Variable Order Multi-Derivative Linear Multistep Methods with one Off-Step Point

R. I. Okuonghae, E. M. Ezeimo and M. N. O. Ikhile

Advanced Research Laboratory, Department of Mathematics, University of Benin, Benin City. Nigeria.

Abstract

This paper explores multi-derivative methods with one off-step point for stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The choice of the grid point gives $A(\alpha)$ -stability property of the resultant hybrid methods. Though machine limitation has constrained the investigation of the hybrid linear multistep methods (LMM) beyond the step number k = 14, but the methods are $A(\alpha)$ -stable for $k \le 14$ and are of order p = k + 2. Numerical results demonstrates the application of these methods on stiff problems.

Keywords: Backward differentiation formulas, General linear methods (GLM), Multi-derivative LMM, Third derivative linear multistep methods $A/A(\alpha)$ -stability.

AMS subject classification: 65L05, 65L06

1.0 Introduction

The purpose herein is to consider a subclass of multi-derivative hybrid linear multistep methods,

$$\begin{cases} y_{n+\nu_j} = \sum_{j=0}^{k} \Omega_j y_{n+j} + \sum_{i=1}^{s} h^i \left(\sum_{j=0}^{k} \phi_j^{(s)} f_{n+j}^{(i-1)} \right), & \nu_j \neq t; \quad j = l(1)r, t = l(1)k, \\ y_{n+k} = \sum_{j=0}^{k-1} \alpha_j y_{n+j} + \sum_{i=1}^{s} h^i \left(\sum_{j=0}^{k} \beta_j^{(s)} f_{n+j}^{(i-1)} \right) + \sum_{i=1}^{s} h^i \left(\sum_{j=0}^{r} \lambda_j^{(s)} f_{n+\nu_j}^{(i-1)} \right), \end{cases}$$

for the stiff ordinary differential equations (ODEs)

$$\begin{cases} y' = f(x, y(x)), x \in [x_0, X], \\ y_0 = y(x_0), \quad y \in R^m, f \in R \times R^m, m \ge 1. \end{cases}$$
(1)

The constants Ω_j , $\phi_j^{(s)} \alpha_j$, β_j , $\lambda_j^{(s)}$ can be determined by Taylor series expansion and defines a method uniquely. An

initial value problem which stiffness ratio S >> 1 is said to be stiff [11]. As has been noted in [4], stiffness often arises in the modelling of gas mixtures in which the time scales of the reactants are much smaller than the movement times. Such other areas include pollution models, nozzle design for rockets, combustion and nuclear reactions. Other areas include biological modelling, chemical kinetics and fluid flow. In this regard, this paper exploresmulti-derivative methods with an off-step point and the grid point is chosen as to ensure $A(\alpha)$ -stability property. Multi-derivative methods have advantage of bypassing theDahlquist order barrier [7] in linear multistep method (LMM); see [1, 2, 3, 6, 7, 10, 11, 12, 13, 14, 17-24, 26].Infact, methods of this nature, naturally promotes high order with larger stability region than the conventional LMM of comparable step numberk. Indeed, methods with these desirable properties are essential for stiff problems in (1).

A simple example is the third derivative LMM in [26].

Corresponding author: R. I. Okuonghae, E-mail: okunoghae01@yahoo.co.uk, Tel.: +2348032342321 & 8023325312 (MNOI)

Variable Order Multi-Derivative... Okuonghae, Ezeimo and Ikhile Trans. of NAMP

$$y_{n+k} = y_{n+k-1} + h \sum_{j=0}^{k} \alpha_j f_{n+j} + h^2 \beta_k g_{n+k} + h^3 \eta_k l_{n+k}; \quad p = k+4,$$
(2)

where,

 $\{y'_{n+j}\}_{j=0}^{k} = \{f_{n+j}\}_{j=0}^{k} = \{f(x_{n+j}, y_{n+j})\}_{j=0}^{k}, \quad g_{n+k} = y''_{n+k} = f'(x_{n+k}, y_{n+k}), \quad l_{n+k} = y''_{n+k} = f''(x_{n+k}, y_{n+k}).$ In (2), k is the step number, h is the step length and $\{\alpha_j\}_{j=0}^{k}; \beta_k$, and η_k are the discrete coefficients of the arising methods, see [26]. This algorithm in (2) is an extension of the second derivative LMM (SDLMM) in [8]. When (2) is applied to the linear problem

 $y' = \lambda y, \operatorname{Re}(\lambda) < 0,$ (3)

it yields a stability polynomial,

$$\pi(w,z) = w^{k} - w^{k-1} - z \sum_{j=0}^{k} \alpha_{j} w^{j} - z^{2} \beta_{k} w^{k} - z^{3} \eta_{k} w^{k}; \quad z = \lambda h$$

The scheme in (2) is A-stable for $k \le 3$ and $A(\alpha)$ -stable for k = 4, 5. The stability graphs are in Fig. 1. Another example is the third derivative backward differentiation formula (TDBDF),

$$y_{n+k} = \sum_{j=0}^{k-1} \alpha_j y_{n+j} + h\beta_k f_{n+k} + h^2 \gamma_k g_{n+k} + h^3 \eta_k l_{n+k}$$
(4)

in [24]. This is an extended version of the second derivative backward differentiation formulas (SDBDF), see [11]. The SDBDF is $A(\alpha)$ -stable up to order k = 10. As for the above methods, various modifications now exist; see [2, 6, 8, 11, 12, 17-24]. In like manner, the stability polynomial of the TDBDF (4) [24] is

$$\pi(w,z) = w^{k} - \sum_{j=0}^{k-1} \alpha_{j} w^{j} - z \beta_{k} w^{k} - z^{2} g_{k} w^{k} - z^{3} \eta_{k} w^{k}; \quad z = \lambda h$$

The coefficients of the methods are given therein. The algorithm in (4) is A-stable for k = 2(1)3 and $A(\alpha)$ -stable for k = 1, k = 4(1)9, see Fig. 2.

Fig. 1: The stability region of the method in (2) is the exterior of the closed curves.

Fig. 2: The stability region of the method in (4) is the exterior of the closed curves.

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 169-178

Variable Order Multi-Derivative... Okuon

The multi-derivative hybrid LMM for the solution of (1) of our interest is,

$$\begin{cases} y_{n+\nu} = \sum_{j=0}^{\infty} \Omega_j y_{n+j} + h \Phi_k f_{n+k} + h^2 \varphi_k g_{n+k}, & \nu = k - \frac{1}{2}, \quad q = k+2, \\ y_{n+k} = \sum_{j=0}^{k-1} \alpha_j y_{n+j} + h \beta_{\nu}^{(1)} f_{n+\nu} + h^2 \beta_{\nu}^{(2)} g_{n+\nu} + h^3 \beta_k^{(3)} l_{n+k}, & p = k+2, \end{cases}$$
(5b)

where
$$\{y_{n+j}\}_{j=0}^{k}$$
, $y_{n+\nu}' = f(x_{n+\nu}, y_{n+\nu})$, $g_{n+\nu} = y_{n+\nu}'' = f'(x_{n+\nu}, y_{n+\nu})$, $l_{n+k} = y_{n+k}''' = f''(x_{n+k}, y_{n+k})$,
 $\{y_{n+j}'\}_{j=0}^{k} = \{f_{n+j}\}_{j=0}^{k} = \{f(x_{n+j}, y_{n+j})\}_{j=0}^{k}$, $g_{n+k} = y_{n+k}'' = f'(x_{n+k}, y_{n+k})$, $l_{n+k} = y_{n+k}''' = f''(x_{n+k}, y_{n+k})$,

The hybrid method in (5), is based on the formalism of the TDBDF in (4). Replacing f_{n+k} and g_{n+k} in (4) with $f_{n+\nu}$ and $g_{n+\nu}$ yields (5b) while the predicted values of $y_{n+\nu}$ in (5a) is used to obtain an approximation to the derivatives $f_{n+\nu}$ and $g_{n+\nu}$ at point $x_{n+\nu}$ in the right-hand side of (5b) to yield the corrected value of y_{n+k} . The y_{n+k} denotes an approximation of the theoretical solution $y(x_{n+k})$ at the output point $x = x_{n+k}$ with a constant step-size h. For simplicity with no loss of generality assume h > 0 and that the method (5) is used to find y(x) only when $x > x_0$. The scheme (5) is a subclass of the general linear method (GLM) in [5] which extension can be found in [2, 6, 19, 21]. Applying the scheme in (5) to the linear problem in (3) yields

$$\Pi_{k}(w, z) = w^{k} - \sum_{j=0}^{k-1} \alpha_{j} w^{j} - z \beta_{v}^{(1)} \left(\sum_{j=0}^{k} \Omega_{j} w^{j} + z \Phi_{k} w^{k} + z^{2} \varphi_{k} w^{k} \right) - z^{2} \beta_{v}^{(2)} \left(\sum_{j=0}^{k} \Omega_{j} w^{j} + z \Phi_{k} w^{k} + z^{2} \varphi_{k} w^{k} \right) - z^{3} \beta_{k}^{(3)} w^{k}, \quad v = k - \frac{1}{2}, \quad z = \lambda h, \quad w = e^{i\theta}, \quad \theta \in [0, 2\pi]$$

$$(6)$$

This is a polynomial of degree three in z which gives rise to three root locus curves which together, describe the stability domain of the hybrid method in (5). The corresponding stability characteristics are given in Table 3.

The error constants $C_{q+1}^{(1)}$, $C_{p+1}^{(2)}$ and the order q = p = k + 2, arising from the hybrid scheme (5) are obtain from the local truncation error operator

$$\begin{split} L_1[y(x); h] &= y(x_n + vh) - \sum_{j=0}^k \Omega_j y(x_n + jh) - h \Phi_k y'(x_n + kh) - h^2 \varphi_k y''(x_n + kh) \\ &= C_{q+1} h^{q+1} y^{(q+1)}(x_n) + 0 \left(h^{k+3} \right), \\ L_2[y(x); h] &= y(x_n + kh) - \sum_{j=0}^{k-1} \alpha_j y(x_n + jh) - h \beta_v^{(1)} y'(x_n + vh) - h^2 \beta_v^{(2)} y''(x_n + vh) - h^3 \beta_k^{(3)} y'''(x_n + kh) \\ &= C_{p+1} h^{k+2} y^{(k+2)}(x_n) + 0 \left(h^{k+3} \right). \end{split}$$

The paper is organized as follows. In section 2 is a systematic approach to constructing multi-derivative LMM. The way to do this follows for example the approach in [6, 15]. Section 3 gives the graphs of the stability region of the hybrid scheme in (5) with a varying step number and section 4 presents the results of our numerical experiments.

2.0 The Derivation of the Multi-Derivative Hybrid LMM (5)

Consider derivation of the hybrid predictor (5a) and the output scheme (5b). When for example k = 1 (p = q = 3)in (5a), expanding the resulting expression in Taylor series about x_n and equating the coefficients of the powers of h yields,

$$\begin{cases} h^{0}: -\Omega_{0} - \Omega_{1} + 1 = 0, & h: \quad v - \phi_{1} - \Omega_{1} = 0, \\ h^{2}: \frac{1}{2} \left(v^{2} - 2\phi_{1} - 2\Omega_{1} \right) = 0, & h^{3}: \frac{1}{6} \left(v^{3} - 3\phi_{1} - 6\phi_{1} - \Omega_{1} \right) = 0. \end{cases}$$
(7)

By this and with a choice of v,

$$\Omega_0 = 1 - 3v + 3v^2 - v^3, \quad \Omega_1 = 3v - 3v^2 + v^3, \quad \phi_1 = -2v + 3v^2 - v^3, \quad \phi_1 = \frac{v}{2} - v^2 + \frac{v^3}{2}.$$
(8)

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 169-178

Variable Order Multi-Derivative...

Substituting (8) into (5a) and setting $v = k - \frac{1}{2}$ gives

$$y_{n+\frac{1}{2}} = \frac{1}{8} \left(y_n + 7y_{n+1} \right) - \frac{3}{8} h f_{n+1} + \frac{1}{16} h^2 g_{n+1}, \qquad q = 3, \quad C_4^{(1)} = \frac{-1}{384}.$$
(9)

In a similar manner, the output scheme for k = 1 (p = 3)in (5b) is

$$y_{n+1} = y_n + hf_{n+\frac{1}{2}} + \frac{h^3}{24}l_{n+1}, \qquad p = 3, \qquad C_4^{(2)} = \frac{-1}{48}.$$
 (10)

In general, the discrete coefficients of the methods in (5) for step number $k \le 14$, are in Tables 1 and 2. The composite scheme (9) and (10) produces a stable method as can be verified in Fig. 3.

Table 1: The coefficients of the hybrid predictor (5a), p=k+2

K	1	2	3	4	5	6	7	8	9	10	11
$\beta_{k}^{(4)}$	1	3	5	35	63	231	429	6435	12155	46189	88179
$\beta_{k}^{(3)}$	16 -3	64 -21	128 -115	1024 -1715	2048 -5397		16384 -275847	262144 -1700127	524288 -29582839	2097152 -573713569	4194304 -584295049
α_0	8 1	64 -1	384 1	6144 -5	20480 7	81920 -7	1146880 33	7340032 -429	132120576 715	2642411520 -2431	2768240640 4199
α1	8 7	128 3	576 -5	8192 7	25600 -45	49152 77	401408 -91	8388608 495	21233664 -7293	104857600 13585	253755392 -51051
α2	8	16 105	256 15	1152 -35	16384 7	51200 -495	98304 1001	802816 -455	16777216 8415	42467328 -138567	209715200 95095
α3		128	64 1805	1024 35	512 -105	65 536 77	204800 -2145	131072 1001	3211264 -7735	67108864 53295	56623104 -969969
α4			2304	128 55685	2048 315	3072 -1155	131072 1001	81920 -32175	786432 17017	$6422528 \\ -146965$	134217728 159885
α ₅				73728	1024 300013	16384 693	24576 -3003	1048576 1001	655360 -109395	6291456 323323	7340032 -205751
α ₆					409600	2048 3505733	32768 3003	16384 -15015	2097152 17017	6553600 -692835	4194304 2263261
α ₇						4915200	8192 335572523	131072 6435	196608 -36465	8388608 46189	26214400 -2078505
α ₈							481689600	16384 1401794537	262144 109395	393216 -692835	16777216 323323
α,								2055208960	262144 222757759081	4194304 230945	2097152 -1616615
<i>α</i> ₁₀									332943851520	524288 4376973241927	8388608 969969
α ₁₁										6658877030400	2097152 49619129184677
											76735630540800

Continuation of Table 1								
Κ	12	13	14					
$\boldsymbol{\beta}_{\boldsymbol{k}}^{(4)}$	676039	1300075	5014575					
$\beta_{k}^{(3)}$	33554432 -13661878997	67108864 -69339054385	$268435456 \\ -210885500055$					
α_0	66437775360	345476431872	1074815565824					
	-29393	52003	-185725					
α1	2415919104	5670699008	26306674688					
	96577	-734825	1404081					
α2	507510784	4831838208	11341398016					
	-1174173	2414425	-2204475					
α3	838860800	2030043136	2147483648					
	2187185	-391391	21729825					
α4	339738624	67108864	4060086272					
	-22309287	54679625	-10567557					
α ₅	1073741824	2717908992	536870912					
	735471		10935925					
α ₆	14680064	2147483648	201326592					
	-4732273	6128925	-1003917915					
α7	50331648	58720256	8589934592					
	7436429	-16900975	165480975					
α8	52428800	100663296	822083584					
	-47805615	7436429	-152108775					
α9	268435456	33554432	536870912					
	7436429	-132793375	22309287					
<i>α</i> ₁₀	37748736	536870912	67108864					
	7436429	37182145	-717084225					
α ₁₁	33554432	150994944	2147483648					
	2028117	-16900975	10140585					
α ₁₂	4194304 1172798911730641	67108864 16900975	$\begin{array}{r} 33554432 \\ -152108775 \end{array}$					
	1841655132979200	33554432	536870912					
<i>α</i> ₁₃		15630801570008773	35102025					
		24899177397878784	67108864					
<i>α</i> ₁₄			2284668726871879 3688767021907968					

Table 2: The Coefficients of the Multi-derivative LMM (5b), p=k+2

k	1	2	3	4	5	6	7	8	9
Υk	1	5	3520	28982	2781980	533685720	662656620360	5533461018960	1068294918974040
	24	276	3821	3156475	365587289	80952008767	112742462210171	1035223276257953	216616761138439597
$\boldsymbol{\beta}_{n}^{(2)}$		1	268	56736	38665280	1378337280	14756253012480	146279430406144	32650312419680256
$\boldsymbol{\beta}_{n}^{(1)}$	- 1	23 22	3821 137	631295 561984	365587289 945468160	11564572681 9668208640	112742462210171 91507051274240	1035223276257953 4082025914925056	216616761138439597 830443336390508544
α_0	1	23 -1	11463 33	631295 9133	1096761867 4175971	11564572681 -53114041	112742462210171 42705586150	5176116381289765 -55135339493671	1083083805692197985 476104089662525
α1		23 24	3821 -367	3156475 90274	3290285601 -4638825	80952008767 1677137536	112742462210171 -479711835533	232925237158039425 2948978382664	3032634655938154358 -76716876404856042
α2		23	3821 4155	3156475 -499704	365587289 22898450	242856026301 -2793258285	112742462210171 7572137187818	1035223276257953 -16561165117994	37907933199226929475 2637677288170386
α3			3821	3156475 3575038	365587289 -757508830	80952008767 9182827520	338227386630513 -8404344884705	1035223276257953 522737862410792	216616761138439597 -9874428158400681
α4				3156475	3290285601 431031315	80952008767 -75693124945	112742462210171 20704452765010	9317009486321577 -145001616226040	216616761138439597 25969438719590337
α ₅					365587289	242856026301 99287549376	112742462210171 136155417204485	1035223276257953 7139363593261144	216616761138439597 -51852751583872185
α ₆						80952008767	338227386630513 143740453918138	$\frac{25880581906448825}{-4684166945440486}$	216616761138439597 2126308578136021506
α ₇							112742462210171	9317009486321577 1370888590667704	5415419028460989925 -928267113190173597
α ₈								1035223276257953	$\begin{array}{r} 1516317327969077179\\ 4167778216868225469\end{array}$
									3032634655938154358

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 169 – 178

			Communitie of Tuble2		
Χ	10	11	12	13	14
γ _k	27950352902581384800	63470603108380073760	691348269213490753972800	46162169127620846907647040	60115728126571166981131200
$S_{n}^{(2)}$	6075834388554584988829 88023454945996308480	14665920903687405880771 2454289600152858918912	168653982416502671589645833 2267589728260052075151360	11823355141255705641193051009 10745532414493501296042049536	16091687920580979655455123091 3030877143325097210847166464
$S_{n}^{(1)}$	552348580777689544439 411952062410809933824	14665920903687405880771 3130472408772561076224	$\frac{12973383262807897814588141}{64150186228792302193606656}$	59116775706278528205965255045 1422922070417683189417163882496	$\frac{16091687920580979655455123091}{161626194542763955618469380096}$
v	552348580777689544439	4313506148143354670815	90813682839655284702116987	2069087149719748487208783926575	241375318808714694831826846365
α_0	-662638463001283149	5765452993123809276	-9853584754820756860887	65803472843008800359232336	-885882220696145457549644
α1	6075834388554584988829 9132570530844687460	73329604518437029403855 -16947081576000039915	168653982416502671589645833 7545953448668123102425088	1477919392656963205149131376125 -43621349886157872484698939	25557386697393320629252254321 244385439556174238340329304
α_2	6075834388554584988829 -294305041208669194161	14665920903687405880771 116781216672121641376	8264045138408630907892645817 -1131656622086543439608568	59116775706278528205965255045 16702680153842737136561216608	402292198014524491386378077275 -81001688305407690900463293
- α ₃	30379171942772924944145 236093993110975533840	14665920903687405880771 -12544260339583217859867	168653982416502671589645833 5198703248319165439099520	$\frac{2896722009607647882092297497205}{-333981022337837401089045912}$	16091687920580979655455123091 8861578467512641452123611056
α4	6075834388554584988829 -662835831721633212510	366648022592185147019275 1509410463751992566952	168653982416502671589645833 -83762467278700025975533671	$\frac{11823355141255705641193051009}{1150690415229684899776718512}$	337925446332200572764557584911 -1550429798521884737248387596
α5	6075834388554584988829 1394430012011705083128	14665920903687405880771 -16949770682863540021962	843269912082513357948229165 40314282445626059977818624	11823355141255705641193051009 -370796878872202279165094116119	16091687920580979655455123091 4273415900822009206374397288
α ₆	6075834388554584988829 -2319704327886952366710	73329604518437029403855 5942412809451214777296	168653982416502671589645833 -75447439381239354998623824	1477919392656963205149131376125 29742965826861549504543732288	16091687920580979655455123091 -229507201627873962246618365201
α7	6075834388554584988829 16299046063264238011536	14665920903687405880771 -8471812126556714642586	168653982416502671589645833 113353233176559513139090176	59116775706278528205965255045 -2806457974569476155031003472	402292198014524491386378077275 15779383465886159384025405216
	30379171942772924944145	14665920903687405880771	168653982416502671589645833	3477457394486972247409720885	16091687920580979655455123091
α8	-4440041752172630373765	260321988108656757588492	-6927706427723598031127899605	12543204219497030359143857136	-1302747170664097278260456316
α9	6075834388554584988829 8658474158734163157060	366648022592185147019275 -12589844730432288779427	8264045138408630907892645817 772078026486603543208567296	$\begin{array}{r} 11823355141255705641193051009 \\ -29623259830930518177452724411 \end{array}$	946569877681234097379713123 698666954923529978721420709624
α ₁₀	6075834388554584988829	14665920903687405880771 108268061437941110052336	843269912082513357948229165 -167834135117494066372865912	25188887040066503322541717367 1708026532571854813576250829408	434475573855686450697288323457 - 1807014 2 68711 05294584618089473
		73329604518437029403855	168653982416502671589645833	1477919392656963205149131376125	112641815444066857588185861637
α ₁₁			257775501191113033686122112	-1105587010456922765003488984	576408641000229729423520060272
α ₁₂			168653982416502671589645833	969127470594729970589594345 93459744216689183413568681232	402292198014524491386378077275 -62535344707147961319432150844
α ₁₃				59116775706278528205965255045	48275063761742938966365369273 26292817369524410435272538136
					16091687920580979655455123091

Continuation of Table2

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 169 – 178

3.0 The Stability of the Multi-Derivative Hybrid LMM (5)

The stability of the hybrid algorithms in (5) are of consideration here. Consider for example, a case when k = 1, (p = q = 3) in (5) and substituting the coefficients of the methods in (5a) and (5b) from Tables 1 and 2 respectively into (6) gives,

$$\pi_1(w,z) = w - 1 - z \left(\frac{1}{8} + \frac{7w}{8} - \frac{3wz}{8} + \frac{wz^2}{8}\right) - \frac{wz^3}{24}$$
(11)

Now, for k = 2, (p = q = 4), we have

$$\pi_{2}(w,z) = w^{2} - \frac{24w}{23} + \frac{1}{23} - \frac{22}{23}z \left(-\frac{1}{128} + \frac{3w}{16} + \frac{105w^{2}}{128} - \frac{21w^{2}z}{64} + \frac{3w^{2}z^{2}}{64} \right) - \frac{1}{23}z^{2} \left(-\frac{1}{128} + \frac{3w}{16} + \frac{105w^{2}}{128} - \frac{21w^{2}z}{64} + \frac{3w^{2}z^{2}}{64} \right) - \frac{5w^{2}z^{3}}{276}.$$
(12)

In a similar manner we obtain the stability polynomial of (5) for step number k = 3(1)14. The computing power available have been constrained by machine limitation to stop investigation of the methods at k = 14, However, it is conjectured the existence of stable methods with step number $k \ge 15$. The Fig. 3presents the computed stability region (exterior of the closed curve) of the methods in (5). The boundary locus of $\pi_k(w, z) = 0$ shows that the method in (5) is $A(86^0)$ – stable for $k = 1, A(90^0)$ – stable for k = 2(1)5 and $A(\alpha)$ – stable for k = 6(1)14. Table 3 gives the stability characteristics of the TDLMM (2), TDBDF (4) and the multi-derivative hybrid LMM in (5).

Fig. 3: The stability region (exterior of the closed curve) of the multi-derivative hybrid LMM (5).

k	1	2	3	4	5	6	7	8		9	
	TDMM(2)[26]										
р	4	5	6	7	8	-	-		-	-	
$C_{p+1}^{(k)}$	-1	$\frac{-1}{1000}$	-11	-89	-5849	-	-		-	-	
α	480 90 ⁰	90 ⁰	90 ⁰	846720 89.86 ⁰	89 1 ⁰	_	-		-	_	
	,,,	20	,,,	07100	0,11	TDBDF(4)[24]					
p	3	4	5	6	7	8	9		10	11	
$C^{(k)}$	-1	-2	-9	-288	-4500	-1000	-3430)0	-2195200	-133358400	
• p+1	24	225	2875	204575	6123971	2356067	129973	303	12648444479	1117849207079	
α	87^{0}	90 ⁰	90^{0}	90^{0}	87.5°	88 ⁰	86^{0}		83 ⁰	79 ⁰	
	MDLMM(5)										
q	3	4	5	6	7	8	9		10	11	
p (b)	3	4	5	6	7	8	9)	10	11	
$C_{q+1}^{(\kappa)}$	-1	-1	-1	-1	-5	-11	-143		=15	-221	
	384	1280	3072	6144	32768	196608	39321	60	524288	12582912	
$C^{(k)}$	-1	-33	-9133	-4175971	-53114041	-21352793075	-55135339	493671	-95220817932505	-220879487667094383	
<i>p</i> +1	48	7360	5502240	5302878000	122837329104	81599624837136	32469829116	5292480 8	19896834796298776	5 <u>2668718497225575835040</u>	
α	86^{0}	90 ⁰	90 ⁰	90^{0}	90^{0}	90^{0}	89 ⁰	86 ⁰		86^{0}	
k	10			11		12	13			14	
					Ν	ADLMM(5)					
q		12		13		14	1	5		16	
р		12		13		14		15		16	
$C^{(k)}$	-323 -323		_	-7429 -		-37145		-19665			
<i>q</i> +1		25165824	1	3355443	2	1006632960		6442450944		4294967296	
$C^{(k)}$	-211	88039749729	99990893	-9853584754820756860887		-2741811368458700014968014 -68655872		655872103951272	96009741 -9	990795223332818617781741389	
$lpha^{c_{p+1}}$	$ \begin{array}{c} c_{p+1} \\ \alpha \\ \end{array} \begin{array}{c} 3475377270253222613610188 \\ 84^0 \end{array} $			213535808357688629624025760 77 ⁰		673756199950871557328 4 ⁰	7561999508715573288854015 243422017614088 70 ⁰		8680461950 4376 54 ⁰	69391143980264662837934807520	

Table 3: Stability characteristics and error constants of the TDMM (2), TDBDF (4) and MHLMM (5)

The α in Table 3 implies the angle of absolute stability of the method.

- Although, the error constants of the MDLMM (5) are larger in size than that of the TDLMM (2), and the TDBDF (4), but the MDLMM presents more A(α)-stable methods of higher order than the TDLMM (2), and TDBDF (4),
- Again, the MDLMM (5) have more A-stable methods than the TDLMM and TDBDF methods. These serves as an advantage over the TDLMM [26] and TDBDF [24] methods in variable order implementation, see Table 3.

Variable Order Multi-Derivative...

4.0 Implementation of the Methods (5): Numerical Experiment and Conclusion

Consider the application of the hybrid LMM (5) on some stiff problems. The results obtained are compared with methods of TDLMM (2) and TDBDF (4) with same order. Thus are the methods (i). TDLMM (2)[26],

$$y_{n+1} = y_n + \frac{h}{4} (f_n + 3f_{n+1}) - \frac{h^2}{4} g_{n+1} + \frac{h^3}{24} l_{n+1}, \quad p = 4.$$

(ii). TDBDF (4)[24],

$$y_{n+2} = \frac{1}{15} \left(-y_n + 16y_{n+1} \right) + \frac{14}{15} h f_{n+2} - \frac{2}{5} h^2 g_{n+2} + \frac{4}{45} h^3 l_{n+2}, \quad p = 4,$$

(iii). MDLMM (5),

$$\begin{cases} y_{n+\frac{3}{2}} = \frac{1}{128} \left(-y_n + 24y_{n+1} + 105y_{n+2} \right) - \frac{21}{64} h f_{n+2} + \frac{3}{64} h^2 g_{n+2}, \quad q = 4, \\ y_{n+2} = \frac{1}{23} \left(-y_n + 24y_{n+1} \right) + \frac{22}{23} h f_{n+\frac{3}{2}} + \frac{1}{23} h^2 g_{n+\frac{3}{2}} + \frac{5}{276} h^3 l_{n+2}, \quad p = 4, \end{cases}$$

for a fixed step size implementation. The following stiff systems of initial value problems have been solved: Problem 1: [21]

 $\begin{cases} y_1' = -8y_1 + 7y_2, \\ y_2' = 42y_1 - 43y_2, \end{cases} y(0) = \begin{pmatrix} 1 \\ 8 \end{pmatrix}, x \in [0, 1], \begin{cases} y_1(x) = 2e^{-x} - e^{-50x}, \\ y_2(x) = 2e^{-x} + 6e^{-50x}. \end{cases}$ Problem 2: [11]

 $y' = \xi(y - \sin(x)) + \cos(x), \quad y(0) = 0, \quad y(x) = \sin(x), \quad x \in [0, 1.56], \quad \xi = -10^4$

Problem 3: [15]

$$\begin{cases} y_1' = -0.1y_1 + 199.9y_2, \\ y_2' = -200y_2, \end{cases} \quad y(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, x \in [0, 1], \quad \begin{cases} y_1(x) = e^{-0.1x} + e^{-200x}, \\ y_2(x) = e^{-200x}, \end{cases}$$

If $\beta_k^{(3)} \neq 0$ in (5b) and the algorithm is applied on the initial value problem (IVPs (1)), the arising systems of nonlinear algebraic equations are resolved by the Newton-Raphson iterative scheme,

$$y_{n+k}^{[s+1]} - y_{n+k}^{[s]} = -\left(F'\left(y_{n+k}^{[s]}\right)\right)^{-1}F\left(y_{n+k}^{[s]}\right),$$

with $F'(y_{n+k}^{[s]})^{-1}$ as the Jacobian matrix form,

$$\begin{cases} F(y_{n+k}^{[s]}) = y_{n+k}^{[s]} - \sum_{j=0}^{k-1} \alpha_j y_{n+j} - h\beta_v^{(1)} f(x_{n+v}^{[s]}, y_{n+v}^{[s]}) - h^2 \beta_v^{(2)} g(x_{n+v}^{[s]}, y_{n+v}^{[s]}) - h^3 \beta_k^{(3)} l(x_{n+k}^{[s]}, y_{n+k}^{[s]}) = 0, \ v = k - \frac{1}{2}, \quad (13 a) \\ y_{n+v}^{[s]} = \Omega_k y_{n+k}^{[s]} + \sum_{j=0}^{k-1} \Omega_j y_{n+j} + h \Phi_k f(x_{n+k}^{[s]}, y_{n+k}^{[s]}) + h^2 \varphi_k g(x_{n+k}^{[s]}, y_{n+k}^{[s]}). \end{cases}$$

$$(13 b)$$

The starter for the iterative scheme (13a) is the order p = 3 explicit third derivative Runge-Kutta methods in [5]. For stiff problems (1), h is constrained to be chosen small, for the sequence in (13a) will to converge. The step size h = 0.0001 has been adopted. The maximum absolute errors $E = \max \left\{ {}^{1}y(x_{n}) - {}^{1}y_{n} \right|, {}^{2}y(x_{n}) - {}^{2}y_{n} \right\}$ generated by the various methods at the end point of the interval are in Table 4. Find that the same order methods produced results of the same accuracy on problems 1-3.

Problem	<i>x</i> _{<i>n</i>}	TDLMM (2)	TDBDF (4)	MDLMM (5)
1	1.0	1.2643(-05)	4.6528(-05)	4.6528(-05)
2	1.56	1.0887(-06)	1.0815(-06)	1.0815(-06)
3	1.0	2.2787(-06)	8.6099(-06)	8.6099(- 06)

Table 4: AbsoluteErrors:
$$E = ||y(x_n) - y_n||_{\infty}, \quad p = 3$$

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 169 – 178

Variable Order Multi-Derivative... Okuonghae, Ezeimo and Ikhile Trans. of NAMP

The numerical results in Table 4 of theMDLMM (5) compares with the TDBDF methods in (4) and TDMM in (2) when applied to the stiff problems 1-3. Conclusively, this paper considered a hybrid TDBDFfor the direct solution of stiff IVPs in ODEs (1). The stability of the MDLMM (5) shows that the methods are stable for $k \le 14$. The encouraging numerical results of Table 4 show that the MDLMM (5) is suitable for stiff ODEs (1). The methods on the problems 1-3 are of comparable performance with similar methods from [24] and [26] in (4) and (2) respectively.

5.0 References

- [1] I. Alolyan and T. E. Simos: Hybrid Multistep Multi-Derivative Methods for Schrodinger Equations and Related Problems. The 3rd International Conference on Advanced Communication and Computation (2013).
- [2] A. Abdi and G. Hojjati: An Extension of General Linear Methods. Numer. Algorithm. 57(2), (2011) 149–167.
- [3] R. L. Brown:Some Characteristics of Implicit Multi-derivative Integration Formulas. SIAM Journal of Numerical Analysis. Vol. 14, issue 6, (1977), pp. 982-993.
- [4] K. Burrage:Parallel and Sequential Methods for Ordinary Differential Equations, Oxford: Clarendon Press, 1993.
- [5] J.C. Butcher:Numerical Methods for Ordinary Differential Equations, 2nd Edn. John Wiley & sons.Chichester(2008).
- [6] J.C. Butcher and G. Hojjati:Second Derivative Methods with RK Stability. Numer. Algorithms 40: (2005) 415–429.
- [7] G.Dahlquist: A Special Stability Problem for Linear Multistep Methods. BIT 3, (1963), 27–43.
- [8] W. H. Enright: Second Derivative Multistep Methods for Stiff ODEs. SIAM. J. (1974), pp.321-331.
- [9] C.W. Gear:Numerical Initial Value Problems in Ordinary Differential Equations, Englewood Cliffs, NJ: Prentice-Hall, 1971.
- [10] E. Hairer, and G. Wanner: Multistep-Multistage-Multi-derivative methods.Computing 11, (1973), pp. 287-303.
- [11] E. Hairer, and G. Wanner:Solving Ordinary Differential Equations I. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, (1996).
- [12] G. Ismail and I. Ibrahim:New Efficient Second Derivative Multistep Methods for Stiff Systems. Appl. Math. Model. 23, (1999), pp.276-288.
- [13] R.Jeltch and L. Kratz:On the Stability Properties of Brown's Multistep Multi-derivative Methods. Numerische Mathematik. Vol. 30, Issue 1, (1978), pp. 25-38.
- [14] R.Jeltch: A₀-Stability and Stiff Stability of Multistep Multi-derivative Methods. Numerische Mathematik. Vol. 32, Issue 2, (1979), pp. 167-181.
- [15] J. D. Lambert :Computational Methods for Ordinary Differential Systems. The Initial Value Problems, Chichester. Wiley, 1973.
- [16] N. Obreshkov: Neue Quadraturformeln. Abh. Der PeruB. Akad. Der Wiss., Math. Naturwiss. Klasse, 4, (1940).
- [17] R. I. Okuonghae, Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs. Dept. of Maths; University of Benin; Benin City. Nigeria. Ph. D Thesis. (2008).
- [18] R.I. Okuonghae, S. O. Ogunleye and M.N.O. Ikhile: Some Explicit General Linear Methods for IVPs in ODEs. J. of Algorithms and Comp. Tech. Vol. 7, No. 1 (2013), 41-63.
- [19] R.I. Okuonghae: Variable Order Explicit Second Derivative General Linear Methods. Comp. Applied Maths, 33, (2014),243-255. http://www.springerlink.com.
- [20] R.I. Okuonghae and M.N.O. Ikhile:On the Construction of High Order A(a)-Stable Hybrid Linear Multistep Methods for Stiff IVPs and ODEs. J. Numerical Analysis and Applications. No. 3, Vol. 15, (2012), pp. 231-241. http://www.springerlink.com.
- [21] R.I. Okuonghae and M.N.O. Ikhile: Second Derivative General Linear Methods. Numerical Algorithms, 67, (2014), 637-654.http://www.springerlink.com.
- [22] R.I. Okuonghae and M.N.O. Ikhile: A Class of Hybrid Linear Multistep Methods With A(a)-Stability Properties for Stiff IVPs in ODEs. J. Numerical. Maths. Vol. 21, No.2, (2013), pp. 157-172.
- [23] R. I. Okuonghae: A-Stable High Order Hybrid Linear Multistep Methods for Stiff Problems. Journal of Algorithms and Comp. Tech. Vol. 8. No. 4, (2014), pp. 349-377.
- [24] R. I. Okuonghae and V. Akhiemin: A Note on High Order $A(\alpha)$ -Stable Third Derivative Backward Differentiation Formulas for Stiff Systems. J. Nig. Associ. Maths Physics; Vol. 28, No. 2, (2014), pp. 101-106.
- [25] O. Widlund: A Note on Unconditionally Stable Linear Multistep Methods. BIT, 7,(1967), pp. 65-78.
- [26] A. K. Ezzeddine and G. Hojjati: Third Derivative Multistep Methods for Stiff systems. International J. Non-linear Science; Vol.14, No.4, (2012), pp.443-450⁻

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 169 – 178