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Abstract 
 

In this paper, we derive a finite element model for solving one 

dimensional boundary value problems using Galerkin method. The 

mathematical brevity in the equal distribution of the differentiation among 

the weight function )(xw  and the dependent variable )(xu  yields the weak 

form of the differential equation. Upon the assembling of the element 

equation and imposition of boundary condition, we obtain exactly the same 

number of algebraic equation as the number of unknown primary and 

secondary degrees of freedom. Illustrative examples are included to 

demonstrate the validity and applicability of the technique. 

 

 

1.0 Introduction 
Obviously, all problems that are describable by ordinary and partial differential equations can be solved by the finite element 

method. In this paper, we consider only steady state problems [1,2,3].the application of the finite element method to a given 

problem involves six steps namely (1) Discretization of the domain into a finite element mesh (2) Development of element 

equation (3) Assembly of elements to obtain the equation of the whole problem (4) Imposition of the boundary conditions of 

the problem (5) solution of the assembled equations (6)  post-processing of the result. 

 

1.1 Model Boundary Value Problem 
Taking equation (1.1) as our model boundary value problem, let us consider the problem of finding the function )(xu  that 

satisfies the differential equation 

  Lxforqcu
dx

du
a

dx

d
=−+








− 00  

And the boundary conditions    (1.1) 

  ( ) 00 ,0 Q
dx

du
auu Lx =








= =  

Our ability to develop a numerical procedure by which equation (1.1) can be solved to all possible boundary conditions could 

be viewed as a procedure for solving all field problems ranging from conduction and convention heat transfer in a plane wall, 

Axial deformation of bars, transverse deflection of a cable etc. 

 

2.0 Formulation of the Model 
After discretizing the domain Ω=(0,L) into a set of line segments called finite elements of length located between points A 

and B (see Figure 1.1) we derive the algebraic equation that relates the primary variables to the secondary variables at the 

nodes of the elements. Usually, this involves three steps namely (1) construction of the weighted residual or weak form of the 

differential equation (2) Assume the form of the approximate solution over a typical finite element (3) Derive the finite 

element equations by substituting the approximate solution into the weak form. 
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Step 1: WEAK FORM 

We multiply the governing differential equation with a weight function w(x) and integrate over a typical element i.e 
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dx
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dx

d
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−=  )(0       (1.2) 
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But 
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Hence (1.3) becomes 
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As a rule in finite element method, 

AXA
dx

du
aQ 








=− ,         (1.6) 

BXB
dx

du
aQ 








=          (1.7) 

Where u is the primary variable and its specification constitute the essential boundary condition and 
0Q

dx

du
a =








is the 

secondary variable and its specification constitutes the natural boundary condition. 

Hence with notation in (1.6), (1.7), the variational (or weak) form becomes 

BBAA

X

X
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Step 2: Approximation of the solution 

Having gotten the weak form of the differential equation, we seek the approximation solution 
eU  over the element 

),( BA

e xx= on the form of algebraic polynomial [4,5]. For the variational statement at hand, the minimum polynomial 

order is linear. A complete polynomial is of the form 

   
bxaU e +=

       (1.9) 

Where a and b are constant and can be determined using the nodal conditions 
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In matrix form 
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Using crammer’s rule, yields 
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1221 uu
h

bxuxu
h
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e
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where  ABe xxh −=  

Substitution of (1.10) into (1.9) yields 
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Which are called the linear element approximation function (or shape functions). 

Step 3:  FINITE ELEMENT MODEL 

Since we are using the Galerkin method, we substitute (1.11) for )(xu  and ,1

e ,2

e ...,
e

n  for )(xw  into the weak form 

(1.8) to obtain n algebraic equations 
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The ith algebraic equation can be written as 
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Equation (1.5) can be expressed in terms of the coefficients 
e

i

e

i
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In matrix notation, the linear algebraic equation (1.16a) can be written as 

       eeee QfuK +=     (1.16b) 

The matrix [ke] is called the coefficient matrix, or stiffness matrix. The column vector{fe} is the source vector, or force 

vector. 

For mesh of linear elements, the element Ωe is located between the global nodes 
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We can compute kij
e and fi

e by evaluating the integral to have 
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When a and q are element constant c=0, the finite element equations corresponding to the linear element are 
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3.0 Connectivity of Elements 
The assembly of element is carried out by imposing the following two conditions 

(1) Continuity of primary variables at connecting nodes 
1

1

+= ee

n uu  

(2).  Balance of secondary variables at connecting nodes 

 
appliedisQmagnitudeofsourcepoexternalanif

appliedissourcepoexternalnoif

Q
QQ ee

n

00

1

1
int

int0





=+ +  

The interelement continuity of the primary variables is imposed by renaming the two variables 
1

1

+= ee

n uu  at Nxx =  as one 

and the same. 

To enforce balance of the secondary variables 
e

iQ , it is clear that we set 
1

1

++ ee

n QQ equal to zero or a specified value only if 

we have such expression in our equations. To obtain such expressions, we must add the nth equation of the element Ωe to the 

first equation of the element Ωe+1 that is  

e

n

e

n

e

j

n

j

e

nj Qfuk +=
=1

 and 
1

1

1

1

1

1

1

1

+++

=

+ +=
eee

j

n

j

e

j Qfuk  

To give 

( ) ( )1

1

1

1

1

11

1

++

=

++ +++=+
ee

n

ee

n

n

j

e

j

e

j

e

j

e

nj QQffUkUk  

    
0

1

1 Qff ee

n ++= +
 

Thus for a mesh of G linear elements (n=2), we have 
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We then apply the boundary condition to the system of equations and solve to obtain the desired number of degree of 

freedoms. 

The solution of the finite element equations give the nodal values of the primary unknown (e.g, displacement, velocity or 

temperature). Having established the finite element model for solving dimension boundary value problems, when then 

consider some applications. 

 

4.0 Numerical Examples and Results 
We apply this method on some special problems.  

Problem 1: Consider a slab of thickness Land constant thermal conductivity K(wm-1  0c-1). Suppose that the energy at a 

uniform rate of q0 (wm-3) is generated in the wall. Evaluate the temperature distribution in the wall when the boundary 

surfaces of the wall are subject to the boundary conditions. 

 T (0)=, and T(L)=T2 

Solution: The governing differential equations for this problem is given by 

 BcTcAqTc
dx

dT
KA

dx

d nnn =+=+− ,)(        (1.22) 

Where k is the thermal conductivity of the material, A is the cross sectional area, T is the temperature, q is the heat energy 

generated per unit volume.   is the density, c is the specific heat of the surrounding medium (the ambient temperature), β is 

the convection heat transfer coefficient. 

Since we are dealing with a plane wall, we set cn=0. 

The equation reduces to 
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The finite element model is 
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We must select order of approximation (or type of elements) to evaluate the coefficients k ij and 
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For a minimum of two elements, N=2, (h= )
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1 L and applying the boundary condition 
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The solutions are 
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Problem 2: Consider the temperature distribution of an insulated rod length L=1 and thermal diffusivity D=10. A constant 

heat is also being generated at the rate of Q=10. The boundary conditions are T(0)=5 and ( ) q
dx

dT
x

==
=

10
1

 

Solution: Suppose we use four elements (n=4) to illustrate the finite element solution. The nodes are x1, x2, x3,x4 and x5 

The differentiation equation is governed by; 
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Where D is the thermal diffusion, T is the temperature and Q is the heat generation. Equation (1.31) becomes 
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Following the procedures, the finite element model is  
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The prescribe boundary condition at the end where the temperature is fixed T1=5 and at the opposite end where the flux 

boundary applied q5 =-10. The assembled final system equations for elements becomes 
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The finite element solution for the temperature profile produces the values 

T2=4.97, T3=4.91, T4=4.78 and T5=4.60 

 

 

5.0 Conclusion 
In this paper, we have formulated a finite element model that could be used to solve differential equations. We have 

illustrated how finite element method utilizes discrete elements to obtain the approximate solution of the governing 

differential equation. In addition, we showed how the final system equation is constructed from the discrete element equation. 

 

 

 

 

 

 

Figure 1.1: Finite Element Discretization of a One-Dimensional Domain  
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Figure 1.2: Local interpolation functions for two-node linear element 
1, +== eBeA xxxx  
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