Exact Contradicting Solution for a η-Weak-Pseudo-Hermiticity Generators

S.B. Adamu and L.S. Taura
Department of Physics, Faculty of Natural and Applied Sciences, Sule Lamido University Kafin-Hausa, Jigawa State, Nigeria.

Abstract

An exactsolution for a non-Hermitian η weak-pseudo-Hermitian Hamiltoniansis analyzed for a class of potentials $V_{\text {eff }}(x)=V(x)+i S(x)$. The imaginary part $S(x)$ of the effective potential serves as the generating function for the $\hat{\eta}$ weak-pseudo-Hermitian Hamiltonians. We obtained an exact soluble solution for the non-Hermitian Hamiltonian using a simple generating function. The derived eigen functions are expressed by confluent hyper-geometric functions and a complex energy eigenvalues are obtained.

Keywords: Hermitian, Hamiltonian, Potential, Weak-Pseudo-Hermitian, Confluent Hyper-geometric functions

1.0 Introduction

Non-Hermitian PT -symmetric quantum mechanics has been an active field of study in quantum mechanics. Mostafazadeh [1-3]has analyzed series class of non-Hermitian Hamiltonians that attributes to real spectrum eigenvalues. However, a pseudo-Hermitian Hamiltonian can also be formulated to satisfy same condition without violating the PT -symmetry condition [4, 5].In particular, a class of spherically symmetric non-Hermitian Hamiltonians and their $\hat{\eta}$ weak-pseudo Hermiticity generators, where generalization of beyon the nodeless in one-dimension state was first introduced by Fityo [6]. Position-dependent massesfor $\hat{\eta}$ weak-pseudo-Hermitian d-dimensional Hamiltonians quantum particles have also been exploited [7].Edmonds and Jameshave introduced examples on complex energies in Relativistic Quantum theory [8].
In this paper we provide an exact contradicting solvable example to the $\hat{\eta}$ weak-Pseudo-Hermicity generators which equally works well for systems of non-Hermitian Hamiltonian by product of our $\hat{\eta}$ weak-pseudo-Hermiticity generators discussed in [9].
We first considernon-Hermitian η weak-pseudo-HermitianHamiltonians for a class of effective potentials $V_{\text {eff }}(x)=V(x)+i S(x)$, where $V(x)$ and $S(x)$ are real valued functions. The imaginary part $S(x)$ of the effective potential serves as thegenerating function that gives $V(x)$ real part of the effective potential for the $\hat{\eta}$ Weak-Pseudo- . This paper is organized as follow. Section 2 is devoted to the model formulation of the $\hat{\eta}$-weak-pseudo-Hermiticity generators. A contradicting example and concluding remarks are given in section 3 and 4, respectively.

2.0 Model Formulation of $\hat{\eta}$-Weak-Pseudo-Hermiticity Generators

Let consider an invertible linear operator $\hat{\eta}$ which is Hermitian and it obey the canonical equation governed by $\hat{\eta}=\hat{O}^{\dagger} \hat{O}$,

Corresponding author: S.B. Adamu, E-mail: sulbash@gmail.com, Tel.: +2347030615953, 8034512189 (LST)
Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 1 - 10
Exact Contradicting Solution... Adamu and Taura Trans. of NAMP
where \hat{O} and \hat{O}^{\dagger} are linear operator known as intertwining operators given by
$\hat{O}=\frac{\partial}{\partial x}+M(x)+i N(x), \quad \hat{O}^{\dagger}=-\frac{\partial}{\partial x}+M(x)-i N(x)$,
in which $M(x)$ and $N(x)$ are real valued functions.
For the purpose of our study we will consider non-Hermitian Schrödinger Hamiltonian operator in 1-dimension given by
$\hat{H}=-\frac{\partial^{2}}{\partial x^{2}}+V_{e f f}(x)$
where $\hbar=2, m=1$, and $V_{\text {eff }}(x)$ known as the effective potential written as
$V_{e f f}(x)=V(x)+i S(x)$
Accordingly, the Hamiltonian operator in eq. (3) is said to be pseudo-Hermitian if it satisfies the relation [10],
$\hat{H}^{\dagger}=\hat{\eta} \hat{H} \hat{\eta}^{-1}$
and hence one may obtain a real energy spectrum. Moreover, the two intertwining operators as well as the invertible,
Hermitian operator η satisfies an intertwining relation
$\hat{\eta} \hat{H}=\hat{H}^{\dagger} \hat{\eta}$.
Substituting eq. (2) into eq. (1) imply
$\hat{\eta}=\left(\frac{\partial}{\partial x}+M(x)+i N(x)\right)\left(-\frac{\partial}{\partial x}+M(x)-i N(x)\right)$
expanding eq. (7) and simplifying we get
$\hat{\eta}=-\frac{\partial^{2}}{\partial x^{2}}-2 i N(x) \frac{\partial}{\partial x}+M^{2}(x)+N^{2}(x)-M^{\prime}(x)-i N^{\prime}(x)$.
Evaluating the intertwining relation eq. (6) by substituting eq. (3) and eq. (8) and after an explicit calculation one finds $S(x)=-2 N^{\prime}(x)$,
and subsequently
$M^{2}(x)-M^{\prime}(x)=\frac{2 N(x) N^{\prime \prime}(x)-N^{\prime 2}(x)+\alpha}{4 N^{2}(x)}$,
which implies
$V(x)=\frac{2 N(x) N^{\prime \prime}(x)-N^{\prime 2}(x)+\alpha}{4 N^{2}(x)}-N^{2}(x)+\beta$.
in which α and β are real constants.
From eq. (9), we obtain
$N(x)=-\frac{1}{2} \int S(x) d x$.
Subsequently from eq. (9), we get
$N^{\prime}(x)=-\frac{1}{2} S(x), \quad N^{\prime \prime}(x)=-\frac{1}{2} S^{\prime}(x)$.
Substituting eq. (13) into eq. (10), we have
$M^{2}(x)-M^{\prime}(x)=\frac{1}{2} \frac{N^{\prime \prime}(x)}{N(x)}-\frac{N^{\prime 2}(x)}{4 N^{2}(x)}+\frac{\alpha}{4 N^{2}(x)}$,
and in terms of $S(x)$ potential function gives

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 1 - 10 Exact Contradicting Solution...

$$
\begin{align*}
M^{2}(x)-M^{\prime}(x)=\frac{1}{2}(& \left.-\frac{1}{2} \int S(x) d x\right)^{-1}\left(-\frac{1}{2} S^{\prime}\right)-\frac{1}{4} S^{2}\left[4\left(\frac{1}{2} \int S(x) d x\right)^{2}\right]^{-1} \\
& +\frac{\alpha}{4}\left[\frac{1}{2} \int S(x) d x\right]^{-2} \tag{15}
\end{align*}
$$

after simplification eq. (15) becomes

$$
\begin{equation*}
M^{2}(x)-M^{\prime}(x)=\frac{S^{\prime}(x)}{2}\left[\int S(x) d x\right]^{-1}-\frac{S^{2}(x)}{4}\left[\int S(x) d x\right]^{-2}+\alpha\left[\int S(x) d x\right]^{-2} \tag{16}
\end{equation*}
$$

Also substituting eq. (13) into eq. (11) and solving for $V(x)$ we obtain

$$
\begin{align*}
V(x)= & \frac{S^{\prime}(x)}{2}\left[\int S(x) d x\right]^{-1}-\frac{S^{2}(x)}{4}\left[\int S(x) d x\right]^{-2}+\alpha\left[\int S(x) d x\right]^{-2} \\
& -\frac{1}{4}\left[\int S(x) d x\right]^{2}+\beta \tag{17}
\end{align*}
$$

Finally, we will compute the $V_{e f f}(x)$ real part potential $V(x)$ of the Hamiltonian equation provided by the equation (4). However, eq. (17) will be used to determine the real potential function $V(x)$, using the imaginary part of the effective potential, $S(x)$ as a generating function and with some adjustable values of integration constant α and β that would yield an exact solution to the Hamiltonian operator equation (3).

3.0 A Contradicting Example

First we consider a simple generating function given by

$$
\begin{equation*}
S(x)=-\frac{1}{2} \frac{k}{x^{2}} . \tag{18}
\end{equation*}
$$

Substituting eq. (18) into eq. (17) one finds
$V(x)=\frac{3}{4 x^{2}}+\frac{4 \alpha x^{2}}{k^{2}}-\frac{1}{16} \frac{k^{2}}{x^{2}}+\beta$,
Thus, we choose the arbitrary constant $\alpha=\frac{1}{4}, \beta=0$, we get
$V(x)=\frac{3}{4 x^{2}}+\frac{x^{2}}{k^{2}}-\frac{k^{2}}{16 x^{2}}$.
Hence, Hamiltonian operator
$\hat{H}=-\frac{\partial^{2}}{\partial x^{2}}+V(x)+i S(x)$,
implies
$\hat{H}=-\frac{\partial^{2}}{\partial x^{2}}+\left(\frac{3}{4 x^{2}}+\frac{x^{2}}{k^{2}}-\frac{k^{2}}{16 x^{2}}-\frac{i k}{2 x^{2}}\right)$,
Which can be simplified to
$\hat{H}=-\frac{\partial^{2}}{\partial x^{2}}+\left(\frac{3}{4}-\frac{k^{2}}{16}-\frac{i k}{2}\right) \frac{1}{x^{2}}+\frac{x^{2}}{k^{2}}$.
For simplicity we will consider a new substitution, l so that
$l(l+1)=\frac{3}{4}-\frac{k^{2}}{16}-\frac{i k}{2}, \quad \omega^{2}=\frac{1}{\mathrm{k}^{2}}$.

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 1 - 10 Exact Contradicting Solution...

Then, substituting eq. (23) into eq. (22), we obtain
$\hat{H}=-\frac{\partial^{2}}{\partial x^{2}}+\frac{l(l+1)}{x^{2}}+\omega^{2} x^{2}$.
Accordingly, Schrodinger equation $\hat{H} \psi(x)=E \psi(x)$, imply
$-\frac{\partial^{2} \psi(x)}{\partial x^{2}}+\left(\frac{l(l+1)}{x^{2}}+\omega^{2} x^{2}\right) \psi(x)=E \psi(x)$.
Now, if we choose $E=2 E$, eq. (25) yields
$\frac{1}{2} \frac{\partial^{2} \psi(x)}{\partial x^{2}}-\left(\frac{l(l+1)}{2 x^{2}}+\frac{\omega^{2} x^{2}}{2}\right) \psi(x)=-E \psi(x)$.
We can observe that eq. (26) is one dimensions analogy of the 3-D harmonic oscillator which can be solved in spherical coordinates [11, 12]. Since the potential is only radial dependent, the angular part of the solution is a spherical harmonic. However, Let us define a variable
$z=\gamma x$.
So that
$\frac{\partial}{\partial x}=\frac{\partial z}{\partial x} \frac{\partial}{\partial z}=\gamma \frac{\partial}{\partial z}$,
and
$\frac{\partial^{2}}{\partial r^{2}}=\left(\frac{\partial z}{\partial r}\right)^{2} \frac{\partial^{2}}{\partial z^{2}}+\frac{\partial^{2} z}{\partial r^{2}} \frac{\partial}{\partial z}=\gamma^{2} \frac{\partial^{2}}{\partial z^{2}}$.
Then eq. (26) becomes
$\frac{\partial^{2} \psi(z)}{\partial z^{2}}+\left(\frac{2 E}{\gamma^{2}}-\frac{l(l+1)}{z^{2}}-\frac{\omega^{2} z^{2}}{\gamma^{4}}\right) \psi(z)=0$.
We now introduce another new substitution
$q=\frac{2 E}{\gamma^{2}}, \gamma=\sqrt{\omega}$,
and subsequently
$q=\frac{2 E}{\omega}$,
which upon substituting eq. (31) into eq. (30) we get
$\frac{\partial^{2} \psi(z)}{\partial z^{2}}+\left(q-\frac{l(l+1)}{z^{2}}-z^{2}\right) \psi(z)=0$
From eq. (33) if we consider $(z \rightarrow \infty)$ for large z. Then eq. (33) can be written in more convenient form as
$\frac{\partial^{2} \psi(z)}{\partial z^{2}}-z^{2} \psi(z)=0$.
Eq. (34) admits a solution in the form

$$
\begin{equation*}
\psi(z)=A e^{-\frac{z^{2}}{2}}+B e^{\frac{z^{2}}{2}} \tag{35}
\end{equation*}
$$

where A and B are constants. Since at infinity $B=0$, then
$\psi(z)=A e^{-\frac{z^{2}}{2} .}$
And subsequently for $(z \rightarrow 0)$ small z, eq. (33), implies

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 1 - 10 Exact Contradicting Solution...

Adamu and Taura Trans. of NAMP
$\frac{\partial^{2} \psi(z)}{\partial z^{2}}-\frac{l(l+1)}{z^{2}} \psi(z)=0$.
Hence, eq. (37) also admits a solution given by
$\psi(z)=C z^{l+1}+D z^{-l}$,
where C and D are constants. Also $D=0$. In order not to obtain infinite
at $z=0$. Thus, we have
$\psi(z)=C z^{l+1}$.
Furthermore, proposing a solution to eq. (33) of the type
$\psi(z)=z^{l+1} e^{-\frac{Z^{2}}{2}} F(z)$.
Differentiating eq. (40), we obtain
$\psi^{\prime}(z)=\left(\left[(l+1)-z^{2}\right] F(z)+z F^{\prime}(z)\right) z^{l} e^{-\frac{z^{2}}{2}}$,
and hence

$$
\begin{align*}
\psi^{\prime \prime}(z)= & l z^{l-1} e^{\frac{z^{2}}{2}}\left[\left(l+1-z^{2}\right) F(z)+z F^{\prime}(z)\right]-z^{l+1} e^{\frac{z^{2}}{2}}\left(\left(l+1-z^{2}\right) F(z)+z F^{\prime}(z)\right) \\
& +z^{l} e^{\frac{z^{2}}{2}}\left[(-2 z) F(z)+\left(l+1-z^{2}\right) F^{\prime}(z)+z F^{\prime}(x)\right] \tag{42}
\end{align*}
$$

Substituting eq. (42) and eq. (40) into eq. (33), we have

$$
\begin{align*}
z F^{\prime \prime}(z)+ & \left(l-z^{2}+l+1-z^{2}\right) F^{\prime}(z)+\left(l(l+1) z^{-1}-z l\right) F(z) \tag{43}\\
& +\left(-z\left(l+1-z^{2}\right)-2 z+q z-l(l+1) z^{-1}-z^{3}\right) F(z)=0
\end{align*}
$$

simplifying further gives
$z F^{\prime \prime}(z)+2\left(l+1-z^{2}\right) F^{\prime}(z)+(q-2 l-3) z F(z)=0$.
Let define a new variable
$\xi=z^{2}$,
and using the transformation
$\frac{\partial}{\partial z}=\frac{\partial \xi}{\partial z} \frac{\partial}{\partial \xi}=2 \xi^{\frac{1}{2}} \frac{\partial}{\partial \xi}$,
in which $\frac{\partial^{2}}{\partial z^{2}}=4 \xi \frac{\partial^{2}}{\partial \xi^{2}}+2 \frac{\partial}{\partial \xi}$.
Thus, upon substituting eq. (45), eq. (46) and eq. (47) into the differential equation (44) it follows that
$4 \xi^{\frac{3}{2}} F^{\prime \prime}(\xi)+[4(l+1-\xi)+2] \xi^{\frac{1}{2}} F^{\prime}(\xi)+(q-2 l-3) \xi^{\frac{1}{2}} F(\xi)=0$.
Hence, dividing through eq. (48) by $4 \xi^{\frac{1}{2}}$ simplifies to
$\xi F^{\prime \prime}(\xi)+\left(l+\frac{3}{2}-\xi\right) F^{\prime}(\xi)+\frac{(q-2 l-3)}{4} F(\xi)=0$.
We may observe that the above differential equation (49) is well known as Confluent Hyper-geometric equation given in general form as
$\xi F^{\prime \prime}(\xi)+(c-\xi) F^{\prime}(\xi)-a F(\xi)=0$.
However, we may find it exact solutions by power series method. Comparing our differential equation (50) with the Confluent Hyper-geometric equation for simplicity, we choose to define.

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 1 - 10 Exact Contradicting Solution... Adamu and Taura Trans. of NAMP
$Q=l+\frac{3}{2}, b=-\frac{(q-2 l-3)}{4}$,
then the differential equation (49) becomes
$\xi F^{\prime \prime}(\xi)+(Q-\xi) F^{\prime}(\xi)-b F(\xi)=0$.
We now proceed by proposing a solution of the form
$F(\xi)=\sum_{r=0}^{\infty} c_{r} \xi^{n+r}$,
accordingly, differentiating eq. (54) 1 st and 2 nd , we get

$$
\begin{equation*}
F^{\prime}(\xi)=\sum_{r=0}^{\infty}(n+r) c_{r} \xi^{n+r-1}, F^{\prime \prime}(\xi)=\sum_{\mathrm{r}=0}^{\infty} \mathrm{c}_{\mathrm{r}}(n+r)(n+r-1) \xi^{\mathrm{n+r}-2} \tag{54}
\end{equation*}
$$

Putting eq. (54) and eq. (53) into the differential equation (52) yields
$\sum_{r=0}^{\infty} c_{r}(n+r)(n+r-1) \xi^{n+r-1}+\sum_{r=0}^{\infty} Q(n+r) c_{n} \xi^{n+r-1}-\sum_{r=0}^{\infty}(n+r) c_{r} \xi^{n+r}-\sum_{r=0}^{\infty} b c_{r} \xi^{n+r}=0$.
Collecting like terms of eq. (55) we have
$\sum_{r=0}^{\infty} c_{r}(n+r)[(n+r-1)+Q] \xi^{n+r-1}-\sum_{r=0}^{\infty}[(n+r)+b] c_{r} \xi^{n+r}=0$.
Putting $r=r+1$ in the 1 st summation terms, gives
$\sum_{r=-1}^{\infty} c_{r+1}(n+r+1)[n+r+Q] \xi^{n+r}-\sum_{r=0}^{\infty}[(n+r)+b] c_{r} \xi^{n+r}=0$.
Expanding the 1st summation, implies
$c_{0} n[n-1+Q] \xi^{n-1}+\sum_{r=0}^{\infty}\left\{c_{r+1}(n+r+1)[n+r+Q]-[(n+r)+b] c_{r}\right\} \xi^{n+r}=0$.
From eq.(58) if $c_{0} \neq 0$, then we may find an indicial equation of the form
$n[n-1+Q]=0$,
whose roots implies
$n=0, \quad n=1-Q$.
Hence from eq (58), we deduce the recurrence relation is given by
$c_{r+1}=\frac{[n+r+b] c_{r}}{(n+r+1)[n+r+Q]}$,
We now proceed by substitution of the indicial solution $n=0$ into the recurrence relation simplifies to $c_{r+1}=\frac{[r+b] c_{r}}{(r+1)(r+Q)}$.
And after an explicit calculation it follows that eq.(62) satisfied a solution in the form
$F_{1}(\xi)=1+\frac{b}{Q} z+\frac{b(b+1)}{Q(Q+1)} \frac{z^{n}}{2!}+\ldots={ }_{1} F_{1}(b, Q, \xi)$,
where $Q \neq 0$, and subsequently $n=1-Q$, we have

$$
\begin{equation*}
c_{r+1}=\frac{[r+1-Q+b]}{(r+2-Q)(r+1)} c_{r}, \tag{64}
\end{equation*}
$$

this satisfy also to give the relation
$F_{2}(\xi)=1+\frac{(b-Q+1)}{(2-Q)} z+\frac{(b-Q+1)(b-Q+2)}{(2-Q)(3-Q)} \frac{z^{n}}{2!}+\ldots$,

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 1 - 10
Exact Contradicting Solution...
Adamu and Taura Trans. of NAMP
yielding the second solution as
$F_{2}(\xi)={ }_{1} F_{1}(b-Q+1,2-Q, \xi)$.
Hence, for $c \neq 0, \pm 1, \pm 2, \pm 3$, the complete two independent solutions to the differential equation (52) becomes
$F(\xi)=A_{1} F_{1}(b, Q, \xi)+B z^{1-Q}{ }_{1} F_{1}(b-Q+1,2-Q, \xi)$,
where A and B are constants.
Accordingly, we may deduce the wave function eq. (40) in the form
$\psi(z)=z^{l+1} e^{-\frac{Z^{2}}{2}} F(z)$,
in which
$F(z)=A_{1} F_{1}\left(b, Q, z^{2}\right)+B z^{1-Q} F_{1}\left(b-Q+1,2-Q, z^{2}\right)$,
and
$z=\gamma x, \quad Q=l+\frac{3}{2}, b=-\frac{(q-2 l-3)}{4}$.
Finally, the general solution becomes
$\psi(x)=(\gamma x)^{l+1} e^{-\frac{(\gamma x)^{2}}{2}} F(\gamma x)$,
where
$F(\gamma x)=A_{1} F_{1}\left(b, Q, \gamma^{2} x^{2}\right)+B(\gamma x)^{1-Q}{ }_{1} F_{1}\left(b-Q+1,2-Q, \gamma^{2} x^{2}\right)$,
in which
$Q=l+\frac{3}{2}, b=-\frac{(q-2 l-3)}{4}$.
We shall now consider $b=-n_{r}$, as $x \rightarrow \infty$ for the wave function to be well behaved in order to deduce the energy equation. Hence, it follows that the relation
$b=-\frac{(q-2 l-3)}{4}=-n_{r} . \quad n_{r}=0,1,2 \ldots$.
Therefore,

$$
\begin{equation*}
q=2 l+3+4 n_{r} \tag{74}
\end{equation*}
$$

hence from eq. (32) it follows that $q=\frac{2 E}{\omega}$ upon substituting into eq. (74) and solving for E_{n}. We may obtain the energy eigenvalues given by
$E_{n_{r}}=\left(2 n_{r}+l+\frac{3}{2}\right) \omega$.
And since $E=2 E$, then energy eigenvalues becomes
$E_{n_{r}}=\left(4 n_{r}+2 l+3\right) \omega$,
where $\quad \omega^{2}=\frac{1}{k^{2}}$ and $l=-\left(\frac{3}{4}-\frac{i k}{4}\right)$ or $l=\left(\frac{1}{2}-\frac{i k}{4}\right)$.
Thus, for simplicity we choose to work with $l=\left(\frac{1}{2}-\frac{i k}{4}\right)$, and finally the complex energy eigenvalues becomes
$E_{n_{r}}=\left(4 n_{r}+4-\frac{i k}{2}\right) \omega$,
where $\quad \omega^{2}=\frac{1}{k^{2}}$.
However, the complete wave function would be given by

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 1 - 10 Exact Contradicting Solution... Adamu and Taura Trans. of NAMP
$\psi(x)=A(\gamma x)^{l+1} e^{-\frac{(\beta x)^{2}}{2}}{ }_{1} F_{1}\left(b, Q, \gamma^{2} x^{2}\right)$,
where A is normalization constant. $Q=l+\frac{3}{2}$, and $b=-\frac{(q-2 l-3)}{4}$.
To find the normalization constant using the condition $\int_{o}^{\infty}|\psi(x)|^{2} d x=1$. We choose for simplicity $b=0$, thus
${ }_{1} F_{1}\left(0, Q, \gamma^{2} x^{2}\right)=1$,
and subsequently
$\psi(x)=A(\gamma x)^{l+1} e^{-\frac{(\gamma x)^{2}}{2}}$,
upon substitution in the normalization condition gives
$A^{2} \int_{o}^{\infty}(\gamma x)^{2(l+1)} e^{-(\gamma x)^{2}} d x=1$.
Comparing eq. (82) with the standard integral given by
$\int_{o}^{\infty} x^{2 n} e^{-x^{2}} d x=\frac{1}{2} \Gamma\left(n+\frac{1}{2}\right)$,
we have $A=\frac{\sqrt{2}}{\left[\Gamma\left(l+\frac{3}{2}\right)\right]^{\frac{1}{2}}}$
hence the complete general wave function is given by
$\psi_{n}(x)=\frac{\sqrt{2}}{\left[\Gamma\left(l+\frac{3}{2}\right)\right]^{\frac{1}{2}}} \frac{(\gamma x)^{l+1}}{n!} e^{-\frac{(\gamma x)^{2}}{2}}{ }_{1} F_{1}\left(b, Q, \gamma^{2} x^{2}\right)$,
where
$Q=l+\frac{3}{2}, b=-\frac{(q-2 l-3)}{4}$ and $l=\left(\frac{1}{2}-\frac{i k}{4}\right)$.

Figure 1: Plots of wave function, Energy levels and Potential, $l=1$.

Figure 2: Effect potential graph, $l=1$.

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 1 - 10 Exact Contradicting Solution...

Adamu and Taura Trans. of NAMP

4.0 Conclusion

In this study, we introduced our model formulation for the η-weak-pseudo-Hermiticity generators analyzed in [6].We obtained an exact solvable contradicting solution for the η weak-pseudo-hermicity generators of non-Hermitian Hamiltonian which results to a complex energy eigenvalues with the eigenfunctions in form of confluent hyper-geometric functions, which extended the work of Mustafa and Mazharimousavi [9].However, only properlychosen of integration constants α and β withthe $S(x)$ generating function of the effective potential, $V_{\text {eff }}(x)=V(x)+i S(x)$ would yield an exact solution to the Hamiltonian operator equation (3).For simplicity, we choose to work with $l=\left(\frac{1}{2}-\frac{i k}{4}\right)$, to obtain our results of energy eigenvalues with the eigenfunction.

5.0 References

[1] Ali Mostafazadeh "Pseudo-Hermiticity versus PT -symmetry. I, II and III. A complete characterization of non-Hermitian Hamiltonians with a real spectrum". Journal of Mathematical Physics 43, 2814, 2002.
[2] Ali Mostafazadeh "Non-Hermitian Hamiltonians with a real spectrum and their physical applications". Pramana -Journal of Phys., Vol. 73, No. 2, 2009.
[3] Ali Mostafazadeh, J. Math. Phys. 43 (2002) 205. M. Znojil, "Pseudo-Hermitian version of the charged harmonic oscillator and its "forgotten" exact solution". 2002, (arXiv: quantph/0206085)
[4] Carl M. Bender and Stefan B. Jun (1998). Real Spectra in non-Hermitian Hamiltonians having PT -Symmetry. Phys. Rev. Lett., 80:5243-5246.
[5] Jones-Smith, Katherine, and Harsh Mathur,"A New Class of non- Hermitian Quantum Hamiltonians with PT - symmetry"., Physical Review A 82, 042101, 2001.
[6] T. V. Ftiyo, J. Phys. A: Math. Gen. 35 (2002) 5893, 2006. O. Mustafa and S. H. Mazharimousavi: "Generalized η-pseudo-Hermiticity generators; radially symmetric Hamiltonians" (2006) (arXiv:hep-th/0601017)
[7] O. Mustafa and S. H. Mazharimousavi, Czech. J. phys. (2006), in press (arXiv: quantph/0603237).
[8] Junior Edmonds, James D.,"Complex energies in Relativistic Quantum theory". Foundations of Physics, 4(4):473-479, 1974.
[9] Omar Mustafa and S. Habib Mazharimousavi " η-Weak-Pseudo-Hermiticity Generators and Exact solvability'’. Physics Letters A, 357(4-5):295-297.
[10] Ashok Das and L. Greenwood "An Alternative Construction of the Positive Inner Product for Pseudo-Hermitian Hamiltonians". Journal of Mathematical Physics, 51 (4), 2010.
[11] Jun John Sakurai, "Advanced Quantum Mechanics". Addison Wesley, ISBN 0-201-06710-2, Third edition, 1967.

Transactions of the Nigerian Association of Mathematical Physics Volume 2, (November, 2016), 1 - 10 Exact Contradicting Solution... Adamu and Taura Trans. of NAMP
[12] Walter Greiner (1997). "Relativistic Quantum Mechanics, Wave Equations". Springer. Third edition.

