eq. (12), we have the following

dZFnK(s)Jr 1-5s anK(s)+ B,s*+B;s+B
ds? s(l-s) ds (5(1_5))2
where

4 D

Sl 22
(2

B, =1+

B, = c?

B,
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Thus, the upper component of the wave function is written as

F(s)=N,s°(1-s)" ,R(-n,n+2(c+¢); 26 +15), (36)
3.2  Pseudospin Symmetry Limit
To obtain the solution of the Dirac equation under pseudospin symmetry limit, we take d §(X) =0 and 2(X) = Cps. we
X

substitute potential (1) and approximation (8) into Eq. (7) to have

d’G, (x . S

LIy -2 ]F. 00 @)
where

D,
K|:5?,21 (1_Che_ax)_che_a{|+ ZﬂlDe}e_ax + ZﬁlDe‘| {51'52 +pD, (Ch2 -2C, _l)} e - 2/3D,
Vi (x) = — T . , (38)
1-Ce (1-Ce)
ps 51D0
—EF=4(M+ Enk)+r—2, B=(M-E,+C.), & =(k+H)k+H -1) (39)

e
The negative energy solution of Eq. (6) can directly be obtained via the spin symmetry solution through the mapping
Fu(¥) G, (X),-E, > E, V() >-V(r),-C, >C_ k—>k-1, (40)
Following the previous steps and methodologies, we obtain the energy equation for the pseudospin symmetry as
(~Epnc +M?) 2 =C (Ey ~M)17 +5,D, =
r -2

! 2
D,r*(M-E, +C_ )| 1-=; >
51(D1Ch_D2)_ ”( : pS)[ Chzj+ n+1+1 1+4[§1D2r92_Deb2re2(1_Ch) (M_Enk+cps):|
2 2 a'C? 41)

a’C a’Cl
4| 50,12 -Dpr(1-C, ) (M -E, +C,,
2n+1+\/1+ [1 : ( 5 Zh)( : p)}
a’Cy

~

anc] the corresponding lower component wave function is
G(s) =N,s% (1-5)™ ,P(-n,n+2(¢ +6,); 26 +1,5), (42)

3.3 Non-Relativistic Limit

In this section, we obtain the non-relativistic limit of the spin symmetry limit.The non-relativistic Schrédinger equation is
bosonic in nature, i.e., spin does not involve in it. On the other hand, relativistic Dirac equation is for a spin-1/2 particle. It
implicitly suggests that there may be a certain relation between the solutions of the two fundamental equations [40-42]. That
is, the non-relativistic energies Eygz can be determined by taking the non-relativistic limit values of the relativistic

2
eigenenergies E . Therefore, taking C, = H =0, and using the transformations M + E,_ — h—’l:and M-E, —-E,

together with k& — ¢ [42], the relativistic energy Eq. (29) reduces to

2uD,r? 1—i b
((¢+1)(DC,-D,) I 1 1| 4/(/+1)D, 8uDr}(1-C,)
22 + 232 Hn+o+o 14 22 T 2222 (43)
C a‘h 2 2 aC a’h'C
£ | (1+1)D, ) h h
"o | att o 8uD,r2(1-C, )
2n+1+ 1+4'([2+12D2+ a e;(z - )
a’Cy a’h’Cy
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Eq. (43) is identical to equation (16) of Ref. [24]. The corresponding wave function is given as

R,(s)=N,s" (1—s)b ,F(-n,n+2(a+b);2a+1s), (44)
where,
2 8uD,r?(1-C, )’
a:Jz(u?Do_Zur; Eu g b= Lol f1, 4004DD, BuDAI(1-C,)
o ah 2 2 aC, a’h°C,

4.0  Thermodynamic Properties and the Shifted Tietz-Wei Potential
In other to calculate the thermodynamic properties of a system within the Shifted Tietz-Wei diatomic potential model, we
first calculate the vibrational partition function of the system. To begin, we first re-write the energy equation (43) in the form:

()5 S F+(/1 +ny’ T

2ur? 2 2(/1+n)

E (45)

n,/

where

A=—+

/(¢ +1)(DC,-D Z”Derez(l_ch 1 1| 4(/+1)D, 8uD,r?(1-C,)
£= + (1 h 2)+ h _\/1+ (t+1) 2 4 HEele h and[l]means

a’C? a’h? 2 2 a’C? a’h*C?
the largest integer inferior to A . Now, the partition function of the system is calculated by
2 1
Z(p)=Y ", p=—. (46)
pard KT
Substituting Eq. (39) into Eq. (40), we have
2
§+(/I+n)2
B [(:((f+l)D0a2h2] 2 2(4+n) r 2
2
Z(,B):e 2rg Ze R R= /4 _ e :u (47)

I
o

n

\/E' r= ah

In the classical limit at high temperature T, for large A and small 3, e
integral to have the partition function as

i ﬁyErfi[ﬁ\/ﬁj
2 -sfen-—— g
0

Having obtained the partition function in Eq. (48), it becomes less cumbersome to calculate the thermodynamic properties.

_ﬁ[/(ﬂ+1) Doazhzj

2
24 ~1, the sum can be replace by the

(48)

4.1  The Vibrational Mean Energy U
0 1 T
U(B)=——7InZ(p) =—{1 —}
op B

_DawsonF(r)
—r | e <JxErfi(z) A
- | - p-10 49
ﬁErfi(r){ﬂ 25t } =7V 9
4.2  The Vibrational Specific Heat C

C(ﬂ)=§TU(ﬁ) - kﬁZ%U(ﬂ)
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1| o] e’ +m@-?)Eri()
= k|1t .

2 2e” DawsonF (z)°
When g1 1, C(p)=0.

4.3  The Vibrational Mean Free Energy F
F(p)= KTz ()= (J_y Erf'(f)]

JB
4.4: The Vibrational Entropy S:
_ 9 _S(B) = x5
S(p) =KInZ(B)+KkT op InZ(B)=S(p)=KInZ(B)-kp B InZ(p)

awson
NP

1 T yErfi(z) "‘IOg(ﬂj

5.0 Information Entropy

(50)

(51)

(52)

In this section, we consider the information entropy of the Shifted Tietz-Wei potential. Entropy is the key concept of
quantum information theory. It measures how much uncertainty present in a state of a physical system. In the context of this

work, we consider the Shannon entropy, the Renyi entropy and Onicescu energy.

5.1  Shannon Entropy

In the position space, the Shannon information entropy Sp of an electron density ,o(X) in the coordinate space is defined as

[43-45]

S(p) =—4x [ p(x)Inp(x)dx,
where
p(X)=N? 2""(1—5)2‘)><2Fl(—n,n+2(a+b);2a+1;s)2,

(53)

(54)

where we have defined a variable of the form s =e " and Ch =1. Substituting Eq. (54) into Eq. (53), we have

S(p)=—" AN, Inp(s)jsZa (1- s) 2Fl(—n,n+2(a+b);2a+1;s)2ds,
as

(p)——N”‘ In,o(y)J.y2b (1-y)*,F(-n,n+2(a+b);2a+Ls) dy,s=1-y,

all-y)

Let us now define a functlon of the form

nir(2a+1)° T(2b+n+2)

1
'[yZb (1-y)*,F(-n,n+2(a+b);2a+Ly) dy =
0

I'(2a+1)T'(L-2b)

r'(2a+n+D)r(@1-n-2b)
Using Eqgs. (57), the Shannon entropy in the position space is obtained as

,F(-n.n+2(a+b);2a+1;s)ds =

2br'(2a+n+1)(2a+2b+n+2)’

S(0) =298 o oty F(2a+n+1)F2(2a+2b+n+2)[ I(20+1)r(1-
a(l-2) nIF(2a+1) T(2+n+2) (I

I(2b+n+1)(1-n-2a)

(55)

(56)

(57a)

(57b)

(58)
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In the momentum space, the Shannon information entropy is [45]

S, =—47 [ 7(p)Iny(p)dp,

where

7(p) = Nsﬂe—Zabh(p—re) (1_ Che—bh(p—re) )Zb [Pn(Za,Zb—l) (1_ 2Che—bh(p—re) ):|2 _
Eq. (58) is equal to Eq. (54). Defining z =e ®*™) Thus, Eq. (59) becomes
S, = 47B, DN [y (1-y)"dy, z=1-y,

2 _ —
where f3, = [Pn@a'z“) (2y —1)] (1-y)™" and D= Iny(p).
Following two different forms of Jacobi polynomials [46, 47]

Pn(aﬁ) (s) _

n!
1

R&ﬁ“3)=57

I'(a+n+1) . (n]

[(a+pB+n+1) ;

m

n+p

Al g

and the integral of appendix (A.3), we deduce the momentum space Shannon entropy as foIIows

F(a+ﬁ+n+m+1)(s—1jm

I'(a+m+1) 2

(s (s

5.2

The Renyi Entropy

The Renyi entropy in position space is defined as [48, 49]

1
R =——Io
Substituting Eq. (60)

[ p(x)%dx], 0<q<w, q=1l.
[p(0%dx], 0<q<w, g

into Eq. (65), the Renyi entropy is obtain as

R

q-17]

Rq[p]:

The momentum space is define as

1 ©
Rq[y]=mlog[47rj‘0 y(p)qdp}, 0<g<oo, gq#l.

Substitute Eq. (60) into Eq. (67) we obtain the momentum space for the Renyi entropy as

1
(m 2 Fl (—Zb,1+ Za, 2(1+ a),l)j

R [;/]——qlo

912.568N 2

Z
m=0
n+2a

oo

0

g

1+q

I'(2a+n+1)

14

n!F(2a+2b+n)

)

+2b-1 n+2b-—
X
k n—-k
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y-1)
[(a+m+1)

29

JCCRINC]

[12.568N2  T'(2a+n+1) (2a+2b+n+m+) m
-1
1-y n'F(2a+2b+n %g(j I'(a+m+1) (v=1)
n+2a\(n+2b-1) (n+2b-1 nk 1 .
Sy = (k ][k jx(n—k j(2(y—1)) (2y) (mZFl(—Zb,1+2a,2(1+a),l)J ,
|: nzl yZa( )2b+1 ﬂ1:|
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(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)
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5.3  The Onicescu Information Energy
The Onicescu information energy is defined as [50]

E[p]= [ p(x)dx (69)
Recall that o =hb,r,, X :[ — e) and consider s =g ("% , Eq. (69) can be written as
E[p]= jo p(X)2dx = jo o (s)b sds. (70)

h

Because of the cumbersome nature and difficulty in calculating Eq. (70) due to the interval of the variable [O, Cheb“re] [51,

52], Wei weakening the limit of the integral [53] from [O,Cheb“re} to [0,1]. Now, recall that t =1—2s, Eq. (62) becomes

71
: (71)

Substituting for p(t) into Eq. (71), we obtain the Onicescu information energy as

2T(2a+n+1)I(2b+n+1) T

1 2 2
E[p]= qu—lpz(t)?dt'

E[p]=b:(N2) |a

(b+1)

+
nl2ar'(2(a+b+n+1))I'(2a+2b+n+1)
2'(2a+n+1)I'(2b+n+2)

n2ar'(2(a+b+n+1))r(2a+2b+n+2)
I'2a+n+1)r(2b+n+2)

| nl2al’(2(a+b+1)+n)'(2a+2b+n+1) ]
Table 1: Bound states for the spin symmetry limit in units of fm™ (Es'nvk(fm’l)) for D, =38, b, =1.6189,

C, =0.170066, M =b, —2C,, r, =0.7416, C, =5fm™.

(72)

(1,§) H=0 (1,§) H=05 (1,§) H=1
OPsz: OPuz 3751317086 | 0952 OPaz 3721464804 | OS2 OPsiz 3701310321
0ds;;, 0dy, 3.721001774 1d;,, 1p3/2, 3.721034969 18y, 1p3,2, 3.721045463
07, 0f5/2, 3.720711285 20s,, 2p3,2’ 3.720622920 25y, 2p3,27 3.720176882
1032, 1Pu2 3750069557 | 3052+ 3Puz 3700930477 | 3%u2+ 3Pa2 3720067321
1d5/z’ 1d3/2, 3721680719 0f7/2! Ods/zl 3.721958249 0f7/2’ 0p1/2, 3.721680071
172, 1f5/2, 3.721132608 1, 1d3/2, 3.721292950 1, 1pﬂ2, 3.721132608
2Pyz. 2p1,2, 3.720260716 217, 2d3/2, 3.720644498 235, 2p1,2’ 3.720601714
2d5/2, 2d3/2, 3720089470 | 51712 3d3/2, 3720014080 | STz 3Puz, 3750008047
2f7/2, 21, 3.722297166
3Pa2: 3Py 3751515088
3dy; . 3dy, 3.720749997
311, 315, , 3.720002305
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Table 2: Bound states for the pseudospin symmetry limit in units of fm™ (Esvnx(fm_l))for D, =38, b, =1.6189,
C, =0.170066, M =h, —2C,, r, =0.7416, C , =5fm™.

e

(1,§) H=0 (I,i) H=05 (Li) H=1
vz Odsi2 3284208061 | *Poz 0%z, 3201353680 | 1952 9%z, 3200502716
lp3/2 .0 f5/2 -3.299592716 1d5/2 .0 f5/2 , -3.309301496 1f7/2 0 f5/2 , -3.320552256
1d5/2, 097/2’ -3.320552256 1f7/2' Og7/2, -3.333374313 2d5/2’ 1d3/2 , -3.302703958
Yo Oy 5 347785341 | 2Psrz W2 5003771766 | 2 T2 LTsi2 3304083346
2s,, , 1d3/2, -3.285840469 2ds,, 1f5/2, -3.313078666
2p3/2' 1f5/2’ -3.302703958 2 f7/2’ 197/2, -3.338453473
2052 1972 3324983346
2 f7’2’ 1h9/2, -3.353509891
mee 6><1015
O -===msssszszoo- E
. ot
o SN e N N :
5 - - ‘ T T e
|- \\\ ir ‘\“\“\\.\\
18 01 02 03 04 05 06 07 08 09 % "“------'.'.;f:::-----—-~--~--1—---

Fig. 1: Energy (E,,) against & with u=h=1 r,=0.2,
C,=1 D,=10, D,=1 D,=-D, and D, =2D,.
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Fig. 3: Variation of Mean Free energy (F) with /.

6.0

Discussion and Results

Fig. 4: Variation of Mean energy (U) with ﬂ

In Tables 1 and 2, we present the numerical results for the spin symmetry and pseudospin symmetry respectively. There are
degeneracies in both the spin and pseudospin symmetries. The presence of the tensor potential removes the degeneracies.
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In Fig. 1, we plotted energy against & for £ =1,2,3. It is found that the energy increases towards negative direction with

increasing ¢ when « > 0.1. In Fig. 2, we observe the variation of the partition function with ¢ . It is observed that as &
increases, the partition function (Z) tends towards zero. In Fig. 3 and 4, we plotted the Mean Free energy (F) and Mean
energy (U) respectively with f. It is found that the Mean Free energy increases as £ increases but the Mean energy

decreases as £ increases. This indicates that at higher temperature, a particle confining within a system of Shifted Tietz-Wei
potential has more Mean energy than Mean Free energy.

7.0  Conclusion

In this paper, we have investigated the bound state solutions of the Dirac equation under spin and pseudospin symmetry
limits with Shifted Tietz-Wei potential for any spin-orbit quantum number k. By using a suitable approximation scheme, we
have obtained energy equations and the radial wave functions. The thermodynamic properties and information entropy of the
Shifted Tietz-Wei potential have been studied. It is seen that the present result agrees with the previous results obtained in
[26]. Our results found its application in atomic and molecular physics.

Appendix A. Some useful standard integrals.

jx”dx e Al
n+1
2
jxlnxdx:%lenx—%. A2

+y

Iwzy (1- pz)t dz = W
0 1+y

fl (1__x) (u_ij x[P(a'b) (X):|2 B 2l(@+n+1)I(b+n+1) N
a2 2 nlal(a+b+2n+D)I(@a+b+n+1) '

R (-t1+y,2+y; pw). A3
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