Stability Analysis of HBV Epidemic Model with Non-Monotonic Incidence Function

A.K. Dotia ${ }^{1}$, M.O. Ibrahim 2, K.A. Bello ${ }^{2}$, B.M. Yisa ${ }^{2}$, and B.M. Ahmed ${ }^{2}$.
${ }^{1}$ Department of Mathematics, Kwara State Polytechnic, Ilorin, Nigeria ${ }^{2}$ Department of Mathematics, University of Ilorin, Ilorin, Nigeria.

Abstract

In this paper, we present an hepatitis B model with non-monotonic incidence function. The model, which is ofthe form of system of nonlinear differential equations, are constructed. This epidemic model is investigated fordifferent classes of infectious diseases that can be transmitted through an effective contact with an infectiveindividuals, who are contagious (symptomatic and asymptomatic carrier). Mathematical analysis are carriedout, that determines the equilibria solutions and the stability analysis of the equilibria of the model, usingnonlinear Lyapunov function of GohVolterra type. In addition, we obtained the numerical simulation to verify the model predictions. The result suggest that the endemic nature of the model is approaching equilibriumwith increase immunization program and other control measures put in place

Keywords: Hepatitis B, endemic, stability, equilibrium

1.0 Introduction

Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus (HBV), Edmundet al. (1993). It is a major global health problem and the most serious type of viral hepatitis. Originally knownas "serum hepatitis", the disease has caused epidemics in parts of Asia and Africa, and it is endemic in China(Williams, 2006). About a third of the world population has been infected at one point in their lives, including 350 million who are chronic carriers which causes 620,000 deaths worldwide each year ($\mathrm{WHO}, 2004$). If yourbody is able to fight off the hepatitis B infection, any symptoms that you had should go away over a period
of weeks to months, this is termed acute hepatitis B. some people‘s bodies are not able to completely get ridof the hepatitis B infection. This is called chronic hepatitis B.
Hepatitis is an inflammation of the liver caused by viruses, bacterial infections, or continuous exposureto alcohol, drugs, or toxic chemicals, such as those found in aerosol sprays and paint thinners (Ganem, D.,Prince, A. M. 2004). Inflammation is the painful, red swelling that result when tissues of the body becomeinjured or infected. Inflammation can cause organs to not work properly. Hepatitis can also result from anautoimmune disorder, in which the body mistakenly sends diseasefighting cells to attack its own healthytissue, in this case the liver (Barker et al., 1996). The liver is located in the upper right hand side of theabdomen, mostly behind the rib cage. The liver of an adult normally weighs close to three pounds (Chang,June 2007). No matter what its cause, hepatitis reduces the liver's ability to perform life-preserving functions,
including filtering harmful infectious agents from the blood, storing blood sugar and converting it to usableenergy forms, and producing many proteins necessary for life (Edmund et al., 1993).
In many developed countries (e.g. those in Western Europe and North America), patterns of transmission are different from those in developing countries. The majority of infections in developed countries aretransmitted during young adulthood by sexual activity, tattoo or acupuncture with unclean needles and instruments, and injecting drug use (Gane, E. 2005). Hepatitis B is a major infectious occupational hazard ofhealth workers (Barker et al., 1996). The hepatitis B virus is not spread by contaminated food or water, andcannot be spread casually in the workplace (McManhon et al. 1985).

Corresponding author: A.K. Dotia, E-mail: oe.oyewande@ui.edu.ng, Tel.: +2348077697136

2.0 Mathematical Model Formulation

A detailed understanding of the transmission of the hepatitis B virus and other emerging pathogens is crucial in its containment (Goldstein, et al., 2005). Mathematical models can give insight into potential impact interventions (Hou, et al., 2005). The complex interaction of different infection control strategies and their likely impact on transmission can be predicted using mathematical models (Wang, et al., 2004).
We propose a mathematical model to understand the transmission dynamics and prevalence of HBV.The model is constructed based on the characteristics of HBV transmission and the model of L. Zou et al.(2010).Note that L. Zou et al. (2010) considered only six epidemiological groups and did not distinguish theinfective class into subgroups. In fact, the immunity after recovery is lifetime, while that following vaccinationmight wane after some time (Edmunds et al., 1996b). Therefore, we divide the host population into sevenepidemiological groups: the proportion susceptible to infection S ; those latently infected E; uneducated acute infections I_{u};educated acute infections I_{e}; carriers C; recovered R; and Vaccinated V. We assume that the population of newborn carriers born to carriers is less than the sum of the death ofcarriers and the population moving from carrier to immune state. In this case we have $\mu \omega v<\mu_{0}+\mu_{1}+\gamma_{2}$.
Otherwise, carriers would keep increasing rapidly as long as there is infection (Lan Zou et al. 2010); i.e., $\frac{d C}{d t}>0$ for $C \neq 0$ or $I \neq 0$ and $t \geq 0$: The model is given by seven ordinary differential equations:
$\mu \omega \mathrm{vC}$

$\frac{d S}{d t}=\mu \omega(1-v C)+\psi V-\left[\mu_{0}+\lambda+\varepsilon \beta C+\gamma_{3}\right] S$
$\frac{d E}{d t}=[\lambda+\varepsilon \beta C] S-\left(\mu_{0}+\sigma\right) E$
$\frac{d I_{u}}{d t}=\sigma E-\left(\mu_{0}+2 \gamma_{0}\right) I_{u}$
$\frac{d I_{e}}{d t}=\gamma_{0} I_{u}-\left(\mu_{0}+\gamma_{1}\right) I_{e}$
$\frac{d C}{d t}=\mu \omega v C+q\left(\gamma_{0} I_{u}+\gamma_{1} I_{e}\right)-\left(\mu_{0}+\mu_{1}+\gamma_{2}\right) C$
$\frac{d R}{d t}=\gamma_{2} C+(1-q)\left(\gamma_{0} I_{u}+\gamma_{1} I_{e}\right)-\mu_{0} R$

$$
\begin{equation*}
\frac{d V}{d t}=\mu(1-\omega)+\gamma_{3} S-\left(\mu_{0}+\psi\right) V \tag{2.7}
\end{equation*}
$$

Where

$$
\lambda=\beta\left(\frac{I_{u}}{1+\alpha_{1} I_{u}}+\frac{\eta I_{e}}{1+\alpha_{2} I_{e}}\right)
$$

In this model, the Holling-type II incidence function given by
$g(I)=\frac{\beta I}{1+\omega I}$
The choice of this incidence function is necessary due to the preventive measure (and behavioral changes)taken by the susceptible individuals in response to the severity of the disease.

2.1 The Parameters Used are Defined Below

μ is the birth rate, $\quad \mu_{0}$ is the Natural mortality rate, $\quad \mu_{1}$ is the HBV related mortality rate
$\omega=$ proportion of birth without successful vaccination
$\beta=$ Transmission coefficient or effective contact rate
$\varepsilon=$ Reduced transmission rate
$\sigma=$ Rate of movement from latent to uncounsel acute
$\gamma_{0}=$ Rate of movement from uncounsel acute to counsel acute
$\gamma_{1}=$ Rate of movement from counsel acute to carrier
$\gamma_{2}=$ Rate of movement from carrier to immune
$\gamma_{3}=$ vaccination rate
$\mathrm{q}=$ Average probability an individual fail to clear an acute infection and develops to carrier state
$\psi=$ Rate of waning vaccine-induced immunity
$\mathrm{v}=$ Proportion of perinatally infected (carrier mothers)
The total population $\mathrm{N}(\mathrm{t})$ can be obtained from the model;
$N(t)=S(t)+E(t)+I_{u}(t)+I_{e}(t)+C(t)+R(t)+V(t)$
$\frac{d N}{d t}=\mu-N \mu_{0}-\mu_{1} C$
Here, it is important to note that in the absence of the disease $N(t) \rightarrow \frac{\mu}{\mu_{0}}$. Moreover, under the dynamicsdescribed by the above systems of equations, the region.
$\Omega=\left\{x=\left(S, E, I_{u}, I_{e}, C, V, N\right) \in \mathfrak{R}_{+}^{7} \mid S \geq 0, E \geq 0, I_{u} \geq 0, I_{e} \geq 0, C \geq 0, V \leq N \leq \frac{\mu}{\mu_{0}}\right\}$, is positively invariant. Hence the system is both mathematically and epidemiologically well-posed. Therefore,for initial starting point $x \in \mathfrak{R}_{+}^{7}$, the trajectory lies in Ω. Thus we restrict our analysis to the region Ω. (wherethe model make biological sense).
Lemma: The basic reproduction number for our model system (2.1) to (2.7) is
$R_{0}=\frac{\beta S_{0} \sigma}{k_{0} k_{1}}+\frac{\beta S_{0} \gamma_{0} \sigma}{k_{0} k_{1} k_{2}}+\frac{\varepsilon \beta S_{0} q \gamma_{0} \sigma\left(k_{2}+\gamma_{1}\right)}{k_{0} k_{1} k_{2} k_{3}}$
where

$$
\begin{equation*}
R_{0}=\frac{\beta \mu\left(\mu_{0} \omega+\psi\right) \sigma\left(\left(\mu_{0}+\gamma_{1}\right) q \varepsilon \gamma_{0}+q \varepsilon \gamma_{0} \gamma_{1}+\left(\mu_{0}+\gamma_{1}\right)\left(-\mu \omega v+\mu_{0}+\mu_{1}+\gamma_{2}\right)+\left(-\mu \omega v+\mu_{0}+\mu_{1}+\gamma_{2}\right) \gamma_{0}\right)}{\mu_{0}\left(\mu_{0}+\gamma_{3}+\psi\right)\left(\mu_{0}+\gamma_{1}\right)\left(\mu_{0}+2 \gamma_{0}\right)\left(\mu_{0}+\sigma\right)\left(-\mu \omega v+\mu_{0}+\mu_{1}+\gamma_{2}\right)} \tag{2.9}
\end{equation*}
$$

The simulations were done using MAPLE program. We use some parameters from literature forour model in equation (2.1) (2.7) as follows; $\mu=0.0121, \mu_{0}=0.00693, \mu_{1}=0.2$ percent, $\beta=$ from 0.95 to $20.49, \varepsilon=0.16, \sigma=6$ per year, $\gamma_{0}=4$ per year, $\gamma_{1}=2$ per year, $\gamma_{2}=0.025$ per year, $\gamma_{3}=0-100$ percent, $\omega=0-100$ percent, $q=0.885, \psi=0.1, \mathrm{v}=0.11$. We calculate the basic reproduction number as $\mathrm{R}_{0}=3.961482318$.

3.0 Stability Analysis

In our attempt on the steady state analysis, we consider the reduced following system, because R appearsonly in the sixth equation:

$$
\begin{align*}
\frac{d S}{d t} & =\mu \omega(1-v C)+\psi V-\left[\mu_{0}+\lambda+\varepsilon \beta C+\gamma_{3}\right] S \tag{3.1}\\
\frac{d E}{d t} & =[\lambda+\varepsilon \beta C] S-\left(\mu_{0}+\sigma\right) E \tag{3.2}\\
\frac{d I_{u}}{d t} & =\sigma E-\left(\mu_{0}+2 \gamma_{0}\right) I_{u} \tag{3.3}\\
\frac{d I_{e}}{d t} & =\gamma_{0} I_{u}-\left(\mu_{0}+\gamma_{1}\right) I_{e} \tag{3.4}\\
\frac{d C}{d t} & =\mu \omega v C+q\left(\gamma_{0} I_{u}+\gamma_{1} I_{e}\right)-\left(\mu_{0}+\mu_{1}+\gamma_{2}\right) C \tag{3.5}\\
\frac{d V}{d t} & =\mu(1-\omega)+\gamma_{3} S-\left(\mu_{0}+\psi\right) V \tag{3.6}
\end{align*}
$$

3.1 Equilibrium Solutions

The system equation (3.1-3.6) has two equilibrium solutions:
(1) a disease free equilibrium solution
$E_{0}^{d f e}=\left(S_{0}, 0,0,0,0, V_{0}\right)$,
where

$$
\begin{equation*}
S_{0}=\frac{\mu\left(\mu_{0} \omega+\psi\right)}{\mu_{0}\left(\mu_{0}+\gamma_{3}+\psi\right)}, \quad V_{0}=\frac{\mu\left(\mu_{0}+\gamma_{3}-\mu_{0} \omega\right)}{\mu_{0}\left(\mu_{0}+\gamma_{3}+\psi\right)} \tag{3.1.1}
\end{equation*}
$$

(2) an endemic equilibrium solution

if $R_{0}>1$. where

$$
\begin{aligned}
& E_{*}^{e e}=\left(S^{* *}, E^{* *}, I_{u}^{* *}, I_{e}^{* *}, C^{* *}, V^{* *}\right), \\
S^{* *}= & \frac{\left(\mu_{0}+\sigma\right)\left(\mu_{0}+2 \gamma_{0}\right)\left(\mu_{0}+\gamma_{1}\right)}{\beta \gamma_{0} \sigma}\left(\frac{\left(\mu_{0}+\gamma_{1}\right)}{\left(\mu_{0}+\gamma_{1}\right) \alpha_{1} I_{e}^{* *}+\gamma_{0}}+\frac{\eta}{\alpha_{2} I_{e}^{* *}+1}+\frac{\varepsilon q\left(\mu_{0}+2 \gamma_{1}\right)}{-\mu \omega v+\mu_{0}+\mu_{1}+\gamma_{2}}\right)^{-1}
\end{aligned}
$$

$$
\begin{equation*}
E^{* *}=\frac{\left(\mu_{0}+2 \gamma_{0}\right)\left(\mu_{0}+\gamma_{1}\right) I_{e}^{* *}}{\gamma_{0} \sigma} \tag{3.13}
\end{equation*}
$$

$$
\begin{equation*}
I_{e}^{* *}=\frac{\gamma_{0} I_{u}^{* *}}{\left(\mu_{0}+\gamma_{1}\right)} \tag{3.1.4}
\end{equation*}
$$

$$
\begin{equation*}
I_{u}^{* *}=\frac{\left(\mu_{0}+\gamma_{1}\right) I_{e}^{* *}}{\gamma_{0}} \tag{3.1.5}
\end{equation*}
$$

$$
\begin{equation*}
C^{* *}=\frac{q I_{u}^{* *}\left(\mu_{0}+2 \gamma_{1}\right)}{-\mu \omega v+\mu_{0}+\mu_{1}+\gamma_{2}} \tag{3.1.6}
\end{equation*}
$$

$$
\begin{equation*}
V^{* *}=\frac{-\mu(1-\omega)-\gamma_{3} S^{* *}}{-\mu_{0}-\psi} \tag{3.1.7}
\end{equation*}
$$

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 281-290
Stability Analysis of HBV... Dotia, Ibrahim, Bello, Yisa, and Ahmed Trans. of NAMP

3.2 Local Stability of the Equilibria

Theorem 1 The disease free equilibrium is locally asymptotically stable if $R_{0}<1$. Proof
The Jacobian matrix of the system of equations is given in the form;
Evaluating the above at disease free, the Variational (Jacobian) matrix becomes:

$$
\begin{gathered}
J_{0}=\left(\begin{array}{cccccc}
-\mu_{0}-\gamma_{3} & 0 & -\beta S & -\eta \beta S & -\varepsilon \beta S-\mu \omega v & \psi \\
0 & -\mu-\sigma & \beta S & \eta \beta S & \varepsilon \beta S & 0 \\
0 & \sigma & -\mu_{0}-2 \gamma_{0} & 0 & 0 & 0 \\
0 & 0 & \gamma_{0} & -\mu_{0}-\gamma_{1} & 0 & 0 \\
0 & 0 & q \gamma_{0} & q \gamma_{1} & -\left(-\mu \omega v+\mu_{0}+\mu_{1}+\gamma_{2}\right) & 0 \\
\gamma_{3} & 0 & 0 & 0 & 0 & \left.-\mu_{0}-\psi\right)
\end{array}\right. \\
J^{*}=\left(\begin{array}{cccccc}
-\mu_{0}-\beta\left(\frac{I_{u}}{\alpha_{1} I_{u}+1}+\frac{\eta I_{e}}{\alpha_{2} I_{e}+1}\right)-\varepsilon \beta C-\gamma_{3} & 0 & \frac{-\beta S}{\left(\alpha_{1} I_{u}+1\right)^{2}} & \frac{-\eta \beta S}{\left(\alpha_{1} I_{u}+1\right)^{2}} & -\varepsilon \beta S-\mu \omega v & \psi \\
\beta\left(\frac{I_{u}}{\alpha_{1} I_{u}+1}+\frac{\eta I_{e}}{\alpha_{2} I_{e}+1}\right)-\varepsilon \beta C & -\mu-\sigma & \frac{\beta S}{\left(\alpha_{1} I_{u}+1\right)^{2}} & \frac{\eta \beta S}{\left(\alpha_{1} I_{u}+1\right)^{2}} & \varepsilon \beta S & 0 \\
0 & \sigma & -\mu_{0}-2 \gamma_{0} & 0 & 0 & 0 \\
0 & 0 & \gamma_{0} & -\mu_{0}-\gamma_{1} & 0 & 0 \\
0 & 0 & q \gamma_{0} & q \gamma_{1} & -\left(-\mu \omega v+\mu_{0}+\mu_{1}+\gamma_{2}\right) & 0 \\
\gamma_{3} & 0 & 0 & 0 & 0 & -\mu_{0}-\psi
\end{array}\right)
\end{gathered}
$$

The eigen-values of the matrix J_{0} are;

$$
\begin{aligned}
& \lambda_{1}=-k_{5}, \quad \lambda_{2}=-\frac{k_{4} k_{5}-\psi \gamma_{3}}{k_{5}}, \quad \lambda_{3}=-k_{0}, \quad \lambda_{4}=\frac{T \sigma-k_{0} k_{1}}{k_{0}}, \\
& \lambda_{5}=-\frac{T \eta \sigma k_{1}+T \sigma k_{2}-k_{0} k_{1} k_{3}}{T \sigma-k_{0} k_{1}}, \lambda_{6}=-\frac{T \sigma \varepsilon k_{1} q \gamma_{1}+T \sigma \varepsilon k_{2} q \gamma_{0}-T \eta \sigma k_{1} k_{3}-T \eta \sigma k_{2} k_{3}-k_{0} k_{1} k_{2} k_{3}}{T \eta \sigma k_{1}+T \sigma k_{2}-k_{0} k_{1} k_{2}} \quad \text { for } \lambda_{4} \text { to be n } \\
& \lambda_{4}<0 \Rightarrow T \sigma-k_{0} k_{1}<0 \Rightarrow-k_{0} k_{1}<-T \sigma \Rightarrow k_{0} k_{1}>T \sigma \quad\left(\mu_{0}+2 \sigma\right)\left(\mu_{0}+\gamma_{0}+\alpha_{1}\right)>\beta S \sigma
\end{aligned}
$$

If all the eigenvalues are negative, then $R_{0}<1$, and the disease-free equilibrium is locally asymptotically stable.

Theorem 2

The endemic equilibrium is locally asymptotically stable if $R_{0}>1$.
Proof
The Jacobian matrix of the system of equations is given in the form;
the above can be rewritten as;

$$
J^{*}=\left(\begin{array}{cccccc}
-\mu_{0}-\beta\left(\frac{I_{u}}{\alpha_{1} I_{u}+1}+\frac{\eta I_{e}}{\alpha_{2} I_{e}+1}\right)-\varepsilon \beta C-\gamma_{3} & 0 & \frac{-\beta S}{\left(\alpha_{1} I_{u}+1\right)^{2}} & \frac{-\eta \beta S}{\left(\alpha_{1} I_{u}+1\right)^{2}} & -\varepsilon \beta S-\mu \omega v & \psi \tag{3.2.4}\\
\beta\left(\frac{I_{u}}{\alpha_{1} I_{u}+1}+\frac{\eta I_{e}}{\alpha_{2} I_{e}+1}\right)-\varepsilon \beta C & -\mu-\sigma & \frac{\beta S}{\left(\alpha_{1} I_{u}+1\right)^{2}} & \frac{\eta \beta S}{\left(\alpha_{1} I_{u}+1\right)^{2}} & \varepsilon \beta S & 0 \\
0 & \sigma & -\mu_{0}-2 \gamma_{0} & 0 & 0 & 0 \\
0 & 0 & \gamma_{0} & -\mu_{0}-\gamma_{1} & 0 & 0 \\
0 & 0 & q \gamma_{0} & q \gamma_{1} & -\left(-\mu \omega v+\mu_{0}+\mu_{1}+\gamma_{2}\right) & 0 \\
\gamma_{3} & 0 & 0 & 0 & 0 & -\mu_{0}-\psi
\end{array}\right)
$$

Reducing the rows using an elementary row-transformation into upper echelon's form

$$
J^{*}=\left(\begin{array}{cccccc}
-k_{5} & 0 & -T_{1} & -\eta T_{2} & -k_{6} & \psi \\
k_{7} & -k_{0} & T_{1} & \eta T_{2} & \varepsilon T_{3} & 0 \\
0 & \sigma & -k_{1} & 0 & 0 & 0 \\
0 & 0 & \gamma_{0} & -k_{2} & 0 & 0 \\
0 & 0 & q \gamma_{0} & q \gamma_{1} & -k_{3} & 0 \\
\gamma_{3} & 0 & 0 & 0 & 0 & -k_{4}
\end{array}\right) \quad J^{*}=\left(\begin{array}{cccccc}
-k_{5} & 0 & -T_{1} & -\eta T_{2} & -k_{6} & \psi \\
0 & -k_{0} & M_{23} & M_{24} & M_{25} & M_{26} \\
0 & 0 & M_{33} & M_{34} & M_{35} & M_{36} \\
0 & 0 & 0 & -M_{44} & -M_{45} & -M_{46} \\
0 & 0 & 0 & 0 & -M_{55} & -M_{56} \\
0 & 0 & 0 & 0 & 0 & -M_{66}
\end{array}\right)
$$

Where

$$
\begin{aligned}
& M_{23}=\frac{T_{1}\left(k_{5}-k_{7}\right)}{k_{5}}, M_{24}=\frac{T_{2}\left(k_{5}-k_{7}\right)}{k_{5}}, M_{25}=\frac{\varepsilon T_{3} k_{5}-k_{7} k_{6}}{k_{5}}, M_{26}=\frac{k_{7} \psi}{k_{5}} \\
& M_{33}=\frac{\sigma T_{1} k_{5}-\sigma T k_{7}-k_{1} k_{0} k_{5}}{k_{0} k_{5}}, M_{34}=\frac{\sigma \eta T_{2}\left(k_{5}-k_{7}\right)}{k_{0} k_{5}}, \quad M_{35}=\frac{\sigma\left(\varepsilon T_{3} k_{5}-k_{7} k_{6}\right)}{k_{0} k_{5}}, M_{36}=\frac{\sigma k_{7} \psi}{k_{0} k_{5}}, \\
& M_{44}=\frac{\gamma_{0} \sigma \eta T_{2} k_{5}-\gamma_{0} \sigma \eta T_{2} k_{7}+T_{1} k_{2} k_{5} \sigma-T_{1} k_{2} k_{7} \sigma-k_{1} k_{0} k_{2} k_{5}}{T_{1} k_{5} \sigma-T_{1} k_{7} \sigma-k_{1} k_{0} k_{5}}, \quad M_{45}=\frac{\gamma_{0} \sigma\left(\varepsilon T_{3} k_{5}-k_{7} k_{6}\right)}{\sigma T_{1} k_{5}-\sigma T_{1} k_{7}-k_{0} k_{1} k_{5}}, \\
& M_{46}=\frac{\gamma_{0} \sigma k_{7} \psi}{T_{1} k_{5} \sigma-T_{1} k_{7} \sigma-k_{1} k_{0} k_{5}}, \\
& M_{55}=\frac{\left\{\begin{array}{l}
T_{1} k_{2} \sigma k_{3} k_{5}-T_{1} k_{2} \sigma k_{3} k_{7}+T_{3} k_{2} k_{5} q \sigma \varepsilon \gamma_{0}+T_{3} k_{5} q \sigma \varepsilon \gamma_{0} \gamma_{1}+T_{2} \eta k_{3} k_{5} \sigma \gamma_{0} \\
-k_{1} k_{0} k_{2} k_{3} k_{5}-T_{2} \eta k_{3} k_{7} \sigma \gamma_{0}-k_{2} k_{6} k_{7} q \sigma \gamma_{0}-k_{6} k_{7} q \sigma \gamma_{0} \gamma_{1} \\
\eta \gamma_{0} T_{2} k_{5} \sigma-\eta \gamma_{0} T_{2} k_{7} \sigma-T_{1} k_{2} k_{7} \sigma-k_{1} k_{0} k_{2} k_{5}
\end{array}\right\}}{M_{56}=\frac{\left(k_{2}+\gamma_{1}\right) q \gamma_{0} \sigma k_{7} \psi}{\eta \gamma_{0} T_{2} k_{5} \sigma-\eta \gamma_{0} T_{2} k_{7} \sigma-T_{1} k_{2} k_{7} \sigma-k_{1} k_{0} k_{2} k_{5}},} \begin{array}{l}
\left\{\begin{array}{l}
T_{1} k_{2} \sigma k_{3} k_{4} k_{5}-T_{1} k_{2} \sigma k_{3} k_{4} k_{7}-T_{1} k_{2} \sigma k_{3} \psi \gamma_{3}+T_{3} k_{2} k_{4} k_{5} q \sigma \varepsilon \gamma_{0}+T_{3} k_{2} \psi q \sigma \varepsilon \gamma_{0} \gamma_{3} \\
-k_{2} k_{4} k_{6} k_{7} q \sigma \gamma_{0}-k_{1} k_{0} k_{2} k_{3} k_{4} k_{5}+k_{1} k_{0} k_{2} k_{3} \psi \gamma_{3}+T_{3} k_{4} k_{5} q \sigma \varepsilon \gamma_{0} \gamma_{1}-T_{2} \eta k_{3} k_{4} k_{5} \sigma \gamma_{0} \\
-T_{3} \psi q \sigma \varepsilon \gamma_{0} \gamma_{3}-T_{2} \eta k_{3} k_{4} k_{7} \sigma \gamma_{0}-T_{2} \eta k_{3} \psi \sigma \gamma_{0} \gamma_{3}-k_{4} k_{6} k_{7} q \sigma \gamma_{0} \gamma_{1}
\end{array}\right\} \\
M_{65}=\frac{\left\{T_{1} k_{2} \sigma k_{3} k_{5}-T_{1} k_{2} \sigma k_{3} k_{7}+T_{3} k_{2} k_{5} q \sigma \varepsilon \gamma_{0}+T_{3} k_{5} q \sigma \varepsilon \gamma_{0} \gamma_{1}+T_{2} \eta k_{3} k_{5} \sigma \gamma_{0}\right.}{-T_{2} \eta k_{3} k_{7} \sigma \gamma_{0}-k_{2} k_{6} k_{7} q \sigma \gamma_{0}-k_{1} k_{0} k_{2} k_{3} k_{5}-k_{6} k_{7} q \sigma \gamma_{0} \gamma_{1}} .
\end{array}
\end{aligned}
$$

The eigenvalues are; $\lambda_{1}=-k_{5}, \lambda_{2}=-k_{0}, \lambda_{3}=M_{33}, \lambda_{4}=-M_{44}, \lambda_{5}=-M_{55}, \lambda_{6}=-M_{66}$ for λ_{3} to be negative, $\lambda_{3}<0 \Rightarrow \sigma T_{1} k_{5}-\sigma T k_{7}-k_{1} k_{0} k_{5}<0 \Rightarrow \sigma T_{1} k_{5}<\sigma T k_{7}+k_{1} k_{0} k_{5}$ i.e. $\sigma T k_{7}+k_{1} k_{0} k_{5}>\sigma T_{1} k_{5}$
If all the eigenvalues are negative, then $\mathrm{R}_{0}>1$, and the endemic equilibrium is locally asymptotically stable.

3.3 Global Stability

Theorem 3 The disease free equilibrium DFE of the model (3.1-3.6), is globally asymptotically stable GAS in Ω, whenever $\mathrm{R}_{0} \leq 1$.

Proof

Consider the following Lyapunov function:

$$
\begin{equation*}
\mathrm{F}=\left[\frac{\sigma k_{2} k_{3}+\sigma \eta k_{3} \gamma_{0}+\varepsilon q \sigma \gamma_{0}\left(k_{2}+\gamma_{1}\right)}{\varepsilon k_{0} k_{1} k_{2}}\right] E+\left[\frac{k_{2} k_{3}+\eta k_{3} \gamma_{0}+\varepsilon q \gamma_{0}\left(k_{2}+\gamma_{1}\right)}{\varepsilon k_{1} k_{2}}\right] I_{u}+\left[\frac{k_{0} k_{1}+\left(\eta k_{3}+\varepsilon q \gamma_{1}\right)}{\varepsilon k_{0} k_{1} k_{2}}\right] I_{e}+C \tag{3.3.1}
\end{equation*}
$$

the dot represents differentiation with respect to time, given by

$$
\begin{align*}
\dot{\mathrm{F}} & =\left[\frac{\sigma k_{2} k_{3}+\sigma \eta k_{3} \gamma_{0}+\varepsilon q \sigma \gamma_{0}\left(k_{2}+\gamma_{1}\right)}{\varepsilon k_{0} k_{1} k_{2}}\right] \dot{E}+\left[\frac{k_{2} k_{3}+\eta k_{3} \gamma_{0}+\varepsilon q \gamma_{0}\left(k_{2}+\gamma_{1}\right)}{\varepsilon k_{1} k_{2}}\right] \dot{I}_{u}+\left[\frac{k_{0} k_{1}+\left(\eta k_{3}+\varepsilon q \gamma_{1}\right)}{\varepsilon k_{0} k_{1} k_{2}}\right] \dot{I_{e}}+\dot{C} \\
= & {\left[\frac{\sigma k_{2} k_{3}+\sigma \eta k_{3} \gamma_{0}+\varepsilon q \sigma \gamma_{0}\left(k_{2}+\gamma_{1}\right)}{\varepsilon k_{0} k_{1} k_{2}}\right]\left[\beta S_{0}\left(\frac{I_{u}}{1+\alpha_{1} I_{u}}+\frac{\eta I_{e}}{1+\alpha_{2} I_{e}}\right)+\varepsilon \beta C S_{0}-k_{0} E\right] } \\
& +\left[\frac{k_{2} k_{3}+\eta k_{3} \gamma_{0}+\varepsilon q \gamma_{0}\left(k_{2}+\gamma_{1}\right)}{\varepsilon k_{1} k_{2}}\right]\left(\sigma E-k_{1} I_{u}\right)+\left[\frac{k_{0} k_{1}+\left(\eta k_{3}+\varepsilon q \gamma_{1}\right)}{\varepsilon k_{0} k_{1} k_{2}}\right]\left(\gamma_{0} I_{u}-k_{2} I_{e}\right)+q\left(\gamma_{0} I_{u}+\gamma_{1} I_{e}\right)-k_{3} C \tag{3.3.3}
\end{align*}
$$

$\leq\left[\frac{k_{3} R_{0}}{\varepsilon}\right]\left(I_{u}+\eta I_{e}+\varepsilon C\right)-\frac{k_{3} I_{u}}{\varepsilon}-\frac{\eta k_{3} \gamma_{0} I_{u}}{\varepsilon k_{2}}-\frac{\varepsilon q \gamma_{0}\left(k_{2}+\gamma_{1}\right) I_{u}}{\varepsilon k_{2}}$ $+\frac{\left(\eta k_{3}+\varepsilon q \gamma_{1}\right)}{k_{2}}\left(\gamma_{0} I_{u}-k_{2} I_{e}\right)+q\left(\gamma_{0} I_{u}+\gamma_{1} I_{e}\right)-k_{3} C$
$=\frac{k_{3} R_{0}}{\varepsilon}\left(I_{u}+\eta I_{e}+\varepsilon C\right)-\frac{k_{3}}{\varepsilon}\left(I_{u}+\eta I_{e}+\varepsilon C\right)$
$=\frac{k_{3}}{\varepsilon}\left(R_{0}-1\right)\left(I_{u}+\eta I_{e}+\varepsilon C\right)$
since all the parameters and variables of the model are non-negative, it follows that $\dot{\mathrm{F}} \leq 0$ for
$\mathrm{R}_{0} \leq 1$ with $\dot{\mathrm{F}}=0$ if and only if $\mathrm{E}=\mathrm{I}_{\mathrm{u}}=\mathrm{I}_{\mathrm{e}}=\mathrm{C}=0$. Hence, F is a Lyapunov function on Ω.
Theorem 4 The endemic equilibrium of the reduced model,given by (3.1-3.6), is globally asymptotically stable (GAS) in Ω, if $\mathrm{R}_{0}>1$.
Proof Consider the reduced model in constructing the following nonlinear Lyapunov function:

$$
\begin{align*}
\mathrm{F}= & S-S^{* *}-S^{* *} \ln \left(\frac{S}{S^{* *}}\right)+E-E^{* *}-E^{* *} \ln \left(\frac{E}{E^{* *}}\right)+\frac{k_{0}}{\sigma}\left[I_{u}-I_{u}^{* *}-I_{u}^{* *} \ln \left(\frac{I_{u}}{I_{u}^{* *}}\right)\right] \tag{3.3.7}\\
& +\frac{k_{1}}{q \gamma_{0}}\left[C-C^{* *}-C^{* *} \ln \left(\frac{C}{C^{* *}}\right)\right]
\end{align*}
$$

Lyapunov derivatives gives;

$$
\begin{equation*}
\dot{\mathrm{F}}=\dot{S}-\frac{S^{* *}}{S} \dot{S}+\dot{E}-\frac{E^{* *}}{E} \dot{E}+\frac{k_{0}}{\sigma}\left[\dot{I}_{u}-\frac{I_{u}^{* *}}{I_{u}} \dot{I}_{u}\right]+\frac{k_{1}}{q \gamma_{0}}\left[\dot{C}-\frac{C^{* *}}{C} \dot{C}\right] \tag{3.3.8}
\end{equation*}
$$

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 281-290
substituting the reduced model,

$$
\begin{align*}
\dot{\mathrm{F}} & =\mu \omega(1-v C)+\psi V-\left[\begin{array}{l}
\mu_{0}+\beta\left(\frac{I_{u}}{1+\alpha_{1} I_{u}}+\frac{\eta I_{e}}{1+\alpha_{2} I_{e}}\right) \\
+\varepsilon \beta C+\gamma_{3}
\end{array}\right) S-\frac{S^{*}}{S}\left[\begin{array}{l}
\mu \omega(1-v C)+\psi V \\
-\left[\begin{array}{l}
\left.\mu_{0}+\beta\left(\frac{I_{u}}{1+\alpha_{1} I_{u}}+\frac{\eta I_{e}}{1+\alpha_{2} I_{e}}\right)\right] \\
+\varepsilon \beta C+\gamma_{3}
\end{array}\right] \\
\end{array}+\left[\beta\left(\frac{I_{u}}{1+\alpha_{1} I_{u}}+\frac{\eta I_{e}}{1+\alpha_{2} I_{e}}\right)+\varepsilon \beta C\right] S-k_{0} E-\frac{E^{*}}{E}\left[\left(\beta\left(\frac{I_{u}}{1+\alpha_{1} I_{u}}+\frac{\eta I_{e}}{1+\alpha_{2} I_{e}}\right)+\varepsilon \beta C\right) S-k_{0} E\right]\right. \\
& +\frac{k_{0}}{\sigma}\left[\sigma E-k_{1} I_{u}-\frac{I_{u}{ }^{*}}{I_{u}}\left(\sigma E-k_{1} I_{u}\right)\right]+\frac{k_{1}}{q \gamma_{0}}\left[\begin{array}{l}
\mu \omega v C+q\left(\gamma_{0} I_{u}+\gamma_{1} I_{e}\right)-k_{3} C \\
\left.-\frac{C^{*}}{C}\left[\mu \omega v C+q\left(\gamma_{0} I_{u}+\gamma_{1} I_{e}\right)-k_{3} C\right]\right]
\end{array}, ~\right. \tag{3.3.9}
\end{align*}
$$

expanding the above, and also considering special case when $\eta=0$ then we have $f\left(I_{u}\right)$;

$$
\begin{align*}
\dot{\mathrm{F}}= & A-\left(\mu_{0}+\gamma_{3}\right) S-\left(\beta f\left(I_{u}\right)+\varepsilon \beta C\right) S-A \frac{S^{* *}}{S}+\left(\mu_{0}+\gamma_{3}\right) S^{* *}+\left(\beta f\left(I_{u}\right)+\varepsilon \beta C\right) S^{* *} \\
& +\left(\beta f\left(I_{u}\right)+\varepsilon \beta C\right) S-k_{0} E-\left(\beta f\left(I_{u}\right)+\varepsilon \beta C\right) \frac{S E^{* *}}{E}+k_{0} E^{* *}+k_{1} I_{u}+\frac{k_{1} \gamma_{1} I_{e}}{\gamma_{0}}-\frac{k_{1} k_{3} C}{q \gamma_{0}} \tag{3.3.10}\\
& +\frac{k_{1} I_{u} C^{* *}}{C}-\frac{k_{1} \gamma_{1} I_{e} C^{* *}}{\gamma_{0} C}+\frac{k_{1} k_{3} C^{* *}}{q \gamma_{0}}+k_{0} E-\frac{k_{0} k_{1} I_{u}}{\sigma}-\frac{k_{0} E I_{u}^{* *}}{I_{u}}+\frac{k_{0} k_{1} I_{u}^{* *}}{\sigma}
\end{align*}
$$

simplifying and factorizing the common factors,

$$
\begin{align*}
\dot{\mathrm{F}}= & \left(A-\left(\mu_{0}+\gamma_{3}\right) S\right)\left(1-\frac{S^{* *}}{S}\right)+\left(\beta f\left(I_{u}\right)+\varepsilon \beta C\right) S^{* *}\left(1-\frac{E^{* *} S}{E S^{* *}}\right)+k_{0} E\left(\frac{E^{* *}}{E}-1\right) \\
& +\left(k_{1} I_{u}+\frac{k_{1} \gamma_{1} I_{e}}{\gamma_{0}}-\frac{k_{1} k_{3} C}{q \gamma_{0}}\right)\left(1-\frac{C^{* *}}{C}\right)+\left(k_{0} E-\frac{k_{0} k_{1} I_{u}}{\sigma}\right)\left(1-\frac{I_{u}^{* *}}{I_{u}}\right) \tag{3.3.11}
\end{align*}
$$

considering the following extract from the above;
$\left(1-\frac{S^{* *}}{S}\right) \leq 0, \quad\left(1-\frac{E^{* *} S}{E S^{* *}}\right) \leq 0, \quad\left(\frac{E^{* *}}{E}-1\right) \leq 0, \quad\left(1-\frac{C^{* *}}{C}\right) \leq 0, \quad\left(1-\frac{I_{u}^{* *}}{I_{u}}\right) \leq 0$.
Since all the parameters of the model are nonnegative, it follows that $\dot{\mathrm{F}} \leq 0$ for all $\mathrm{R}_{0}>1$ and with $\dot{\mathrm{F}}=0$ if $S=S^{* *}, \quad E=E^{* *}, \quad I_{u}=I_{u}^{* *}$, and $C=C^{* *}$ Hence F is a Lyapunov function on Ω.

4.0 Numerical Simulation

We makeuse of Maple software to simulate numerically and determine the effect and behaviorof the parameters of the model.
Table 4a

Parameters				Model $\left(\mathrm{R}_{0}\right)$		
β	γ_{3}	γ_{2}	ω	q	DFE	Remark
1.0	0.05	0.015	1.0	0.885	14.61905689	unstable
0.9	0.15	0.025	0.9	0.885	8.408021461	unstable
0.8	0.25	0.035	0.8	0.885	6.703960764	unstable
0.7	0.35	0.045	0.7	0.885	3.509192401	unstable
0.6	0.45	0.055	0.6	0.885	2.376014317	unstable
0.5	0.55	0.065	0.5	0.885	1.614546696	unstable
0.4	0.65	0.075	0.4	0.885	1.079135561	unstable
0.3	0.75	0.085	0.3	0.885	0.6893268001	stable
0.2	0.85	0.095	0.2	0.885	0.3975633876	stable
0.1	0.95	0.105	0.1	0.885	0.1742101439	stable

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 281 - 290

4.1 Discussion of Results

Simulations illustrate the asymptotic stability of DFE studied in section 3. The model described by equations(2.1-2.7) exhibit a rich dynamic. We observed that the biological basic reproduction number R_{0} is fundamental for the study of the basic dynamical properties. Applied to hepatitis B, the model suggests that infectionrates play a great role in the description of the disease. Simulations conducted confirm our results and suggestpossible way to curb the outbreak of the disease epidemic. To control HBV infection, we would like to see whatparameters can reduce the basic reproduction number. From table 4(a), we see that as β (effective contact rate)decreases, R_{0} decreases. Consequently, R_{0} decreases as $1-\omega, \gamma_{2}$ and γ_{3} increase in the model. Therefore, weobserved that the immunization of both newborn carrier and susceptible individuals is an efficient intervention.

5.0 Reference

[1] Barker LF, Shulman NR, Murray R, Hirschman RJ, Ratner F, Diefenbach WC, Geller HM (1996)."Transmission of serum hepatitis. 1970". Journal of the American Medical Association 276 (10):841-844.doi:10.1001/jama.276.10.841.
[2] Chang MH (June 2007). 'Hepatitis B virus infection".Semin Fetal Neonatal Med 12 (3): 160167.doi:10.1016/j.siny.2007.01.013.
[3] Edmunds, W.J., Medley, G.F., Nokes, D.J., Hall, A.J., Whittle, H.C., 1993. The influence of ageon the development of the hepatitis B carrier state. Proc. R. Soc. Lond. B 253, 197001.
[4] Edmund, W. J., Medley, G. F., Nokes, D. J., O‘callanghan, C. J.,Whittle, H. C., Hull, A. J. (1996).Epidemiological patterns of hepatitis B virus (HBV) in highly endemic areas. Epidemiology andInfection,117(2), 313-325.
[5] Gane, E. (2005). Screen for chronic hepatitis B infection in New Zealand: unfinished business. The New Zealand Medical Journal, 118(1211). http://www.nzma.org.nz/journal/118-1211/1344/.
[6] Ganem, D., Prince, A. M. (2004). Mechanics of disease: hepatitis B virus infection-natural history and clinical consequences. New England Journal of Medicine, 350(11), 1118-1129.
[7] Goldstein, S. T., Zhou, F., Hadler, S. C., Bell, B. P., Mast, E. E., Margolis, H. S. (2005). A mathematical model to estimate global hepatitis B burden and vaccination impact. International Journal of Epidemiology, 34, 1329-1339.
[8] Hou, J., Liu, Z., Gu, F., 2005. Epidemiology and prevention of hepatitis B virus infection. Int. J. Med. Sci. 2 (1), 50-57.
[9] Lan Zou, Weinian Zhang Shigui Ruan, 2010. Modeling the transmission dynamics and control of hepatitisB virus in China Journal of Theoretical Biology 262 (2010) 330-338 control measures. J. Viral.Hepat. 11, 97-107.
[10] McManhon B. J., Alward W. L. M., Hall D. B. et al. Acute hepatitis B virus infection: Relation of ageto clinical expression of disease and subsequent development of the carrier state. J Infect Dis 1985; 151:599-603.
[11] Wang, X.J., Zhang, R.Z., Hu, Y.S., Liang, X.F., 2004. Analysis on epidemic status of viral hepatitisin China: the report from Chinese Center for Disease Control and Prevention. Dis. Sur. 19, 290-292.
[12] Williams, R., 2006. Global challenges in liver disease. Hepatol. 44 (3), 521-526.
[13] WHO World Health Organization Report,(2004)

