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Abstract 
 

The Hubbard model and t-J model are two essential models for one-

dimensional strongly correlated electrons. Intensive studies have explained 

many important aspects of these 1D systems, whose low-energy properties 

can be described as Tomonaga-Luttinger liquid. This article reviews 

current status of our understanding, which has been achieved with 

conformal field theory technique and numerical approaches. 

 

1.0     Introduction 
The behaviour of interacting electrons in one dimension has been intensively studied. This was stimulated by the discovery of 

one-dimensional (1D) organic conductor (TTF-TCNQ), organic superconductor (Bechgaard salts) and carbon nanotubes. It is 

well known that Fermi liquid (FL) theory describes interacting electrons in three dimensions [1], and many properties of the 

FL theory breaks down in one dimension; hence the need for 1D physical theory to describe the physics of interacting 

electrons in 1D organic materials. This led to the discovery of Tomonaga-Luttinger liquid theory [2, 3]. Since then much 

progress has been achieved in the understanding of 1D correlated electrons. 

Formerly, there were two independent approaches: the exact Bethe-Ansatz solutions for 1D models including the Hubbard 

model [4] and bosonization theory to describe low-energy physics of 1D weakly correlated electrons [2, 5, 6]. Later advances 

in conformal field theory (CFT) [7], made it possible to connect these previous two view points and understand 1D electrons 

in the weakly and strongly correlated regimes.   

The purpose of this article is to review achievements in this field by considering the Hubbard model and t-J model as 

fundamental systems. The two 1D models are basically the same in an appropriate limit but have significant differences in 

general. Therefore, detailed studies on these models will bring useful insights on various aspects of 1D strongly correlated 

electrons. We try to cover as many researches on this field as possible. 

Usually, 1D quantum systems with short-range interaction undergo phase transition at zero temperature ( 0 KT = ), which is 

a critical point [8]. Therefore, 1D correlated electrons can be best described with the physics of various correlation functions 

at zero temperature, where the exponents show power-law decay [9]. It is important to note that power-law decay of 

correlation function is what clearly distinguishes the Tomonaga-Luttinger (TL) liquid theory from FL theory [10]. Here the 

interest is in the following correlation functions: (i) density correlation function (ii) electron field correlation function, (iii) 

spin correlation function and (iv) singlet and triplet superconducting correlation functions. These correlation functions and 

their critical exponents have been studied with different techniques.  

As a result the concept of TL theory, which was proposed about 35years ago [11-13] has been recognized to be applicable to 

1D correlated electrons. Various techniques, which have contributed much in this field, include (i) calculation of correlation 

functions based on quantum Monte Carlo (QMC) simulations [14-17], (ii) calculation of correlation functions based on 

bosonization theory [15, 18], (iii) calculation of correlation functions based on path-integral formulation [6]and calculation of 

correlationfunctions and their critical exponents based on conformal field theory (CFT) [7, 19-21]. 

In 1996 Shaojin and Lu [22] applied the Density Matrix Renormalization Group (DMRG) method to calculate correlation 

functions and their critical exponents and obtained 0.125 at kF, 0.75 at 3kF and 1 at 5kF. Only theirresults at kF agree with 

results obtained from other techniques, but result at 3kF, disagrees with both numerical and analytical results from other 

methods [23].This discrepancy on critical exponent at the Fermi point 3kF has prompted series of investigation in this field.  
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Also, it has stimulated our quest in this field to investigate correlation functions and their critical exponents near odd Fermi 

points with the CFT technique developed by Frahm and Korepin [7]. This has provided insights and proper understanding of 

TL liquid properties for 1D correlated electron systems [24].  

Having these in mind, we organize this article as follows. In section 2 we review the properties of the 1D Hubbard model. 

The 1D t-J model is discussed in section 3. This is immediately followed by conclusion.  

 

 

2.0 One-Dimensional Hubbard Model 

2.1 Correlation Functions and their Critical Exponents 
The Hubbard Hamiltonian [7] 

( ) ( ) ( )† †
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is the simplest model of correlated electrons. Here electrons are only allowed to hop to nearest neighbor sites. †

, , ,j j j
n    = is 

the number of spin   electron at site j , †

, ,
( )

j j    is creation(annihilation) field operator, 4 0u   is the on-site Coulomb 

repulsion,   is the chemical potential, and H is an external magnetic field.  

In the language of CFT, correlation functions have been calculated for various quantum numbers and the critical exponents 

can be extracted from these correlation functions. The general expression for correlation function [7] at zero temperature is 
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Where the conformal dimensions ( )c s
h h 

 for holon (spinon) excitations are given by 
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The ( )c s
v v  is velocity for holon (spinon) excitations, t is time, ( ), ,F F

k k
 

 is Fermi points with spin up (down) respectively. The 

positive integers 
,c s

N  , for holon and spinon describes particle-hole excitations, with 
, ,
( )

c s c s
N N+ −  being the number of 

occupancies a particle at the right (left) Fermi level jumps to, ( )
c s

N N   represents the change in number of electrons (down-

spin) with respect to the ground state, ( )c s
D D is the quantum number of particles which transfer from one Fermi level of the 

holon (spinon) to the other,  and both 
c

D  and 
s

D  are either integer or half-odd integer values. Finally, Z is the well-known 

dressed charge 2 2  matrix describing anomalous behaviour of critical exponents [7, 24]. 

At zero magnetic field, the density correlation function is calculated for the set of quantum numbers
,

( ,  ,  ,  ,  )
c s c s c s

D D N N N   =

(1, -1, 0, 0, 0), (1, 0, 0, 0, 0). Therefore, the equal time (t→0, x→0) density correlation function is obtained as 

1
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The exponents 
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= +
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        ,          (2.6) 

and 
c is the solution of the dressed charged matrix. As a result of the range of variation of  , the dominant contribution to 

the correlation function Eqn. (2.5) is the first term on the right hand side, for all finite values of interaction u. The oscillations 

with Fermi points 2 Fk  appears in free electron gas. While the oscillations with 4 Fk  are a product ofinteraction, i.e., as 

u →  the amplitude A1 vanishes and the leading oscillating contribution to the correlation function is the second term on 

the right hand side of Eqn. (2.5). For any density below half-filling ( 0 1cn  ), the value of   increases from 2 to 4 as the 

Coulomb repulsion u decreases from   to 0. This is shown in Figure 2.1. 
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With the excitations (0, 1, 0, 0, 0), (1, 0, 0, 0, 0), the spin correlation function has the same form as the density correlation 

function except that the constant term cn  is replaced by the magnetization m. Using these excitations the spin correlation 

function for zero magnetic field is obtained as 

1

2

1 2

cos(2 ) cos(4 )
( ,0)z F Fk r k r

G r m A A
r r

  
 + +       (2.7) 

 

2.2  Presence of Magnetic Field Effects 
In 1D correlated electrons, magnetic field has significant effects on the spin degrees of freedom[7, 25].First is the mixing of 

phase operators of spin and charge densities, which results from a difference in spin-up and spin-down Fermi velocities, 

F F
v v

 
 , caused by magnetic field. Secondly, is the suppression of scattering between right-going and left-going states (i.e., 

due to 
F F

k k
 
 ). These effects are seen in bosonization theory [1]. Also in CFT, magnetic field effect appears in various 

Fermi points. That is, the 3 Fk  manifests as 2
F F

k k
 
+ , 5 Fk  manifests as 2 3

F F
k k

 
+ , and so on. For small magnetic field, the 

conformal dimensions take the form [26, 27]  
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The electron field correlation function is calculated for the excitations (-1/2, 1/2,1, 0, 0), (-1/2, -1/2,1, 0, 0), (3/2, -1/2,1, 0, 0), 

(-3/2, -1/2,1, 0, 0), (5/2, -1/2,1, 0, 0), (-5/2, -1/2,1, 0, 0) and (7/2, -1/2,1, 0, 0), and we obtain 
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For the result (2.10), both holon and spinon excitations are responsible for the oscillations in the electron field correlation 

function. We note that 3
F

k  manifests as 2
F F

k k
 
+ , 5

F
k  appears as 3 2

F F
k k

 
+ , 7 Fk  as 3 4

F F
k k

 
+ , 9 Fk  as 5 4

F F
k k

 
+ , 11 Fk  

as 5 6
F F

k k
 
+  and 13 Fk  as 5 6

F F
k k

 
+ , respectively. From the magnetic field dependence of the singularities at these Fermi 

points, we determine the critical exponents 1 3 5,  , ,   7 9 11 13,  ,  and     defined in 
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Unlike the momentum distribution for Fermi liquid that exhibits a jump at the Fermi surface, the momentum distribution for 

TL liquid theory shows power-law singularity, and this characterizes TL liquid theory in contrast to FL theory. This is as a 

result of large quantum fluctuations present in one dimension, and therefore the low-energy properties of TL liquid are 

described by collective motion of Fermions instead of elementary quasi-particles. 

In the presence of magnetic field effects, the momentum distribution functions Eqn. (2.11) around various Fermi wave 

numbers for the electron field correlator exhibits typical power-law singularities of Tomonaga-Luttinger liquid. As the 

magnetic field goes to zero,these critical exponents areobtained as tabulated in Table 2.1. The critical exponents around 

 and 3F Fk k  have been obtained earlier [23].  

Table 2.1: Critical exponents for Hubbard model. 

Fermi wave numbers  Critical Exponents   

Fk  0.125 

3 Fk  1.125 

5 Fk  3.125 

7 Fk  6.125 

9 Fk  10.125 

11 Fk  15.125 

13 Fk  21.125 

The result at  and 3F Fk k agrees with results from QMC. However, results at 3  and 5F Fk k disagrees with Shaojin and Lu’s 

DMRG results [22]. The results at 7 ,  9 ,  11 ,F F Fk k k  and 13 Fk  first appeared in [24, 27]. 

 

3.0  One-Dimensional t-J Model 
One-dimensional t-J model [21] is known to have spin-1/2 electronsaround nearest neighbour lattice sites with hopping 

matrix element –t < 0. Double occupation of every lattice site is not allowed, i.e., each lattice is constrained to have either one 

electron (with spin-up or spin-down) or none. This accounts for strong correlation in this model.The t-J model has some 

similarities to the repulsive Hubbard model, but they are also different in many aspects. First the t-J model can have a region 

with Luttinger parameter 1K   where superconductivity correlations are the most dominant. Secondly, this model also show 

phase separation [28, 29]. Emery et al. [30]discussed the phase separation in the 2D t-J model, while Ogata et al. and Schulz 

[31, 32] studied the phase separation in the 1D t-J model.The phase separation in 1D systems is not trivial because of large 

quantum fluctuations [33]. These have stimulated both theoretical and experimental interests in the study of the properties of 

1D t-J model. 

3.1  Correlation Functions of t-J Model  
As mentioned earlier, there are different approaches to the study of correlation function. Here we shall review only the CFT 

approach where critical exponents can be extracted easily from correlation functions. The 1D version of the t-J Hamiltonian 

[21] is given by 
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matrix S , the number operator 
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= = + and   and H are the chemical potential and external magnetic 

field, respectively. Here the correlation function at zero temperature is estimated using the relation. 
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Where ,   ,   ,   ,   ,   c s F xD D k x v t , have the same meaning as in Hubbard model. The conformal dimensions for both holon and 

spinon excitations at zero magnetic field are given by 
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Here, ( )c s
I I  is the change in number of electrons (down-spin) with respect to the ground state.  

For vanishing magnetic field, the charge density correlation function is obtained as  
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    = + = − . Eqn. (3.4) is obtained with 

,( ,  ,  ,  ,  )c s c c c sD D I I N  = (0, 0, 0, 0, 1), (1, 

0, 0, 0, 0), (-1, 0, 0, 0, 0). Similarly, the superconducting singlet and triplet correlation functions are estimated with the 

excitations (1/2, 0, 2, 1, 0) for singlet and (0, 0, 2, 2, 0) for triplet, and we obtained the singlet pair correlator as 
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 and triplet pair correlator as  
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The superconducting exponents are given by  

4 4
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4
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= + = +         (3.7) 

If the exponents   and  s t   are plotted against electron concentration or band filling ( 2cv n= ) as shown in Fig. 3.1, one 

observes that the superconducting correlations get more enhanced as holes are doped into the half-filled band [20, 34] 

    

     

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Superconducting correlation exponents as a function of v.  

  an     ds t  are for singlet and triplet pairs, respectively. 

The momentum distribution for singlet and triple pair are obtained as  
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Where the superconducting critical exponents are obtained as 

1,     1s s t t   = − = −          (3.9) 

Lastly, the long-distance behaviour of the electron field correlation function at zero magnetic field is calculated for the 

excitations (0, 1/2, 1, 1, 0), (1, -1/2, 1, 1, 0), (2, -3/2, 1, 1, 0), (3, -5/2, 1, 1, 0), (4, -7/2, 1, 1, 0), (5, -9/2, 1, 1, 0) and (6, -11/2, 

1, 1, 0). We thus obtain the momentum distribution functions as  
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Conformal field theory has enabled us to extract the critical exponents from the momentum distribution functions. As v goes 

to half-filling, we obtain the critical exponents around the Fermi points as shown in Table 3.1. 

Table 3.1: Critical Exponents for t-J Model. 

Fermi wave numbers  Critical Exponents   

Fk  0.125 

3 Fk  1.125 

5 Fk  5.125 

7 Fk  12.125 

9 Fk  22.125 

11 Fk  35.125 

13 Fk  51.125 

In the language of bosonization [5, 11, 35, 36] K   and K  are parameters governing the decay of correlation functions. 

Critical exponents for systems without a spin gap are related to these Luttinger parametersas shown in Table3.2[37]. 

Table 3.2:.Relationship between CFT exponents and Luttinger parameter for systems without spin gap. 

 Exponents   

2 CDWFk −  K =  

4 CDWFk −  4K =  

singlet pair 1
s K

K


 = +  

tinglet pair 1 1
s K K 

 = +  

( )  at  ,  3 ,  5 ,...F F Fn k k k k  ( )1 1

4
2

K
K


 = + −  

In the absence of magnetic field, 1K = . Therefore, relating our results in Table 3.1with the Luttinger parameter K  in Table 

3.2gives the results in Table 3.3. 

Table 3.3. Critical exponents for t-J model and corresponding Luttinger parameter.  

 Exponents for t-J model 

k    1K   1K   

Fk  0.125 0.5 2 

2 Fk  0.5 0.5 - 

3 Fk  1.125 0.2 6.34 

4 Fk  1 – 3 0.25 - 0.75 - 

5 Fk  5.125 0.05 22.45 

7 Fk  12.125 0.02 50.48 

9 Fk  22.125 0.01 90.49 

11 Fk  35.125 0.005 142.49 

13 Fk  51.125 0.005 206.49 

Singlet pairing 1.5 0.67 - 

Triplet pairing 2 0.5 - 
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One major significance of the Luttinger parameter is that exponents with 1K   is repulsive Tomonaga-Luttinger liquid, 

1K =  is Fermi liquid and 1K   is attractive Tomonaga-Luttinger liquid.  

 

3.2  Phase Diagram 
Our results can be summarized in the phase diagram shown in Figure 3.2, with contour lines for several values of K  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig. 3.2: Phase diagram of 1D t-J model from CFT for 0 1en   and in the range 0 4J t  , with curves representing the 

contours of constant Luttinger parameter K  [38-40]. 

We obtained four different phases:in the region of small J/t, the ground state of the t-J model is repulsive TL liquid with 

1K  . In this region, the spin correlation dominates the long-distance behaviour. This signifies a conducting (or metallic) 

phase. Increasing J/t, these correlations are suppressed and the ground state changes to attractive TL liquid with 1K  . It is 

dominated by singlet pairing correlations. This signifies superconducting phase. When the attraction among the particles is so 

strong, the system separates into particle-rich and electron-rich regions. This region is called phase separation. In the limit

J → all the particles join up in a singlet Island, which can be described by the Heisenberg model forming an electron state 

phase, where the kinetic fluctuations are strongly quenched and only spin fluctuations remains [40]. The slope of the phase 

separation line indicates that the separation occurs between the empty phase( 0en = ) and a finite density phase. It was 

observed in quantum Monte Carlo simulations [41] that for 3.5J t  , the ground state becomes a fully phase separated state 

between 0en =  and 1cn = . Lastly, the spin-gap state lies between the TL liquid and phase-separated regions at small 

densities. 

The phase diagram determined by the present method (CFT) is consistent with results of the exact diagonalization on a 16-

site ring [42] and the Variational Monte Carlo method [40].Also, critical exponents in Table 3.3 around various Fermi points 

fall into the conducting phase with 1K   and superconducting phase with 1K  . This corresponds to small and large values 

of J t for the t-J model [39]. 1K  , signals FL regime (3D metallic regime). It is clear that, increasing the Fermi wave 

number increases the critical exponents, which corresponds to increase in J t . This favours the superconducting phase and 

the system is said to be in the attractive TL liquid regime. 

 

4.0 Conclusion 
We have shown that for 1D correlated electrons, a consistent understanding is being achieved for low-energy properties from 

weak to strong correlation regimes. In particular, the conformal field theory has been used to describe the physics of various 

correlation functions at zero temperature for 1D Hubbard model. This is supported by numerical studies. Therefore, the 

properties of 1D Hubbard model are well understood to exhibit Tomonaga-Luttinger liquid properties. One of the 

characteristics of TL liquid theory is the occurrence of power-law decayincorrelation functions at low energies. 

The evaluation of critical correlation exponents with finite-size scaling in conformal field theory has shown that this method 

correctly reproduce not only the global features of Tomonaga-Luttinger liquid theory but also the phase diagram, with  
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conducting and superconducting regions present inthe t-J model.Also, it is observed that critical exponents associated to 

higher Fermi points correspond to Luttinger parameterwith 1K  , and this signifies superconductivity.  
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