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Abstract 
 

An exactsolution for a non-Hermitian  weak-pseudo-Hermitian 

Hamiltoniansis analyzed for a class of potentials

( ) ( ) ( )effV x V x i S x= + . The imaginary part ( )S x of the effective 

potential serves as the generating function for thê weak-pseudo-Hermitian 

Hamiltonians. We obtained an exact soluble solution for the non-Hermitian 

Hamiltonian using a simple generating function. The derived eigen functions 

are expressed by confluent hyper-geometric functions and a complex energy 

eigenvalues are obtained. 
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1.0     Introduction 

Non-Hermitian PT -symmetric quantum mechanics has been an active field of study in quantum mechanics. Mostafazadeh 

[1-3]has analyzed series class of non-Hermitian Hamiltonians that attributes to real spectrum eigenvalues. However, a 

pseudo-Hermitian Hamiltonian can also be formulated to satisfy same condition without violating the PT -symmetry 

condition [4, 5].In particular,a class of spherically symmetric non-Hermitian Hamiltonians and their ̂ weak-pseudo 

Hermiticity generators, where generalization of  beyon the nodeless in one-dimension state was first introduced by Fityo [6]. 

Position-dependent massesfor ̂ weak-pseudo-Hermitian d-dimensional Hamiltonians quantum particles have also been 

exploited [7].Edmonds and Jameshave introduced examples on complex energies in Relativistic Quantum theory [8]. 

In this paper we provide an exact contradicting solvable example to the ̂ weak-Pseudo-Hermicity generators which equally 

works well for systems of non-Hermitian Hamiltonian by product of our ̂ weak-pseudo-Hermiticity generators discussed in 

[9]. 

We first considernon-Hermitian  weak-pseudo-HermitianHamiltonians for a class of effective potentials

( ) ( ) ( )effV x V x i S x= + , where  ( )V x  an d  ( )S x are real valued functions. The imaginary part ( )S x of the effective 

potential serves as thegenerating function that gives ( )V x  r ea l  p a r t  o f  t h e  e f f ec t iv e  p o ten t i a l for thê Weak-Pseudo- . 

This paper is organized as follow. Section 2 is devoted to the model formulation of the ̂ -weak-pseudo-Hermiticity 

generators. A contradicting example and concluding remarks are given in section 3 and 4, respectively. 

 

2.0 Model Formulation of ̂ -Weak-Pseudo-Hermiticity Generators 

Let consider an invertible linear operator ̂  which is Hermitian and it obey the canonical equation governed by  

†ˆ ˆˆ O O = ,          (1) 
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where Ô  and 
†Ô are linear operator known as intertwining operators given by 

†ˆ ˆ( ) ( ) , ( ) ( )O M x iN x O M x iN x
x x

 
= + + = − + −
 

,    (2) 

in which M(x) and  N(x) are real valued functions.  

For the purpose of our study we will consider non-Hermitian Schrödinger Hamiltonian operator in 1-dimension given by  
2

2
ˆ ( )effH V x

x


= − +


         (3) 

where 2, 1,m= =  and ( )effV x known as the effective potential written as  

( ) ( ) ( )effV x V x iS x= +          (4) 

Accordingly, the Hamiltonian operator in eq. (3) is said to be pseudo-Hermitian if it satisfies the relation [10], 
† 1ˆ ˆˆ ˆH H −=           (5) 

and hence one may obtain a real energy spectrum.  Moreover, the two intertwining operators as well as the invertible, 

Hermitian operator  satisfies an intertwining relation  

†ˆ ˆˆ ˆ.H H =           (6) 

Substituting eq. (2) into eq. (1) imply  

ˆ ( ) ( ) ( ) ( )M x iN x M x iN x
x x


   

= + + − + −  
   

     (7) 

expanding eq. (7) and simplifying we get  
2

2 2

2
ˆ 2 ( ) ( ) ( ) ( ) ( ).iN x M x N x M x iN x

x x


 
= − − + + − − 

 
    (8) 

Evaluating the intertwining relation eq. (6) by substituting eq. (3) and eq. (8) and after an explicit calculation one finds  

( ) ( )2 ,S x N x= −           (9) 

and subsequently  

( ) ( )
( ) ( ) ( )

( )

2

2

2

 2
,

4

N x N x N x
M x M x

N x

 −  +
−  =      (10) 

 which implies  

( )
( ) ( ) ( )

( )
( )

2

2

2

2
.

4

 N x N x N x
V x N x

N x




 −  +
= − +      (11) 

in which  and  are real constants. 

From eq. (9), we obtain  

( ) ( )
1

.
2

SN x x dx= −           (12) 

Subsequently from eq. (9), we get  

( ) ( ) ( ) ( )
1 1

, .
2 2

N x S x N x S x = −  = −        (13) 

Substituting eq. (13) into eq. (10), we have 

( ) ( )
( )

( )

( )

( )

2

2

2 2

1
,

2
 

4 4 ( )

 N x N x
M x M x

N x N x N x

 
−  = − +     (14) 

and in terms of S(x) potential function gives 
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( )

1
1 2

2 2

2

1 1 1 1 1
( ) ( ) ( ) 4 ( )

2 2 2 4 2

1
( ) , 15

4 2

M x M x x dx S S S x dxS

S x dx


−
−

−

      
−  = − −  −       

       

 
+  

 

 



 

after simplification eq. (15) becomes 

( ) ( )
( )

( )
( )

( ) ( )
2

1 2 2
2 .

2 4

S x S x
M x M x S x dx S x dx S x dx

− − −
     −  = − +
         (16) 

Also substituting eq. (13) into eq. (11) and solving for ( )V x   we obtain 

( )
( )

( )
( )

( ) ( )

( ) ( )

2
1 2 2

2

2 4

1
. 17

4

S x S x
V x S x dx S x dx S x dx

S x dx





− − −
     = − +
     

 − +
 

  



     

Finally, we will compute the ( )effV x  real part potential V(x) of the Hamiltonian equation provided by the equation (4). 

However, eq. (17) will be used to determine the real potential function V(x), using the imaginary part of the effective 

potential, S(x) as a generating function and with some adjustable values of integration constant   and  that would yield an 

exact solution to the Hamiltonian operator equation (3). 

 

3.0  A Contradicting Example 

First we consider a simple generating function given by 

( )
2

1
.

2

k
S x

x
= −          (18) 

Substituting eq. (18) into eq. (17) one finds 

( )
2 2

2 2 2

3 4 1
,

4 16

x k
V x

x k x


= + − +        (19) 

Thus, we choose the arbitrary constant 
1

, =0,
4

 =  we get   

( )
2 2

2 2 2

3
.

4 16

x k
V x

x k x
= + −         (20) 

Hence, Hamiltonian operator 
2

2
ˆ ( ) ( ),H V x iS x

x


= − + +


 

implies 
2 2 2

2 2 2 2 2

3ˆ ,
4 16 2

x k ik
H

x x k x x

 
= − + + − − 

  
      (21) 

Which can be simplified to  
2 2 2

2 2 2

3 1ˆ .
4 16 2

k ik x
H

x x k

 
= − + − − + 

  
       (22) 

For simplicity we will consider a new substitution, l so that 

( )
2

2

2

3 1
1 , = .

4 16 2 k

k ik
l l + = − −        (23) 
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Then, substituting eq. (23) into eq. (22), we obtain  

( )2
2 2

2 2

1ˆ .
l l

H x
x x


+

= − + +


        (24) 

Accordingly, Schrodinger equation ( )ˆ ( )H x E x =  , imply  

( ) ( )
( ) ( )

2

2 2

2 2

1
.

x l l
x x E x

x x


  

 + 
− + + = 

  
     (25) 

Now, if we choose E=2E, eq. (25) yields 

( ) ( )
( ) ( )

2 2 2

2 2

11
.

2 2 2

x l l x
x E x

x x

 
 

 + 
− + = − 

  
     (26) 

We can observe that eq. (26) is one dimensions analogy of the 3-D harmonic oscillator which can be solved in spherical 

coordinates [11, 12]. Since the potential is only radial dependent, the angular part of the solution is a spherical harmonic. 

However, Let us define a variable 

.z x=           (27) 

So that 

,
z

x x z z


   
= =

   
         (28) 

and  
22 2 2 2

2

2 2 2 2
.

z z

r r z r z z


      
= + = 

      
       (29) 

Then eq. (26) becomes 

( ) ( )
( )

2 2 2

2 2 2 4

12
0.

z l lE z
z

z z

 


 

 + 
+ − − = 

  
 (30) 

We now introduce another new substitution  

2

2
,  ,

E
q  


= =          (31) 

and subsequently  

2
,

E
q


=           (32)  

which upon substituting eq. (31) into eq. (30) we get 

( ) ( )
( )

2

2

2 2

1
0

z l l
q z z

z z




 + 
+ − − = 

  
      (33) 

From eq. (33) if we consider ( )z →  for large z. Then eq. (33) can be written in more convenient form as 

( )
( )

2

2

2
0.

z
z z

z





− =


        (34) 

Eq. (34) admits a solution in the form 

( )
2 2

2 2 ,
z z

z Ae Be
−

= +          (35) 

where A and B are constants. Since at infinity 0,B =  then 

( )
2

.
2

z

z Ae
−

=           (36) 

And subsequently for ( 0)z →  small z, eq. (33), implies  
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( ) ( )
( )

2

2 2

1
0.

z l l
z

z z




 +
− =


        (37) 

Hence, eq. (37) also admits a solution given by 

( ) 1 ,l lz Cz Dz + −= +          (38) 

where C and D are constants. Also 0.D =   In order not to obtain infinite 

at 0.z =  Thus, we have   

( ) 1.lz Cz +=           (39) 

Furthermore, proposing a solution to eq. (33) of the type  

( ) ( )
2

1 2 .
Z

lz z e F z
−

+=          (40) 

Differentiating eq. (40), we obtain   

( ) ( ) ( ) ( )( )
2

2 21 , 
z

lz l z F z zF z z e
−

  = + − +         (41) 

and hence  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

2

1 2 1 22 2

22

1 1

2 1 . 42

z z

l l

z

l

z lz e l z F z zF z z e l z F z zF z

z e z F z l z F z zF x

  − += + − +  − + − + 

 + − + + −  + 






 


 

Substituting eq. (42) and eq. (40) into eq. (33), we have 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( )

2 2 1

2 1 3

1   1

1 2 1 ( ) 0,

zF z l z l z F z l l z zl F z

z l z z qz l l z z F z

−

−

 + − + + −  + + −

+ − + − − + − =−+

   (43) 

simplifying further gives  

( ) ( ) ( ) ( ) ( )22 1 2 3 0.zF z l z F z q l zF z + + −  + − − =     (44) 

Let define a new variable  
2 ,z =           (45) 

and using the transformation 
1

22 ,
z z




 

   
= =

   
        (46) 

in which 

2 2

2 2
4 2 .

z


 

  
= +

  
        (47) 

Thus, upon substituting eq. (45), eq. (46) and eq. (47) into the differential equation (44) it follows that 

( ) ( ) ( ) ( ) ( )
3 1 1

2 2 24 4 1 2 2 3 0.F l F q l F       + + − +  + − − =      
(48) 

Hence, dividing through eq. (48) by 

1

24  simplifies to 

( ) ( )
( )

( )
2 33

0.
2 4

q l
F l F F    

− − 
 + + −  + = 

 
    (49) 

We may observe that the above differential equation (49) is well known as Confluent Hyper-geometric equation given in 

general form as 

( ) ( ) ( ) ( ) 0.F c F aF     + −  − =       (50) 

However, we may find it exact solutions by power series method. Comparing our differential equation (50) with the 

Confluent Hyper-geometric equation for simplicity, we choose to define. 
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( )2 33
, ,

2 4

q l
Q l b

− −
= + = −        (51) 

then the differential equation (49) becomes 

( ) ( ) ( ) ( ) 0.F Q F bF     + −  − =       (52) 

We now proceed by proposing a solution of the form 

( )
0

,n r

r
r

F c 



+

=

=          (53) 

accordingly, differentiating eq. (54) 1st and 2nd , we get 

( ) ( ) ( ) ( )( )1 n+r-2

r
0 r=0

, = c 1 .n r

r
r

F n r c F n r n r   

 

+ −

=

 = +  + + −     (54)  

Putting eq. (54) and eq. (53) into the differential equation (52) yields 

( )( ) ( ) ( )1 1

0 0 0 0

1 0.n r n r n r n r

r n r r
r r r r

c n r n r Q n r c n r c bc   

   

+ − + − + +

= = = =

+ + − + + − + − =     (55) 

Collecting like terms of eq. (55) we have 

( ) ( ) ( )1

0 0

1 0.n r n r

r r
r r

c n r n r Q n r b c 

 

+ − +

= =

+ + − + − + + =           (56) 

Putting 1r r= +  in the 1st summation terms, gives 

( )  ( )1
1 0

1 0.n r n r

r r
r r

c n r n r Q n r b c 

 

+ +

+
=− =

+ + + + − + + =        (57) 

Expanding the 1st summation, implies 

  ( )  ( ) 1

0 1
0

1 1 0.n n r

r r
r

c n n Q c n r n r Q n r b c 



− +

+
=

− + + + + + + − + + =     (58) 

From eq.(58) if 
0 0,c  then we may find an indicial equation of the form 

 1 0,n n Q− + =          (59) 

whose roots implies   

0, 1 .n n Q= = −          (60) 

Hence from eq (58), we deduce the recurrence relation is given by 

 
( ) 1 ,

1

r

r

n r b c
c

n r n r Q
+

+ +
=

+ + + +
        (61) 

We now proceed by substitution of the indicial solution 0n = into the recurrence relation simplifies to 

 
( )1 .

1 ( )

r

r

r b c
c

r r Q
+

+
=

+ +
         (62) 

And after an explicit calculation it follows that eq.(62) satisfied a solution in the form  

( )1 1 1

( 1)
1 ... ( , , ),

( 1) 2!

nb b b z
F z F b Q

Q Q Q
 

+
= + + + =

+
     (63) 

where 0,Q   and subsequently 1 ,n Q= −   we have 

 
( )( )1

1
,

2 1
r r

r Q b
c c

r Q r
+

+ − +
=

+ − +
        (64) 

this satisfy also to give the relation 

( )2

( 1) ( 1)( 2)
1 ...,

(2 ) (2 )(3 ) 2!

nb Q b Q b Q z
F z

Q Q Q


− + − + − +
= + + +

− − −
    (65) 
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yielding the second solution as 

2 1 1( ) ( 1,2 , ).F F b Q Q = − + −        (66) 

Hence, for 0, 1, 2, 3,c     the complete two independent solutions to the differential equation (52) becomes 

( ) 1

1 1 1 1( , , ) ( 1,2 , ),−= + − + −QF A F b Q B z F b Q Q       (67) 

where A and Bare constants. 

Accordingly, we may deduce the wave function eq. (40) in the form 

( ) ( )
2

1 2 ,
Z

lz z e F z
−

+=          (68) 

in which 

( ) 2 1 2

1 1 1 1( , , ) ( 1,2 , ),QF z A F b Q z Bz F b Q Q z−= + − + −     (69) 

and 

( )2 33
, , .

2 4

q l
z x Q l b

− −
= = + = −       (70) 

Finally, the general solution becomes 

( ) ( )
( )

2

1
2 ( ),

−+
=

x
l

x x e F x



           (71) 

where 
2 2 1 2 2

1 1 1 1( ) ( , , ) ( ) ( 1,2 , ),QF x A F b Q x B x F b Q Q x   −= + − + −    (72) 

in which  

( )2 33
, .

2 4

q l
Q l b

− −
= + = −         (73) 

We shall now consider , asrb n x= − →  for the wave function to be well behaved in order to deduce the energy 

equation. Hence, it follows that the relation 

( )2 3
. 0,1,2....

4
r r

q l
b n n

− −
= − = − =       (74) 

Therefore,    2 3 4 ,rq l n= + +     (75) 

hence from eq. (32) it follows that 
2E

q


=  upon substituting into eq. (74) and solving for .nE   We may obtain the energy 

eigenvalues given by 

3
2 .

2rn rE n l 
 

= + + 
 

         (76)  

And since 2  ,E E= then energy eigenvalues   becomes 

( )4 2 3 ,
rn rE n l = + +         (77) 

where 
2

2

1 3 1
and ( ) or ( ).

4 4 2 4

ik ik
l l

k
 = = − − = −   

Thus, for simplicity we choose to work with 
1

( ),
2 4

ik
l = −  and finally the complex energy eigenvalues becomes    

4 4 ,
2rn r

ik
E n 

 
= + − 
 

        (78) 

where 
2

2

1
.

k
 =  

However, the complete wave function would be given by 
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( ) ( )
( )

2

1 2 22
1 1( , , ),

x
l

x A x e F b Q x



  
−+

=       (79) 

where A is normalization constant. 
( )2 33

,  and .
2 4

q l
Q l b

− −
= + = −  

To find the normalization constant using the condition 
2

( ) 1.
o

x dx


=  We choose for simplicity  0 ,b =  thus 

2 2

1 1(0, , ) 1,F Q x =          (80) 

and subsequently 

( ) ( )
( )

2

1
2 ,

x
l

x A x e



 
−+

=         (81) 

upon substitution in the normalization condition gives 
22 2( 1) ( )( ) 1.l x

o
A x e dx


+ − =         (82) 

Comparing eq. (82) with the standard integral given by 

22 1 1
( ),

2 2

n x

o
x e dx n


− =  +         (83) 

we have 
1

2

2

3
( )

2

A

l

=

 
 +  

        (84) 

hence the complete general wave function is given by 

( )
( ) ( )

21

2 22
1 11

2

2
( , , ),

!
3

( )
2

l x

n

x
x e F b Q x

n
l


 

+
−

=

 
 +  

      (85) 

where 

( )2 33 1
,  and ( ).

2 4 2 4

q l ik
Q l b l

− −
= + = − = −        (86) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Plots of wave function, Energy levels and Potential, 1l = . 
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4.0  Conclusion 

In this study, we introduced our model formulation for the 𝜂 -weak-pseudo-Hermiticity generators analyzed in [6].We 

obtained an exact solvable contradicting solution for the 𝜂 weak-pseudo-hermicity generators of non-Hermitian Hamiltonian 

which results to a complex energy eigenvalues with the eigenfunctions in form of confluent hyper-geometric functions, 

which extended the work of Mustafa and Mazharimousavi [9].However, only properlychosen of integration constants  and 

  withthe S(x)generating function of the effective potential, ( ) ( ) ( )effV x V x iS x= +  would yield an exact solution to the 

Hamiltonian operator equation (3).For simplicity, we choose to work with 
1

( ),
2 4

ik
l = −  to obtain our results of energy 

eigenvalues with the eigenfunction. 
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