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Abstract 
 

In this paper, we study the convergence of Picard-multistep-type iterative 

schemes and use the schemes to approximate the fixed point of contractive-

like map in complete metrizable locally convex spaces. We also investigate 

their convergence speed (using PYTHON 2.5.4) with others (Mann, Picard-

Mann, Ishikawa, Picard-Ishikawa, Noor, Picard-Noor and multistep) for 

increasing and decreasing functions. The results show that Picard-multistep-

SP and multistep-SP converges faster than the other schemes for the 

functions under this study. Our convergence results generalize and extend 

multitude of results in the literature, including the results ofBerinde (2004). 
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1.0     Introduction 
Metric fixed point theory has been widely studied by experts in the past decades, since fixed point theory plays a vital role in 

Mathematics and applied sciences, such as Optimization, Mathematical models and Economic theories. Different iterative 

schemes have been used to approximate the fixed point of various contractive operators in different spaces like Metric, 

Normed linear,Partial metric and Cone metric spaces (for details seeIshikawa (1974), Mann (1953), Noor (2000),  

Phuengrattana and Suantai (2011) and Rhoades and Soltuz (2004). 

In this study, we shall introduce some modified hybrid schemes and use these schemes to approximate the fixed point of a 

class of contractive-type mapping in a locally convex space. We shall also investigate the convergence speed of these various 

schemes to fixed point of the map considered. 

A locally Convex space (X, u) with topology u is a topological vector space which has of a local base of convex 

neighborhoods of zero [Schaffer (1999), Chap.7]. It is metrizable if it is Hausdorff and has countable zero basis. 

Consequently, it is metrisable if u can be described by a countable family of continuous seminorms [Schaffer (1999)]. X is 

Hausdorff if and only if for each non-zero x  X, there is some p Q with p(x)>0 [Olaleru (2006)]. 

Let X be a metrizable topological space and C be a closed convex nonempty subset of X and  

T: C →  C a self-map of C. Assume that }:{ pTpCpFT == is the set of fixed points of T.  

For ,0 Cx   the Picard iterative scheme is the sequence 


=0}{ nnx  defined by 

,1 nn Txx =+ 0n           (1) 

 For ,0 Cx   the Mann iterative scheme [Mann (1953)] is the sequence 


=0}{ nnx  defined by  

,)1(1 nnnnn Txxx  +−=+ 0n         (2) 

 where 


=0}{ nn  is a real sequence in [0,1] such that .
0




=

=
n

n  

Observe that, if 1=n  for each n, then the Mann iterative scheme (2) reduces to the Picard iterative scheme (1).  

Olaleru (2006) proved the convergence of Mann iterative process using the Zamfirescu operators [Zamfirescu (1972)] and 

generalized several results in literature to complete metrizable locally convex spaces.  
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For ,0 Cx   the Ishikawa iterative scheme [Ishikawa (1974)] is the sequence 


=0}{ nnx  defined by   

,)1(1 nnnnn Tyxx  +−=+  

,)1( nnnnn Txxy  +−= 0n         (3) 

 where 


=0}{ nn ,  


=0}{ nn  are real sequences in [0,1] such that .
0




=

=
n

n  

Observe that, if 0=n  for each n, then the Ishikawa iterative scheme (3) reduces to the Mann iterative scheme (2).  

For ,0 Cx   the Noor iterative scheme [Noor (2000)] is the sequence 


=0}{ nnx  defined by   

,)1(1 nnnnn Tyxx  +−=+  

,)1( nnnnn Tzxy  +−=  

,)1( nnnnn Txxz  +−= 0n         (4) 

 where 


=0}{ nn ,  


=0}{ nn ,


=0}{ nn are real sequences in [0,1] such that .
0




=

=
n

n  

Observe that, if 0=n  for each n, then the Noor iterative scheme (4) reduces to the Ishikawa iterative scheme (3).  

For ,0 Cx   the multistep iterative scheme [Rhoades and Soltuz (2004)] is the sequence 


=0}{ nnx  defined by   

,)1( 1

1 nnnnn Tyxx  +−=+
 

,)1(
11 +

+−=
i

nn
i

nn
i

n Tyxy  )2,...,3,2,1( −= ki  

,)1(
111

n

k

nn

k

n

k

n Txxy
−−−

+−=  ,2k 0n       (5) 

 where 


=0}{ nn ,  


=0}{ n

i

n , )2,...,3,2,1( −= ki are real sequences in [0,1] such that .
0




=

=
n

n  

Observe that the multistep iterative scheme (5) is a generalization of Noor, Ishikawa and the Mann iterative schemes. In fact, 

if k=3 in (5), we have the Noor iterative scheme (4), if k=2 in (5), we have the Ishikawa iteration (3) if k=2 and
1

n  =0 in (5), 

we have the Mann iterative scheme (2). 

Phuengrattana and Suantai (2011) introduced SP-iterative scheme and used the scheme to approximate the fixed point of 

continuous functions on an arbitrary interval. They also compared the convergence speed of Mann, Ishikawa, Noor and SP- 

iterative processes and proved that the SP-iterative process converges faster than the others (Mann, Ishikawa and Noor 

schemes). 

For ,0 Cx   the SP iterative scheme [23] is the sequence 


=0}{ nnx  defined by   

,)1(1 nnnnn Tyyx  +−=+  

,)1( nnnnn Tzzy  +−=  

,)1( nnnnn Txxz  +−= 0n        (6) 

 where 


=0}{ nn ,  


=0}{ nn , 


=0}{ nn are real sequences in [0,1] such that .
0




=

=
n

n  

Observe that, if 0=n  for each n, then the SP iterative scheme (6) reduces to the Ishikawa iterative scheme (3). Also, if 

0, =nn   for each n then the SP- iteration process (6) reduces to the Mann iterative process (2). 

 

For ,0 Cx   the multistep-SP iterative scheme [G¨ursoy,  Karakaya and Rhoades  (2013)] is the sequence 


=0}{ nnx  defined 

by   

,)1( 11

1 nnnnn Tyyx  +−=+  

,)1(
111 ++

+−=
j

nn
jj

nn
j

n Tyyy  ),2,...,3,2,1( −= qj
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,)1(
111

n

q

nn

q

n

q

n Txxy
−−−

+−=  ,2q 0n       (7) 

Where 


=0}{ nn ,  


=0}{ n

j

n , )2,...,3,2,1( −= qj are real sequences in [0,1] such that .
0




=

=
n

n  

Khan (2013), introduced the Picard-Mann hybrid iterative scheme for a single nonexpansive mapping T and showed that his 

new scheme converges faster than all of Picard (1), Mann (2) and Ishikawa (3) iterative schemes in the sense of Berinde 

(2004) for contractions. For any initial point ,0 Ca   the Picard-Mann iterative scheme [Khan (2013)] is the sequence 



=0}{ nna  is defined by 

,1 nn Tya =+  

,)1( nnnnn Taay  +−= 0n        (8) 

where 


=0}{ nn  is a real sequence in (0,1).  

Motivated by the work of Khan [Khan (2013)], we shall introduce the following hybrid iterative schemes and prove their 

strong convergence results for contractive-like inequality operators [Imoru and Olatinwo (2013)] in locally convex spaces. 

Also, we will investigate their rate of convergence for this class of operators. 

For any initial point ,0 Cb   the Picard-Ishikawa hybrid iterative hybrid scheme is the sequence 


=0}{ nnb  is defined by 

,1 nn Tyb =+  

,)1( nnnnn Tzby  +−=
 

,)1( nnnnn Tbbz  +−= 0n         (9) 

where ,}{ 0



=nn


=0}{ nn  are real sequences in (0,1] such that .
0




=

=
n

n .  

For any initial point ,0 Ce   the Picard-Noor iterative hybrid scheme is the sequence 


=0}{ nne  is defined by 

,1 nn Tye =+  

,)1( nnnnn Tzey  +−=
 

,)1( nnnnn Thez  +−=
 

,)1( nnnnn Teeh  +−= 0n        (10) 

where ,}{ 0



=nn ,}{ 0



=nn


=0}{ nn are real sequences in (0,1] such that .
0




=

=
n

n  

For any initial point ,0 Ch   the Picard-SP iterative hybrid scheme is the sequence 


=0}{ nnh  is defined by 

,1 nn Tyh =+  

,)1( nnnnn Tzzy  +−=
 

,)1( nnnnn Txxz  +−=
 

,)1( nnnnn Thhx  +−= 0n         (11) 

where ,}{ 0



=nn ,}{ 0



=nn


=0}{ nn are real sequences in (0,1] such that .
0




=

=
n

n  

For any initial point ,0 Cc   the Picard-AK iterative hybrid scheme is the sequence 


=0}{ nnc  is defined by 

,1 nn Tyc =+  

,)1( nnnnn Tzzy  +−=
 

,)1( nnnnn Tccz  +−= 0n        (12) 
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where ,}{ 0



=nn


=0}{ nn are real sequences in (0,1] such that .
0




=

=
n

n  

For any initial point ,0 Cd   the Picard-S iterative hybrid scheme is the sequence 


=0}{ nnd  is defined by 

,1 nn Tyd =+  

,)1( nnnnn TzTdy  +−=
 

,)1( nnnnn Tddz  +−= 0n         (13) 

where ,}{ 0



=nn


=0}{ nn are real sequences in (0,1] such that .
0




=

=
n

n  

For ,0 Cx   the Picard-multistep hybrid iterative scheme is the sequence 


=0}{ nnx  defined by   

,1

1 nn Tyx =+
 

,)1(
11 +

+−=
i

nn
i

nn
i

n Tyxy  )2,...,3,2,1( −= ki  

,)1(
111

n

k

nn

k

n

k

n Txxy
−−−

+−=  ,2k 0n       (14) 

 where 


=0}{ n

i

n , )2,...,3,2,1( −= ki are real sequences in [0,1] such that .
0




=

=
n

n  

Observe that the Picard-multistep hybrid iterative scheme (14) is a generalization of Picard- Noor (10), Picard-Ishikawa (9) 

and Picard- Mann (8) hybrid iterative schemes. Infact, if k=4 in (13), we have Picard-Noor iterative scheme (10), if k=3 in 

(14), we have the Picard-Ishikawa iterative scheme (9) if k=3 and 0
2
=n  in (14), we have Picard- Mann (8) iterative 

scheme. 

Also, for ,0 Cx   the Picard-multistep-SP hybrid iterative scheme is the sequence 


=0}{ nnx  defined by   

,1

1 nn Tyx =+
 

,)1(
111 ++

+−=
j

nn
jj

nn
j

n Tyyy  )2,...,3,2,1( −= qj  

,)1(
111

n

q

nn

q

n

q

n Txxy
−−−

+−=  ,2q 0n       (15) 

 where 


=0}{ n

j

n , )2,...,3,2,1( −= qj are real sequences in [0,1] such that .
0




=

=
n

n  

Several generalizations of the Banach fixed point theorem have been proved to date, (for example see [Chatterjea (1972), 

Kannan (1968) and Zamfirescu (1972)]). One of the most commonly studied generalizations hitherto is the one proved by 

Zamfirescu (1972), which is stated as thus: 

 Theorem 1.2[Zamfirescu (1972)]. Let X be a complete metric space and T:X →X a Zamfirescu operator satisfying 

)]},(),([)],,(),([),,(max{),(
2
1

2
1 TxydTyxdTyydTxxdyxdhTyTxd ++

  
(16) 

 where )1,0[h . Then, T has a unique fixed point and the Picard iteration converges to p for any .0 Xx   

Observe that in a Banach space setting, condition (16) implies 

||||2|||||||| TxxyxTyTx −+−−                (17) 

where )1,0[ and }
2

,max{
h

h
h

−
= , for details of proof see[Berinde, V. (2004)]. 

The most commonly used methods of approximating the fixed points of the Zamfirescu operators are Picard, Mann [Mann 

(1953)], Ishikawa [Ishikawa (1974)] and Noor [Noor (2000)] iterative processes. Berinde (2004) proved the convergence of 

Mann and Ishikawa iterative schemes in the class of quasi-contractive operators in arbitrary Banach space while Rafiq (2006) 

proved the convergence of Noor iterative process (3) using the Zamfirescu operators defined by (17). 

 

2.0 Results 
We prove that multistep-type hybrid iterative schemeconverges strongly to the unique fixed point for contractive-like 

operators in the following theorem: 
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Theorem 1. Let ),( cfX be a complete metrizable locally convex space, C a closed convex subset of X and CCT →:

be an operator satisfying the condition 

− )( TyTxf c ))(()( Txxfyxf cc −+− 
      

(18) 

for each Cy  and ).1,0[ For ,0 Cx   let


=0}{ nnx  be the Picard-multistep hybrid iterative process defined by (14), 

where ,}{ 0



=nn  i=1, 2, ...,k-1 are real sequences in [0,1]. Then 

(i) T has a unique fixed point p; 

(ii) Picard-multistep hybrid iterative scheme converges strongly to p. 

Proof: 

(i) We shall first establish that the mapping T satisfying the contractive condition (18) has a unique fixed point.  

Suppose there exist ,, 21 TFpp   and that ,21 pp  with ,0)( 21 − ppfc then 

−=− )()(0 2121 TpTpfppf cc  =−+− ))(()( 1121 Tppfppf cc   )0()( 21 +− ppfc  

Thus, .0)()1( 21 −− ppfc  

Since ),1,0[  then 0)1( − and .0)( 21 − ppfc  Since norm is nonnegative, we have that .0)( 21 =− ppfc  

That is, 21 pp = (say). Thus, T has a unique fixed point p. 

(ii) Next we shall establish that pxn
n

=
→

lim . That is, we show that the Picard-multistep hybrid iterative process (14) 

converges strongly to p of T. 

In view of (14) and (18), we have  

)()(
1

1 TpTyfpxf ncnc −=−+ .        (19) 

Using (18), with 
1

nyy = , gives 

−=−+ )()(
1

1 TpTyfpxf ncnc ))(()(
1

Tppfpyf cnc −+−  .   (20) 

Substituting (20) in (19), we have 

−+ )( 1 pxf nc )(
1

pyf nc − .        (21) 

We note that ]1,0[
i

n for 0n and .21 − ki  

)()()1()(
2111

TpTyfpxfpyf ncnncnnc −+−−−   

 [)()1(
11

nncn pxf +−− ))](()(
2

Tppfpyf cnc −+−   

)()()1(
211

pyfpxf ncnncn −+−−=   

)]()()1[()()1(
32211

pTyfpxfpxf ncnncnnncn −+−−+−−   

)))](()(()()1[()()1(
32211

Tppfpyfpxfpxf cncnncnnncn −+−+−−+−−   

)()()1()()1(
3212211

pyfpxfpxf ncnnncnnncn −+−−+−−=   

)()1[()()1()()1(
3212211

pxfpxfpxf ncnnnncnnncn −−+−−+−−   

)))](()((
43

Tppfpyf cncn −+−+   

)()1()()1()()1(
3212211

pxfpxfpxf ncnnnncnnncn −−+−−+−−=   

)(
43213 pyf ncnnn −+   

)()1()()1()()1(
3212211

pxfpxfpxf ncnnnncnnncn −−+−−+−−   

)(......)(
123321243213 pyfpyf

k

nc

k

n

k

nnnn

k

ncnnn −++−+
−−−−  .      (22) 

)()()1()(
111

TpTxfpxfpyf nc

k

nnc

k

n

k

nc −+−−−
−−−

  

))](()([)()1(
11

Tppfpxfpxf cnc

k

nnc

k

n −+−+−−
−−
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).()()1(
11

pxfpxf nc

k

nnc

k

n −+−−=
−−


      

(23) 

(22) and (23) hold since Tp=p and .0)0( =  

Substituting (23)and (22) in (18), we have 

)()1()()1()()1[()(
21211

1 pxfpxfpxfpxf ncnnncnnncnnc −−+−−+−−−+   

++−−+−−+ ...)()1()()1(
432133212 pxfpxf ncnnnnncnnn   

)](...)()1(...
12332111233212 pxfpxf nc

k

n

k

n

k

nnnn

k

nc

k

n

k

n

k

nnnn

k −+−−+
−−−−−−−−   

).()]1(1[
1

pxf ncn −−− 
        

(24) 

By (24), we inductively obtain 


=

+ −−−−
n

m

cmnc pxfpxf
0

0

1

1 ).()])1(1([)( 
     

(25) 

Using the fact that ),1,0[ ]1,0[
1
m  and =



=0

1

m

m ,it result that  


=

→
=−−

n

m

m
n

0

1
.0)])1(1[lim   

Hence, .0)(lim 1 =−+
→

pxf nc
n

 

That is 


=0}{ nnx converges strongly to p. This ends the proof. 

Theorem 1 leads to the following corollary: 

Corollary 1. Let ),( cfX be a complete metrizable locally convex space, C a closed convex subset of X and CCT →: be 

an operator satisfying the condition 

− )( TyTxf c ))(()( Txxfyxf cc −+− 
      

(26) 

for each Cy  and )1,0[ . For ,,,, 0000 Cxabe   let ,}{ 0



=nne ,}{ 0



=nnb ,}{ 0



=nna 

=0}{ nnx  

be the Picard-Noor hybrid, Picard-Ishikawa hybrid, Picard-Mann hybrid and Picard iterative schemes defined by (10), (9), 

(8), (1) respectively where ,}{ 0



=nn ,}{ 0



=nn


=0}{ nn are real sequences in [0,1]. Then 

(i) T has a unique fixed point p; 

(ii) Picard-Noor hybrid iterative scheme (10) converges strongly to p; 

(iii) Picard-Ishikawa hybrid iterative scheme (9) converges strongly to p; 

(iv) Picard-Mann hybrid iterative scheme (8) converges strongly to p; 

(v) Picard iterative scheme (1) converges strongly to p. 

 

Remark: Theorem 1 improves several known results in literature including the results of Berinde (2004) and Rhoades' 

theorem2 [Rhoades (1974)] by considering iterative schemes and contractive operators that are more general than those in 

literature. 

Theorem 2. Let ),( cfX be a complete metrizable locally convex space, C a closed convex subset of X and CCT →:

be an operator satisfying the condition 

− )( TyTxf c ))(()( Txxfyxf cc −+−                                                                   (27) 

for each Cy  and ).1,0[  For Cx 0 , let


=0}{ nnx  be the Picard-multistep-SP hybrid iterative process defined by 

(15), where ,}{ 0



=nn  j=1, 2, ..., q-1 are real sequences in [0,1]. Then 

(i) T has a unique fixed point p; 

(ii) Picard-multistep-SP hybrid iterative scheme converges strongly to p. 

Proof: 

(i) We shall first establish that the mapping T satisfying the contractive condition (27) has a unique fixed point.  

Suppose there exist ,, 21 TFpp   and that ,21 pp  with ,0)( 21 − ppfc then 

−=− )()(0 2121 TpTpfppf cc  =−+− ))(()( 1121 Tppfppf cc   )0()( 21 +− ppfc  
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Thus, .0)()1( 21 −− ppfc  

Since ),1,0[  then 0)1( − and .0)( 21 − ppfc  Since norm is nonnegative, we have that .0)( 21 =− ppfc  

That is, 21 pp = (say). Thus, T has a unique fixed point p. 

 

(ii) Next we shall establish that pxn
n

=
→

lim . That is, we show that the Picard-multistep-SP hybrid iterative process (15) 

converges strongly to p of T. 

In view of (15) and (27), we have  

)()(
1

1 TpTyfpxf ncnc −=−+ .                                                                                               (28) 

Using (2.10), with 
1

nyy = , gives 

− )(
1

TpTyf nc ))(()(
1

Tppfpyf cnc −+−  .                                                                  (29) 

Substituting (29) in (28), we have 

−+ )( 1 pxf nc )(
1

pyf nc − .                                                                                             (30) 

An application of (15) and (27), with 
1

nyy = give )()()1()(
21211

TpTyfpyfpyf ncnncnnc −+−−−   

 [)()1(
121

nncn pyf +−− ))](()(
2

Tppfpyf cnc −+−   

).()]1(1[
21

pyf ncn −−−= 
        

(31) 

(31) holds since Tp=p and .0)0( =  

Also an application of (15) and (27), with 
2

nyy =  give 

)()()1()(
32322

TpTyfpyfpyf ncnncnnc −+−−−   

 [)()1(
232

nncn pyf +−− ))](()(
3

Tppfpyf cnc −+−   

).()]1(1[
32

pyf ncn −−−= 
        

(32) 

Similarly, an application of (15) and (27) with
3

nyy =  give 

)()()1()(
43433

TpTyfpyfpyf ncnncnnc −+−−−   

 [)()1(
343

nncn pyf +−− ))](()(
4

Tppfpyf cnc −+−   

).()]1(1[
43

pyf ncn −−−= 
        

(33) 

Continuing the above process with ,
2−

=
q

nyy we have: 

).()]1(1[)(
122

Tpyfpyf
q

nc

q

n

q

nc −−−−
−−−


     

(34) 

Finally, an application of (15) and (27) with ,
1−

=
q

nyy  give 

)()()1()(
111

TpTxfpxfpyf nc

q

nnc

q

n

q

nc −+−−−
−−−

  

 [)()1(
11 −−

+−−
q

nnc

q

n pxf ))](()( Tppfpxf cnc −+−   

).()]1(1[
1

pxf nc

q

n −−−=
−


       

(35) 

Substituting (35) in (34), (34) in (33), (33) in (32), (32) in (31) and (31) in (30) respectively, we have  

−+ )( 1 pxf nc )]...1(1)][1(1)][1(1[[
321

 −−−−−− nnn  

).()]]1(1)][1(1[
12

pxf xc

q

n

q

n −−−−−
−−

  

)()]1(1[
1

pxf ncn −−−   

)())]1(1([ 0

1

0

pxf cm

n

m

−−− 
=
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).(][ 0

)1(

0

1

pxfe c

n

m

m

−


 =

−− 


        

(36) 

 Since ),1,0[ ]1,0[
1
m  and =



=0

1

m

m , it result that  

So 00

1
)1(

→

=

−−

n

m

m

e


 as .→n  

Thus .0)(lim 1 =−+
→

pxf nc
n

 That is 


=0}{ nnx converges strongly to p. This ends the proof. 

 

Theorem 2 leads to the following corollary: 

Corollary 2.Let ),( cfX be a complete metrizable locally convex space, C a closed convex subset of X and CCT →:

be an operator satisfying the condition 

− )( TyTxf c ))(()( Txxfyxf cc −+−                                                                   (37) 

for each Cy  and ).1,0[  For Cxah 000 ,, , let ,}{ 0



=nnh ,}{ 0



=nna 

=0}{ nnx  be the Picard-SP hybrid, Picard-Mann 

hybrid and Picard iterative schemes defined by (11), (8), (1) respectively, where ,}{ 0



=nn ,}{ 0



=nn ,}{ 0



=nn  are real 

sequences in [0,1]. Then 

(i) T has a unique fixed point p; 

(ii) the Picard-SP hybrid iterative scheme (11) converges strongly to p; 

(iii) the Picard-Mann hybrid iterative scheme (8) converges strongly to p; 

(iv) the Picard iterative scheme (1) converges strongly to p. 

 

3.0 Numerical Examples 
We investigate the performance of our schemes by comparing our modified iterative schemes (multstep-SP and Picard-

multstep-SP hybrid iterative schemes) with others (Mann, Picard-Mann, Ishikawa, Picard-Ishikawa, Noor and Picard-Noor, 

multistep and Picard-multistep iterative schemes) using numerical examples with the help computer programs in PYTHON 

2.5.4. The 

 results are shown in Tables1-2, 3-4, 5-6, by taking initial approximation  

8.0000000 ====== dhecba  and
2

1

)1(

1

n

i

nnnn

+
====  , (for  i =1,2,3,...,k-2) for all the iterative 

schemes.  

Example of Increasing Function 

Let ]8,0[]8,0[: →f be defined by 
10

9
)(

2 +
=

x
xf . Then f is an increasing function. The comparison of these iterative 

schemes to the fixed point 1=p is shown in Tables 1-2. 

 Example of Decreasing Function  

Let ]1,0[]1,0[: →f  be defined by ,)1()( mxxf −= m=7, 8,.... Then f is a decreasing function. By taking m=8,the 

comparison of these iterative schemes to the fixed point p=0.18834768 is shown in Tables 3-4. 
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Table 1: Numerical Examples for Increasing Function 

N(number of 

iterations) 

Mann 

iteration 

Picard-Mann 

iteration 

Ishikawa 

iteration 

Picard-Ishikawa 

iteration 

Noor 

iteration 

Picard-Noor 

iteration 

0 0.80000000 0.80000000 0.80000000 0.80000000 0.80000000 0.80000000 

1 0.89468544 0.98004620 0.90394972 0.98171251 0.90491177 0.90394972 

2 0.94396850 0.99786857 0.95364871 0.99823630 095463374 0.95364871 

3 0.97002960 0.99977079 0.97757941 0.99982908 0.97831976 0.97757941 

4 0.98392420 0.99997533 0.98914252 0.99998343 0.98963086 0.98914252 

5 0.99136421 0.99999735 0.99473919 0.99999839 0.99503879 0.99473919 

6 0.99535722 0.99999971 0.99745028 0.99999984 0.99762582 0.99745028 

7 0.99750287 0.99999997 0.99940088 0.99999998 0.99886374 0.99876408 

8 0.99865661 0.99999999 0.99940088 1.00000000 0.99945618 0.99940088 

9 0.99927720 1.00000000 0.99970956 - 0.99973972 0.99970956 

10 0.99961108 - 0.99985920 - 0.99987542 0.99985920 

11 0.99979072 - 0.99993174 - 0.99994037 0.99993174 

12 0.99988739 - 0.99996691 - 0.99997146 0.99996691 

. . . . . . . 

24 . - 1.00000000 - 1.00000000 1.00000000 

. . . . . . . 

28 1.00000000 - - - - - 

 

Table 2: Numerical Example for Increasing Function 

N(number of 

iterations) 

SP iteration Picard-SP 

iteration 

Multistep 

iteration 

Picard-multistep 

iteration 

Multistep-SP 

iteration  

Picard-multistep-

SP iteration 

0 0.80000000 0.80000000 0.80000000 0.80000000 0.80000000 0.80000000 

1 0.97002960 0.97002960 0.90502396 0.90502396 0.99998245 1.00000000 

2 0.99535722 0.99535722 0.95475180 0.95475180 1.00000000 - 

3 0.99927720 0.99927720 0.97840974 0.97840974 - - 

4 0.99988739 0.99988739 0.98969059 0.98969059 - - 

5 0.99998245 0.99998245 0.99507550 0.99507550 - - 

6 0.99999727 0.99999727 0.99764732 0.99764732 - - 

7 0.99999957 0.99999957 0.99887591 0.99887591 - - 

8 0.99999993 0.99999993 0.99946290 0.99946290 - - 

9 0.99999999 0.99999999 0.99974337 0.99974337 - - 

10 1.00000000 1.00000000 0.99987738 0.99987738 - - 

11 - - 0.99994141 0.99994141 - - 

12 - - 0.99997200 0.99997200 - - 

13 - - . 0.99998662 - - 

. . . . . . . 

. . . . . . . 

24 - - 1.00000000 1.00000000 - - 
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Table 3: Numerical Example for Decreasing Function 

N(number of 

iterations) 

Mann 

iteration 

Picard-Mann 

iteration 

Ishikawa 

iteration 

Picard-

Ishikawa 

iteration 

Noor 

iteration 

Picard-Noor 

iteration 

0 0.80000000 0.80000000 0.80000000 0.80000000 0.80000000 0.80000000 

1 0.51715819 0.00295419 0.51820175 0.00290350 0.51818383 0.51818383 

2 0.33535963 0.03298199 0.34834693 0.89680408 0.34647661 0.34647661 

3 0.23025531 0.06336713 0.26593384 0.00096679 0.25404936 0.25404936 

4 0.19242188 0.09970826 0.23021568 0.91021186 0.21039925 0.21039925 

5 0.18835385 0.14122038 0.21279037 0.00081906 0.19421433 0.19421433 

6 0.18834762 0.17479994 0.20326713 0.91123700 0.18970710 0.18970710 

7 0.18834768 0.18710496 0.19769124 0.00080862 0.18864833 0.18864833 

8 - 0.18831670 0.19429009 0.91130946 0.18841341 0.18841341 

9 - 0.18834710 0.19216311 0.00080789 0.18836201 0.18836201 

10 - 0.18834767 0.19081216 0.91131455 0.18835080 0.18835080 

11 - 0.18834768 0.18994564 - 0.18834836 0.18834836 

12 - - - . 0.18834783 0.18834783 

13 - - - . 0.18834771 0.18834771 

14 - . . . . . 

15 - - - - 0.18834768 0.18834768 

. . . . . . . 

. . . . . . . 

. . . . . . . 

37 - - 0.18834770 - - - 

 

Table 4: Numerical Example for Decreasing Function 

N(number of 

iterations) 

SP iteration Picard-SP 

iteration 

multistep 

iteration 

Picard-

multistep 

iteration 

Multistep-SP 

iteration 

Picard-

multistep-SP 

iteration 

0 0.80000000 0.80000000 0.80000000 0.80000000 0.80000000 0.80000000 

1 0.23025530 0.18287087 0.51818413 0.51818413 0.18834768 0.18834768 

2 0.18834762 0.18847109 0.34670870 0.34670870 - - 

3 0.18834768 0.18834505 0.25697475 0.25697671 - - 

4 - 0.18834774 0.21638616 0.21643215 - - 

5 - 0.18834768 0.19949734 0.19960662 - - 

6 - - 0.19273171 0.19284285 - - 

7 - - 0.19006371 0.19014196 - - 

8 - - 0.18901819 0.18906402 - - 

9 - - 0.18860949 0.18863371 - - 

10 - - 0.18844988 0.18846189 - - 

11 - - 0.18838757 0.18839329 - - 

12 - - 0.18836325 0.18836589 - - 

13 - - 0.18835376 0.18835495 - - 

14 - - 0.18835005 0.18835058 - - 

15 - - 0.18834861 .0.18834884 - - 

. . . . . . . 

21 - - 0.18834768 0.18834768 - - 

. . . . . . . 

37 - - - - - - 

 

4.0 Discussion 

Increasing Function
10

9
)(

2 +
=

x
xf  

The Mann iterative scheme converges to a fixed point in 28 iterations, Picard-Mann hybrid scheme converges in 9 iterations,  
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Ishikawa scheme converges in 24 iterations, Picard-Ishikawa scheme converges in 8 iterations, Noor scheme converges in 24 

iterations, Picard-Noor scheme converges in 24 iterations, SP scheme converges in 10 iterations, Picard-SP scheme 

converges in 10 iterations, multistep scheme converges in 24 iterations, Picard- multistep scheme converges in 24 iterations, 

multistep-SP scheme converges in 2 iterations, Picard-multistep-SP scheme converges in 1 iteration. 

Decreasing Function ,)1()( mxxf −= m=8. 

The Mann iterative scheme converges to a fixed point in 7 iterations, Picard-Mann hybrid scheme converges in 11 iterations, 

Ishikawa scheme converges in iterations greater than 37, Picard-Ishikawa scheme oscillates between 0 and 1 (it never 

converges), Noor scheme converges in 15 iterations, Picard-Noor scheme converges in 15 iterations, SP scheme converges in 

3 iterations, Picard-SP scheme converges in 5 iterations, multistep scheme converges in 21 iterations, Picard- multistep 

scheme converges in 21 iterations, multistep-SP scheme converges in 1 iteration, Picard-multistep-SP scheme converges in 1 

iteration. 

 

5.0 Remark 
(1)  The order of decreasing rate of convergence in the case of increasing functions are: Picard-multistep-SP, multistep-

SP, Picard-Ishikawa, Picard-Mann, (SP and Picard-SP), (Ishikawa, Noor, Picard-Noor and multistep) iterative 

schemes. 

(2)  The order of decreasing rate of convergence in the case of decreasing functions are: (Picard-multistep-SP and 

multistep-SP), SP, Picard-SP, Mann, Picard-Mann, (Noor and Picard-Noor), (multistep and Picard-multistep) and 

Ishikawa iterative schemes. 

(3)  The Picard-Ishikawa scheme does not converge for decreasing functions. 

 

6.0 Conclusion 
(1).  Our Picard-multistep-SP hybrid scheme is faster than the others (multistep-SP, multistep, Picard-SP, SP, Picard-

Noor, Noor, Picard-Ishikawa, Ishikawa, Picard-Mann and Mann iterative schemes) for increasing functions. 

(2).  Picard-multistep-SP and multistep-SP scheme converges in 1iteration and faster than Picard-multistep, multistep, 

 SP, Picard-SP, Picard-Noor, Noor, Picard-Mann and Mann iterative schemes for decreasing functions. 
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