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Abstract 
 

In this work, an SEIR epidemic model was developed to investigate the 

efficacy of vaccination on the control of epidemic diseases. The dynamics of 

the compartments were described by a system of ordinary differential 

equations and the resulting differential equations were analyzed for existence 

and uniqueness of solution and were found to have a feasible solution. The 

equations were solved for both the disease free and the endemic equilibrium 

states. The analysis for stability was done for disease free equilibrium state. 

We used the method of characteristic equation of the Jacobian determinant 

to show the local asymptotic stability (LAS) of the model at the disease free 

equilibrium state. 

We also established that the disease free equilibrium state for the model 

was globally asymptotically stable (GAS) whenever the effective reproduction 

number R0< 1.Numerical simulations were carried out with the help of 

Mathematical Software(Maple) using parameter values from published data 

as the base 
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1.0     Introduction 
The menace of infectious diseases is not only a major cause of death and misery to human but also has the potential to have 

major social and economic impact. Many infectious diseases are spread by direct contact between susceptibles and infectives. 

Other diseases are spread in the environment and are transmitted to the human population by insects or other vectors (Daley, 

D.J.and Gani, J. 2005; D’Agata, et al., 1993). 

Many a time, the propagation of an infectious disease can be severe and catastrophic to the degree that within few days it 

spreads at an unimaginable rate. For an instance, in an English boarding school with a total of 763 boys, there was an 

epidemic of influenza from 22nd January to 4th February 1978. A total of 512 boys were put to bed during the epidemic that 

seems to have started from a single infected boy (Guillemo Abramson, 2011). 

Controlling infectious disease has been an increasingly complex issue in recent years. A major strategy to control infectious 

diseases is vaccination (Alonso- Quesada, S.and De lasen, M. 2008;De lasen, Mand Alonso- Quesada, S. 2010). Vaccination 

has been established as an indispensable instrument to fight against the propagation of epidemic diseases (Trottier & 

Philippe, 2011; Nareshetal, R. 2008). 

The various vaccination strategies campaigns allowed health authorities to achieve “herd immunity”. The theory behind the 

development of “herd immunity” is: in disease that can be passed from person to person, it is more difficult to pass that 

disease easily when there are those who are immune to it. The more immune individuals there are, the less likely it is that a 

susceptible person will come into contact with someone who has the disease. For example, if “person A” had smallpox and 

contacted “person B” who was immune because of vaccination, “person B” would not get ill and could not pass on the 

disease to “person C” when he comes into contact with him. So even if “person C” is not vaccinated, he gets indirectly 

protection from the disease(Mohamadhassani, M. and Haveshki, M. 2011). 

Studies also supported that vaccination had a longer lasting effect than originally thought. Data collected by Mack from  
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Western countries with importations of smallpox between 1950 and 1971 showed that the case fatality rate was 52% in never 

vaccinated individuals, 1.4% in those vaccinated 0 – 10 years before exposure and still only 11% in those vaccinated over 20 

years before exposure. In general, vaccination has been regarded as one of the most powerful tools of fighting and eradicating 

epidemic diseases and the global eradication of smallpox ranks one of the greatest triumphs in medicine. The World Health 

Organisation officially certified that smallpox had been eradicated on December 9, 1979, 2 years after the last case in 

Somalia(Onyebuchi Chukwu, C.O. 2013). 

 

2.0 Model Description 
The SEIR is partitioned into compartments. S(t), E(t), I(t) and R(t) where S(t) is used to represent the number of individuals 

not yet infected with the disease at time t, or those “prone to disease”; E(t) denotes ‘infected’ or ‘exposed’ which stands for 

the number of individuals who have been infected with the disease but who do not still have any disease symptoms; I(t) 

denotes the number of individuals who have been infected with the disease and are capable of spreading the disease to those 

in the Susceptible category; R(t) is the compartment used for those individuals who have been infected and then recovered 

from the disease. 

In the model,𝜋𝑁 is the recruitment rate into the population which was as a result of birth or loss of acquired immunity. v is 

the rate of  vaccination. 𝜌is the rate of death from disease related cases while µ is the rate of death from causes unrelated to 

the infection, β is the transmission constant (with the total number of infections per unit of time at time tbeing𝛽
𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
), 𝜎 is 

the rate of moving from exposed stage to infectious stage though death due to the disease during the latent stage is neglected. 

𝛾 is the recovery rate and ω is the rate of losing immunity. N is the total population and all parameters are non-negative.  

 
The flow chart showed that those who were successfully vaccinated would receive immunity and moved straight to the 

recovered class though some of them would die naturally. Besides, some of those who were not vaccinated or not 

successfully vaccinated would also die naturally. The remaining people who were not vaccinated or not successfully 

vaccinated would contact the disease and became exposed. As a result of the fact that the exposed individuals were totally 

ignorant of their status, some of them would die naturally while the remaining people would become infectious. Some of the 

infectious individuals would die either naturally or as a result of the infection while the remaining individuals would be cured 

of the disease and moved to the recovered class at a rate 𝛾.Some of those who recovered from the disease would die naturally 

while the remaining people would become susceptible again and the flow would go like that.  

2.1       Model Equations  
𝑑𝑆

𝑑𝑡
= −𝜇𝑆(𝑡) + 𝜔𝑅(𝑡) + 𝜋𝑁(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− 𝑣𝑁(𝑡)      (1) 

𝑑𝐸

𝑑𝑡
=
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− (𝜇 + 𝜎)𝐸(𝑡)        (2) 

𝑑𝐼

𝑑𝑡
= 𝜎𝐸(𝑡) − (𝜇 + 𝛾 + 𝜌)𝐼(𝑡)        (3) 

𝑑𝑅

𝑑𝑡
= −(𝜔 + 𝜇)𝑅(𝑡) + 𝛾𝐼(𝑡) + 𝑣𝑁(𝑡)       (4)   

Assume total population is N = S+E+I+R 

2.2  The Existence and Uniqueness of Solution for the Model 
Here, the system of equations representing the model is analyzed for existence and uniqueness of solutions. The validity and 

implementation of any mathematical model depend on whether the given system of equations has a solution, and if it has, we 

check if the solution is unique. This subsection is thus concerned with finding the existence and uniqueness of solution of the 

model using Lipschitz criteria. 
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Let      

𝑓1 = −𝜇𝑆(𝑡) + 𝜔𝑅(𝑡) + 𝜋𝑁(𝑡) −
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− 𝑣𝑁(𝑡)      (1) 

𝑓2 =
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− (𝜇 + 𝜎)𝐸(𝑡)        (2) 

  𝑓3 = 𝜎𝐸(𝑡) − (𝜇 + 𝛾 + 𝜌)𝐼(𝑡)        (3) 

𝑓4 = −(𝜔 + 𝜇)𝑅(𝑡) + 𝛾𝐼(𝑡) + 𝑣𝑁(𝑡)       (4) 

Theorem 1: (Derrick and Grossman, 1976) 

Let D1 denotes the region  

|t – t0| ≤ a, || x – x0|| ≤ b, x = (x1, x2, …… xn), x0 = (x10, x20, …… xn0)  

and suppose that f(t,x) satisfies the Lipschitz condition  

||(𝑡,𝑥1) −𝑓(𝑡,2)||  ≤𝑘||𝑥1−𝑥2||. 

Whenever the pairs (t, x1) and (t, x2) belong to D1, where k is a positive constant, Then, there is a constant 𝛿>0 such that there 

exists a unique continuous vector solution x (t) of the system in the interval 𝑡−𝑡0 ≤𝛿. It is important to note that the condition 

is satisfied by requirement that
𝜕𝑓𝑖

𝜕𝑥𝑗
; 𝑖=1,2,…, be continuous and bounded in D1 

We now return to our model equations (1) – (5).  We are interested in the region 

                                      0 ≤ 𝛼 ≤ 𝑅 

We look for a bounded solution in this region and whose partial derivatives satisfy  

𝛿 ≤ 𝛼 ≤ 0,  where 𝛼 and 𝛿 are positive constants 

Theorem 2 

Let 𝐷′ denote the region 0 ≤ 𝛼 ≤ 𝑅.  Then, equations (1) – (5) have a unique solution.  We show that 
∂fi

𝜕𝑥𝑗
, 𝑖, 𝑗 = 1, 2, 3, 4  

are continuous and bounded in𝐷′. 
Recall 

𝑓1 = −𝜇𝑆(𝑡) + 𝜔𝑅(𝑡) + 𝜋𝑁(𝑡) −
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− 𝑣𝑁(𝑡)      (1) 

𝑓2 =
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− (𝜇 + 𝜎)𝐸(𝑡)        (2) 

𝑓3 = 𝜎𝐸(𝑡) − (𝜇 + 𝛾 + 𝜌)𝐼(𝑡)        (3) 

𝑓4 = −(𝜔 + 𝜇)𝑅(𝑡) + 𝛾𝐼(𝑡) + 𝑣𝑁(𝑡)       (4) 

Using equation (1), we have the partial derivatives below 

|
∂f1

𝜕𝑆
| =  |−𝜇 −

𝛽𝐼

𝑁
| < ∞ ; |

∂f1

𝜕𝐸
|  =  0 < ∞ ; |

∂f1

𝜕𝐼
| =  |−

𝛽𝑆

𝑁
| < ∞; |

∂f1

𝜕𝑅
| = 𝜔 < ∞ 

These partial derivatives exist, continuous and are bounded. Similarly, for the rest equations, we have that  

|
∂f2

𝜕𝑆
| =  |

𝛽𝐼1

𝑁
| < ∞ (Since we are dealing with a finite population) 

|
∂f2

𝜕𝐸
|  =  |−𝜇 − 𝜎| < ∞  ; |

∂f2

𝜕𝐼
| =  |

𝛽𝑆

𝑁
| < ∞ ; |

∂f2

𝜕𝑅
| = 0 < ∞ 

And  

|
∂f3

𝜕𝑆
| = 0 < ∞ ; |

∂f3

𝜕𝐸
|  =  |𝜎| < ∞;  |

∂f3

𝜕𝐼
| = |−𝜇 − 𝛾 − 𝜌| < ∞;  |

∂f3

𝜕𝑅
| = 0 < ∞ 

Lastly, 

|
∂f4

𝜕𝑆
| = 0 < ∞;  |

∂f4

𝜕𝐸
|  =  0 < ∞; |

∂f4

𝜕𝐼
| = |𝛾| < ∞;|

∂f4

𝜕𝑅
| = |−𝜔 − 𝜇| < ∞ 

 

Since all the partial derivatives exist and are finite (bounded and defined), the system of equations has a feasible solution in 

R4 

 

2.3            Equilibrium States of the Model 

2.3.1         The Disease Free Equilibrium State (DFE) 

Diseases free equilibrium state is the equilibrium in the absence of infection and is such that I(t)=0. At equilibrium state,
𝑑𝑆

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=
𝑑𝐼

𝑑𝑡
=
𝑑𝑅

𝑑𝑡
= 0 

−𝜇𝑆(𝑡) + 𝜔𝑅(𝑡) + 𝜋𝑁(𝑡) −
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− 𝑣𝑁(𝑡) = 0      (5) 

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− (𝜇 + 𝜎)𝐸(𝑡) = 0        (6) 

𝜎𝐸(𝑡) − (𝜇 + 𝛾 + 𝜌)𝐼(𝑡) = 0        (7) 

−(𝜔 + 𝜇)𝑅(𝑡) + 𝛾𝐼(𝑡) + 𝑣𝑁(𝑡) = 0       (8) 
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From equation (7),  𝐸(𝑡) =
(𝜇+𝛾)𝐼(𝑡)

𝜎
 

But E(t) = 0 since I(t)=0 

From equation (8); 

𝑅 =
𝑣𝑁(𝑡)

𝜔 + 𝜇
 

From equation (5); 

𝑆 =
1

𝜇
{𝜋𝑁(𝑡) + 𝑣𝑁(𝑡) [

𝜔

𝜔 + 𝜇
− 1]} 

Hence the Disease Free Equilibrium State is given as  

(𝑆, 𝐸, 𝐼, 𝑅) = (
𝑁

𝜇
{𝜋 −

𝜇𝑉

𝜔 + 𝜇
} , 0,0,

𝑣𝑁(𝑡)

𝜔 + 𝜇
) 

2.3.2          The endemic equilibrium state (EE) 
At endemic equilibrium state, 𝐼(𝑡) ≠ 0; we recall the system of equations at equilibrium state; 

−𝜇𝑆(𝑡) + 𝜔𝑅(𝑡) + 𝜋𝑁(𝑡) −
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− 𝑣𝑁(𝑡) = 0      (5) 

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− (𝜇 + 𝜎)𝐸(𝑡) = 0        (6) 

𝜎𝐸(𝑡) − (𝜇 + 𝛾 + 𝜌)𝐼(𝑡) = 0        (7) 

−(𝜔 + 𝜇)𝑅(𝑡) + 𝛾𝐼(𝑡) + 𝑣𝑁(𝑡) = 0       (8) 

 

Let S(t) = k, E(t) = x, I(t) = y, R(t) = z 

Therefore, the system of equations becomes: 

−𝜇𝑘 + 𝜔𝑧 + 𝜋𝑁(𝑡) −
𝛽𝑘𝑦

𝑁
− 𝑣𝑁 = 0        (9) 

𝛽𝑘𝑦

𝑁
− (𝜇 + 𝜎)𝑥 = 0         (10) 

𝜎𝑥 − (𝜇 + 𝛾 + 𝜌)𝑦 = 0         (11) 

−(𝜔 + 𝜇)𝑧 + 𝛾𝑦 + 𝑣𝑁 = 0        (12) 

From equation (11);  

   𝑥 =
(𝜇+𝛾+𝜌)

𝜎
𝑦       (13) 

Putting equation (13) into (10) to obtain: 
𝛽𝑘𝑦

𝑁
− (𝜇 + 𝜎)

(𝜇 + 𝛾 + 𝜌)

𝜎
𝑦 = 0 

 

𝑦 [
𝛽𝑘

𝑁
− (𝜇 + 𝜎)

(𝜇 + 𝛾 + 𝜌)

𝜎
] = 0 

𝑦 ≠ 0  =≫  
𝛽𝑘

𝑁
− (𝜇 + 𝜎)

(𝜇 + 𝛾 + 𝜌)

𝜎
= 0 

Hence;  𝑘 =
𝑁(𝜇+𝜎)(𝜇+𝛾+𝜌)

𝜎𝛽
        (14) 

From equation (12); 

−(𝜔 + 𝜇)𝑧 + 𝛾𝑦 + 𝑣𝑁 = 0 

𝑧 =
1

𝜔+𝜇
(𝑣𝑁 + 𝛾𝑦) (15) 

From equation (9);  −𝜇𝑘 + 𝜔𝑧 + 𝜋𝑁(𝑡) −
𝛽𝑘𝑦

𝑁
− 𝑣𝑁 

𝑧 =
1

𝜔
(
𝛽𝑘𝑦

𝑁
+ 𝜇𝑘 − 𝜋𝑁(𝑡) + 𝑣𝑁)        (16) 

Equating (15) and (16), we have: 
1

𝜔 + 𝜇
(𝑣𝑁 + 𝛾𝑦) =

1

𝜔
(
𝛽𝑘𝑦

𝑁
+ 𝜇𝑘 − 𝜋𝑁(𝑡) + 𝑣𝑁) 

(
𝛾

(𝜔 + 𝜇)
−
𝛽𝑘

𝜔𝑁
)𝑦 =

𝜇

𝜔
𝑘 −

𝑁

𝜔
(𝜋 − 𝑣) −

𝑣𝑁

𝜔 + 𝜇
 

(
𝜔𝑁𝛾 − (𝜔 + 𝜇)𝛽𝑘

𝜔𝑁(𝜔 + 𝜇)
) 𝑦 =

(𝜔 + 𝜇)𝜇𝑘 − 𝑁(𝜔 + 𝜇)(𝜋 − 𝑣) − 𝜔𝑣𝑁

𝜔(𝜔 + 𝜇)
 

𝑦 =
𝜔𝑁(𝜔 + 𝜇)

𝜔𝑁𝛾 − (𝜔 + 𝜇)𝛽𝑘
(
(𝜔 + 𝜇)𝜇𝑘 − 𝑁(𝜔 + 𝜇)(𝜋 − 𝑣) − 𝜔𝑣𝑁

𝜔(𝜔 + 𝜇)
) 
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Using the value of k as obtained in equation (14); 

𝑦 = 𝑁(
(𝜔 + 𝜇) {𝜇

𝑁(𝜇+𝜎)(𝜇+𝛾+𝜌)

𝜎𝛽
−𝑁(𝜋 − 𝑣)(𝜔 + 𝜇)} − 𝜔𝑣𝑁

𝜔𝑁𝛾 − (𝜔 + 𝜇)𝛽
𝑁(𝜇+𝜎)(𝜇+𝛾+𝜌)

𝜎𝛽

) 

𝑦 =
𝑁

𝛽
(
𝜎𝛽(𝜔+𝜇)(𝑣−𝜋)+𝜇(𝜔+𝜇)(𝜇+𝜎)(𝜇+𝛾+𝜌)−𝜔𝑣𝛽𝜎

𝜎𝜔𝛾−(𝜔+𝜇)(𝜇+𝜎)(𝜇+𝛾+𝜌)
)      (17) 

From equation (13);  𝑥 =
(𝜇+𝛾+𝜌)

𝜎
𝑦 

Using equation (17) for the value of y in equation (13), we have; 

𝑥 =
𝑁(𝜇+𝛾+𝜌)

𝜎𝛽
(
𝜎𝛽(𝜔+𝜇)(𝑣−𝜋)+𝜇(𝜔+𝜇)(𝜇+𝜎)(𝜇+𝛾+𝜌)−𝜔𝑣𝛽𝜎

𝜎𝜔𝛾−(𝜔+𝜇)(𝜇+𝜎)(𝜇+𝛾+𝜌)
)       

          (18) 

From equation (15);  𝑧 =
1

𝜔+𝜇
(𝑣𝑁 + 𝛾𝑦) 

𝑧 =
𝑁

𝜔+𝜇
(
𝛾

𝛽
(
𝜎𝛽(𝜔+𝜇)(𝑣−𝜋)+𝜇(𝜔+𝜇)(𝜇+𝜎)(𝜇+𝛾+𝜌)−𝜔𝑣𝛽𝜎

𝜎𝜔𝛾−(𝜔+𝜇)(𝜇+𝜎)(𝜇+𝛾+𝜌)
) + 𝑣)     (19) 

Hence, the endemic equilibrium states are given as in equations number (14), (17), (18) and (19). 

 

2.4 Dynamical Behavior of the model 

2.4.1 Stability analysis of the disease free equilibrium state 
It has already been established that the system of equations (1) – (4) has disease free equilibrium state  

𝐸1 = (𝑆, 𝐸, 𝐼, 𝑅) = (
𝑁

𝜇
{𝜋 −

𝜇𝑣

𝜔 + 𝜇
} , 0,0,

𝑣𝑁(𝑡)

𝜔 + 𝜇
) 

Again, the general variational matrix corresponding to the system is given as 

0

( ) 0

0 ( ) 0

0 0 ( )

I S

N N

I S
J

N N

 
 

 
 

   

  

 
− − − 
 
 − +=
 
 

− + + 
 − + 

      (20) 

At the disease free equilibrium state, using the expression𝐸1, we obtain; 

0 ( )

0 ( ) ( ) 0

0 ( ) 0

0 0 ( )

v

v
J

 
  

  

 
  

  

   

  

 
− − − +
 
 

− + −=  +
 

− + + 
 

− + 

      (21) 

 

The characteristics equation is obtained from the Jacobian determinant with the values λ. 

0 ( )

0 ( ) ( ) 0 0

0 ( ) 0

0 0 ( )

v

v
J I

 
   

  

 
   

  

    

   

− − − −
+

− + − −− = =
+

− + + −

− + −

 

The above matrix reduces to  

( ) ( )
( )( ) 0

( )

v 
   

      

    

− + − −
+− − − − − =

− + + −

 

Clearly the first two eigen values are: 

𝜆1 = −𝜇 

𝜆2 = −(𝜇 + 𝜔) 
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The remaining characteristic equation is given as: 

𝜆2 + (2𝜇 + 𝜎 + 𝛾 + 𝜌)𝜆 + (𝜇 + 𝜎)(𝜇 + 𝛾 + 𝜌) −
𝜎𝛽(𝜋(𝜔 + 𝜇) − 𝜇𝑣)

𝜇(𝜔 + 𝜇)
= 0 

We use criteria to check for the roots of the characteristics equation above. 

Theorem (Routh-Hurwitz condition for roots of quadratic equation): The roots of the characteristics equation of a quadratic 

equation 

𝑎2𝜆
2 + 𝑎1𝜆 + 𝑎0 = 0,𝑤𝑖𝑙𝑙have negative roots, if and only if the entire coefficients satisfy𝑎𝑛 > 0 

The resulting quadratic equation:  

𝜆2 + (2𝜇 + 𝜎 + 𝛾 + 𝜌)𝜆 + (𝜇 + 𝜎)(𝜇 + 𝛾 + 𝜌) −
𝜎𝛽(𝜋(𝜔 + 𝜇) − 𝜇𝑣)

𝜇(𝜔 + 𝜇)
= 0 

Will have all negative roots if  

(𝜇 + 𝜎)(𝜇 + 𝛾 + 𝜌) >
𝜎𝛽(𝜋(𝜔 + 𝜇) − 𝜇)

𝜇(𝜔 + 𝜇)
 

Hence in the absence of the disease (DFE), 𝛽 is zero, hence it follows that the above inequality holds, and therefore the 

system of equations is said to be locally asymptotically stable.  

 

2.5 Reproduction Number 
The global asymptotic stability of the system of equations at the disease free equilibrium (DFE) can be established using the 

reproduction number of the system. By definition, the reproduction number of an infectious disease is the number of 

secondary case obtained from the introduction of an individual with a disease into a population of susceptible individuals 

(Abderrahman et al., 2007). The numerical value a basic reproduction number𝑅0 gives an insight to the sustainability or 

otherwise of a disease in a population. If the computed𝑅0 < 1 then we conclude that the system of the equations at the 

disease free equilibrium is globally asymptotically stable and the disease dies out with the adequate vaccination strategy 

otherwise the system is unstable and the disease is maintained in the population. We introduced the technique due to 

Diekmann (1990) to constructs an n x n matrix from the system of equations of the model by considering only the infective 

classes in order to establish the basic reproduction number of the system of equations at the disease free equilibrium (DFE).   

 

2.5.1  The Next Generation Matrix 
Define Xsto be the set of all Disease Free states, that is  

Xs= {x ≥ 0 | xi = 0, i= 1, 2, 3, …} 

In order to compute R0; it is important to distinguish new infections from all other changes in the population. 

Let 𝐹𝑖(𝑥) be the rate of appearance of new infections in compartments i,  

𝑉𝑖
+be the rate of transfer of individuals into compartment i by all other means. 

𝑉𝑖
−be the rate of transfer of individuals out of compartment i: 

It is assumed that each function (𝐹𝑖(𝑥), 𝑉𝑖
+, 𝑉𝑖

−) is continuously differentiable at least twice with respect to each variable. 

The transmission model consists of the non-negative initial conditions together with the following system of equations 

�̇�𝑖 = 𝑓𝑖(𝑥) = 𝐹𝑖(𝑥) − 𝑉𝑖(𝑥),    𝑖 = 1, 2, 3, … . , 𝑛      

Where 𝑉𝑖(𝑥) = 𝑉𝑖
− − 𝑉𝑖

+ and the functions satisfy the following conditions: 

(a) If 𝑥 ≥ 0, then 𝐹𝑖(𝑥), 𝑉𝑖
−(𝑥), 𝑉𝑖

+(𝑥)  ≥ 0 for𝑖 = 1, 2, 3, … . , 𝑛. That is, if the compartment is empty, there will be no 

transfer of individuals out of the compartment by death, infection nor other means 

(b) If 𝑥𝑖 = 0,  then 𝑉𝑖
− = 0  (that is, nobody leaves the compartment). In particular if 𝑥 ∈  𝑋𝑠,  then 𝑉𝑖

− = 0  for 𝑖 =
1, 2, 3, … . ,𝑚 

(c) 𝐹𝑖 = 0, for 𝑖 > 𝑚 (m is the number of infective classes) 

(d) If 𝑥 ∈  𝑋𝑠, then 𝐹𝑖 = 0 and 𝑉𝑖
− = 0 for all 𝑖 = 1, 2, 3, … . ,𝑚 

(e) If 𝐹𝑖(𝑥) is set to zero, then all the eigenvalues of 𝐷𝐹(𝑥0) have negative real parts. 

Lemma 1.1  

If 𝑥0  is a disease free equilibrium (DFE) of  the system of equations and 𝑓𝑖(𝑥)  satisfies conditions (a) – (e), then the 

derivatives 𝐷𝐹(𝑥0) and 𝐷𝑉(𝑥0) are partitioned as  

𝐷𝐹(𝑥0) = (

𝑓11 ⋯ 𝑓1𝑗
⋮ ⋱ ⋮
𝑓𝑖1 ⋯ 𝑓𝑖𝑗

), 𝑖 = 1, 2, 3, … . ,𝑚;  𝑗 = 1, 2, 3, … . ,𝑚 

𝐷𝑉(𝑥0) = (

𝑣11 ⋯ 𝑣1𝑗
⋮ ⋱ ⋮
𝑣𝑖1 ⋯ 𝑣𝑖𝑗

), 𝑖 = 1, 2, 3, … . ,𝑚;  𝑗 = 1, 2, 3, … . ,𝑚 

Where F and V are the m x m matrix defined by: 
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𝐹 =
𝜕𝐹(𝑥0)

𝜕𝑥𝑗
 𝑎𝑛𝑑 𝑉 =  

𝜕𝑉(𝑥0)

𝜕𝑥𝑗
 

F is non-negative and V is a non-singular matrix. 

From Diekmann et al. (2000), the product of the matrix 𝐹𝑉−1 is called the next generation matrix for the model and we shall 

set the reproduction number (𝑅0) as equal to the spectral radius 𝜌(𝐹𝑉−1) 𝑖. 𝑒.  
𝑅0 = 𝜌(𝐹𝑉

−1)  
We shall now apply the method to find the reproduction number of the model 

 
𝑑𝑆

𝑑𝑡
= −𝜇𝑆(𝑡) + 𝜔𝑅(𝑡) + 𝜋𝑁(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− 𝑣𝑁(𝑡) 

𝑑𝐸

𝑑𝑡
=
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− (𝜇 + 𝜎)𝐸(𝑡) 

𝑑𝐼

𝑑𝑡
= 𝜎𝐸(𝑡) − (𝜇 + 𝛾 + 𝜌)𝐼(𝑡) 

𝑑𝑅

𝑑𝑡
= −(𝜔 + 𝜇)𝑅(𝑡) + 𝛾𝐼(𝑡) + 𝑣𝑁(𝑡) 

Re-arranging the equations such that we start with the infective classes; 
𝑑𝐸

𝑑𝑡
=
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− (𝜇 + 𝜎)𝐸(𝑡) 

𝑑𝐼

𝑑𝑡
= 𝜎𝐸(𝑡) − (𝜇 + 𝛾 + 𝜌)𝐼(𝑡) 

𝑑𝑅

𝑑𝑡
= −(𝜔 + 𝜇)𝑅(𝑡) + 𝛾𝐼(𝑡) + 𝑣𝑁(𝑡) 

𝑑𝑆

𝑑𝑡
= −𝜇𝑆(𝑡) + 𝜔𝑅(𝑡) + 𝜋𝑁(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− 𝑣𝑁(𝑡) 

There are two infective classes in the system of equations above which are the Exposed compartment (E) and the Infected 

compartment (I), hence the next generational matrix is as given below: 

𝐹𝑖 = (
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
0

) , 𝑉𝑖 = (
(𝜇 + 𝜎)𝐸(𝑡)

(𝜇 + 𝛾 + 𝜌)𝐼(𝑡) − 𝜎𝐸(𝑡)
),  

We get 𝐹 and 𝑉 by getting the partial derivatives of the above matrix with respect to the infective compartment. 

𝐹 = (0
𝛽𝑆

𝑁
0 0

) , 𝑉 = (
(𝜇 + 𝜎) 0

−𝜎 (𝜇 + 𝛾 + 𝜌)
) 

The inverse of the matrix 𝑉 is obtained as: 

𝑉−1 =

(

 

1

(𝜇 + 𝜎)
0

𝜎

(𝜇 + 𝜎)(𝜇 + 𝛾 + 𝜌)

1

(𝜇 + 𝛾 + 𝜌))

  

The product of matrix 𝐹 and 𝑉−1 is: 

𝐹𝑉−1 = (0
𝛽𝑆

𝑁
0 0

)

(

 

1

(𝜇 + 𝜎)
0

𝜎

(𝜇 + 𝜎)(𝜇 + 𝛾 + 𝜌)

1

(𝜇 + 𝛾 + 𝜌))

  

𝐹𝑉−1 = (𝑁

𝛽𝑆𝜎

(𝜇 + 𝜎)(𝜇 + 𝛾 + 𝜌)

𝛽𝑆

𝑁(𝜇 + 𝛾 + 𝜌)

0 0

) 

We recall the disease free equilibrium state as: 

(𝑆, 𝐸, 𝐼, 𝑅) = (
𝑁

𝜇
{𝜋 −

𝜇𝑣

𝜔 + 𝜇
} , 0,0,

𝑣𝑁(𝑡)

𝜔 + 𝜇
) 

Using the value of S as above in the matrix for 𝐹𝑉−1, we have: 

𝐹𝑉−1 = (

𝛽𝜎

𝜇(𝜇 + 𝜎)(𝜇 + 𝛾 + 𝜌)
{𝜋 −

𝜇𝑣

𝜔 + 𝜇
}

𝛽

𝜇(𝜇 + 𝛾)
{𝜋 −

𝜇𝑣

𝜔 + 𝜇
}

0 0

) 
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The reproduction number is thus obtained as the spectral radius (the largest eigenvalue) of the above matrix, which is readily 

seen from the matrix above as: 

𝑅0 = 𝜌(𝐹𝑉
−1) =

𝛽𝜎

𝜇(𝜇 + 𝜎)(𝜇 + 𝛾 + 𝜌)
{𝜋 −

𝜇𝑣

𝜔 + 𝜇
} 

 

Table 1: Source of Initial Value of the Parameter 

Parameter Interpretation Value Source 

𝛽 Transmission constant 0.091 Fred et al., (2014) 

𝜎 Latent period 0.125 Fred et al., (2014) 

𝜇 Natural death rate 0.005 Hypothetical value 

𝜋 Recruitment rate 0.45 Edward et al., (2014) 

𝜔 Rate of losing immunity 0.36 Edward et al., (2014) 

𝜌 Disease induced death 0.009 Fred et al., (2014) 

𝛾 Recovery rate 0.6 Edward et al., (2014) 

𝑣 Rate of vaccination 0.7 Edward et al., (2014) 

    

The table above gives the source of initial value of each parameter except natural death rate  

𝜇 which cannot be quantified. The values of some parameters are then varied to determine the effect on the reproduction 

number and the result is presented in the table below.   

 

2.6 Numerical Simulation of Reproduction Number 
Table 2: Numerical Simulation of Reproduction number. 

𝜋 𝛽 𝜎 𝜇 𝛾 𝑣 𝜔 𝜌 𝑅0 Remark 

0.45 0.091 0.125 0.005 0.60 0.70 0.36 0.009 1.0019 Unstable 

0.45 0.191 0.125 0.005 0.60 0.70 0.36 0.009 2.0866 Unstable 

0.45 0.291 0.125 0.005 0.60 0.70 0.36 0.009 3.1791 Unstable 

0.45 0.391 0.125 0.005 0.60 0.70 0.36 0.009 4.2715 Unstable 

0.45 0..081 0.125 0.005 0.60 0.70 0.36 0.009 0.8918 Stable 

0.45 0.071 0.125 0.005 0.60 0.70 0.36 0.009 0.7817 Stable 

0.45 0.061 0.125 0.005 0.60 0.70 0.36 0.009 0.6716 Stable 

0.45 0.051 0.125 0.005 0.7 0.75 0.36 0.009 0.5607 Stable 

0.45 0.041 0.125 0.005 0.7 0.80 0.36 0.009 0.4500 Stable 

0.45 0.031 0.125 0.005 0.7 0.85 0.36 0.009 0.3397 Stable 

0.45 0.021 0.125 0.005 0.7 0.90 0.36 0.009 0.2298 Stable 

0.45 0.011 0.125 0.005 0.06 0.95 0.36 0.009 0.1202 Stable 

 

2.7 Results and Discussion 
This work analyzed the stability condition for an SEIR model of an infectious disease. We established that the system of 

equations has a unique solution using the Lipchitz condition. The disease free and the endemic equilibria states were 

obtained. The Jacobian matrix was evaluated for the DFE state and the roots of the resulting matrix were all negative which 

established the local asymptotic stability of the model. The reproduction number at the DFE was computed and simulated and 

the results show that it is globally stable at DFE for certain parameter values. The transmission rate 𝛽 of an infection is a vital 

parameter that determines the effect of an infectious disease on a population of susceptible individuals. Its increment (that 

is,𝛽) has a significant effect on the reproduction number of the model as can be seen above. The greater the transmission 

rates of an infection, the speedy the spread of the disease across the population. This is why the rate of spread of certain 

epidemic diseases like Ebola is quite outrageous compared to other diseases. From the simulation table, we deduce that at 

constant rate of loosing immunity and decreasing rate of disease transmission due to immunity from vaccination, the effective 

reproduction number at disease free equilibrium (DFE) tends to stable state. Also, increase in vaccination rate tends to move 

the model to a more stable disease free equilibrium because the effective reproduction number decreases with increase in 

vaccination rate. 

 

2.8 Conclusion 
In this work, we developed an SEIR epidemic model to show the efficacy of vaccination on the control of epidemic diseases. 

The disease free equilibrium state of the model was established and found out to be stable. 
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The disease free equilibrium state was stable because all the eigenvalues were negative. Stability of the disease free 

equilibrium state implied that when an epidemic manifested in a population, it died out with the adequate vaccination 

strategy.More so, the computation of reproduction number R0 and the numerical simulation of it give an insight into the 

spread of an infectious disease within a population. The lower the contact rate between an infected and non-infected 

individuals, the lower the spread of the disease in the population and vice-versa; the vaccination parameter 𝑣  reduces the 

effect of 𝛽 on the reproduction number of the model, hence adequate and effective vaccination of  individuals is an effective 

way of reducing the outbreak of disease in a population. 
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