
 

127 

 

Transactions of the Nigerian Association of Mathematical Physics 

Volume 1, (November, 2015), pp 127 – 132 

© Trans. of NAMP 
 

A Combined Scheme for Overflow Detection And Reverse Conversion for the  

Moduli Set {𝟐𝟐𝒏 − 𝟏,  𝟐𝟐𝒏,𝟐𝟐𝒏 + 𝟏} 
 

1M. I. Daabo, 2K. A. Gbolagade and 3P.A. Agbedemnab 
 

1,3Department of Computer Science, Faculty of Mathematical Sciences, University for 

Development Studies Navrongo, Ghana. 
2Department of Computer , Library and Information Science, College of Information and 

Communication Technology, Kwara State University, Nigeria. 

 

Abstract 
 

In this paper, we proposed an overflow detector and a reverse 

converterfor the sum of operands for the moduli set {𝟐𝟐𝒏 − 𝟏, 𝟐𝟐𝒏,  𝟐𝟐𝒏 + 𝟏}. 
The numbers in the legitimate range[𝟎,𝑴 − 𝟏]   are distributed in to groups. 

The group numbers of operands are used to detect overflow. The proposed 

scheme utilizes the Remainder Theorem and the group numbers to perform 

reverse conversion. The new scheme has a larger dynamic range of 6n bits 

compared with similar schemes. As a result, the proposal has improved delay 

at the expense of area cost when compared with other similar existing 

schemes. 
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1.0     Introduction 
In digital computing, carry propagation is a serious speed limiter. Unfortunately, this phenomenon grossly dominates the 

weighted number system (WNS) arithmetic. To enhance system performance, Residue Number System (RNS), which is 

without carry propagation is considered as an alternative candidate to the WNS and has been widely used in addition and 

multiplication dominated digital signal processing applications [3, 8, 15, 16]. In addition, RNS has proved to be one of the 

most popular techniques for reducing power dissipation and computation load in Very Large Scale Integrated Circuits (VLSI) 

[20]. Hence the advantages of RNS over the WNS include parallelism, fault tolerance, low power dissipation and high speed 

computations and are well documented in [6, 13, 14, 20]. It is interesting however to know that, RNS has not found 

widespread usage in general purpose computing due to the difficulties in performing sign detection, magnitude comparison, 

overflow detection, moduli selection and data conversions [13,  18, 21].  

Residue-to-binary conversion and vice versa are required in almost all applications employing residue arithmetic [2]. 

Traditionally, most of the existing reverse converters are built on principles based on either the Chinese Remainder Theorem 

(CRT) [10, 11] or the Mixed Radix Conversion (MRC) [7, 9, 10, 16]. However, converters built on the CRT approach 

involve the large modulo-M operations thus making computations generally slow. In the case of MRC, the computations are 

done in sequential manner to obtain the Mixed Radix Digits (MRDs). This also involves series of arithmetic operations and 

can cause delay.  

In this paper, we proposed a technique that can perform reverse conversion and also detect overflow in the moduli set {22𝑛 −
1, 22𝑛,  22𝑛 + 1}. This moduli set is an extension of the traditional moduli set proposed in [15] to detect overflow using the 

group numbers approach. The new method utilizes the group numbers idea and the principles of the Remainder Theorem 

(RT) to perform reverse conversion. The method detects overflow in the moduli set for the sum of operands by distributing 

the numbers in the system dynamic range into groups. The group numbers of operands are then used to establish the overflow 

conditions. Theoretically, the proposed scheme has improved delay with moderate increase in area cost. 

The rest of the article is organized as follows: Section 2 presents the proposed algorithms. The reverse conversion is 

described in Section 3. In Section 4, the hardware implementation of the architecture is described. The proposed scheme is 

compared with other existing schemes in terms of performance in Section 5, while the paper is concluded in Section 6. 
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2.0 Proposed Algorithms 
Algorithm I: Overflow Detection Scheme 

The algorithms below can be used to detect overflow and perform reverse conversion in an RNS system. Given an RNS 

number (x1, x2, x3) with respect to the moduli set {22𝑛 − 1,  22𝑛, 22𝑛 + 1}, then we can compute the group number of the 

corresponding integer X as follows; 

Compute ω = |𝒙𝟏 − 𝒙𝟑|𝟐𝟐𝒏−𝟏; 

Compute ώ by giving the value of ω 1 bit right rotation; 

Compute β = |𝒙𝟐 − 𝒙𝟑|𝟐𝟐𝒏; 

Compute α = |ώ − 𝛃|𝟐𝟐𝒏−𝟏; 

The group number g(X), of any integer X, with residues (x1, x2, x3) is  given as g(X) = α + 1; 

Given two integers, X and Y the sum (X + Y) will be in the overflow region if the sum of their group numbers is greater than 

22𝑛 that is g(X) + g(Y)> 22𝑛. Overflow will not occur in the sum of  X andY if g(X) + g(Y) < 22𝑛. 

If g(X) + g(Y) = 22𝑛, then we further determine g(Z) and compare the results with 22𝑛−1. 22𝑛−1is 1bit right rotation of 22𝑛. 

In this circumstance, if g(Z) > 22𝑛−1 then there is no overflow otherwise overflow has occurred.Z =|X + Y|𝑀. 

Algorithm II: Residue to Binary Converter 

Compute the floor of the number X as λ = 𝜷 + α(𝟐𝟐𝒏) 
Compute the decimal number X as X = λ(2n+1) + 𝒙𝟑 

Fig.1below shows the schematic diagram of the proposed scheme. From Fig.1, the number of groups required for the 

distribution is γ and is given by the expression  

 γ = ||𝑥1 − 𝑥3|22𝑛−1 − |𝑥2 − 𝑥3|22𝑛|22𝑛= 22𝑛 − 1      (1)  

Equation (2) below can be used to compute the length of any group L, that will make the distribution. 

     L = 
(22𝑛−1)(22𝑛)(22𝑛+1)

(22𝑛−1)
 = (22𝑛)(22𝑛 + 1)       (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In any of these groups there are 22𝑛 sub groups of β and β takes values in the range below. 

β = |𝑥2 − 𝑥3|22𝑛    0 ≤ β ≤ 22𝑛 − 1        (3) 

Examples of values of β for numbers in the first group with range [0,24𝑛+22𝑛) are shown as follows:  

β =|𝑥2 − 𝑥3|22𝑛=

{
 
 

 
 

0 ≤ 𝑋 < 22𝑛 + 1                           β = 0

22𝑛 + 1 ≤ 𝑋 < 2(22𝑛 + 1)         β = 1

                            ⋮                                                                 
(22𝑛 − 1)( 22𝑛 + 1) ≤ 𝑋 < 22𝑛(22𝑛 + 1)   β = 22𝑛 − 1

   

   (4) 

To determine the group number of any residue number, first we get the value of ω. For clarity, this is exhibited in the range 

[0,24𝑛+22𝑛) as follows: 
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ω = |𝑥1 − 𝑥3|22𝑛−1 =

{
 
 
 
 
 

 
 
 
 
 

0 ≤ 𝑋 < 22𝑛 + 1                           𝜔 = 0
22𝑛 + 1 ≤ 𝑋 < 2(22𝑛 + 1)                       𝜔 = 2

2(22𝑛 + 1) ≤ 𝑋 <  3(22𝑛 + 1)                       𝜔 = 4
                ⋮                                             

(22𝑛−1 − 1)(22𝑛 + 1) ≤ 𝑋 < 22𝑛−1(22𝑛 + 1)  𝜔 = 2𝑛 − 2

22𝑛−1(22𝑛 + 1) ≤ 𝑋 < (22𝑛−1 + 1)(22𝑛 + 1)    𝜔 = 1
            ⋮                                         

(22𝑛 − 2)(22𝑛 + 1) ≤ 𝑋 < (22𝑛 − 1)(22𝑛 + 1) 𝜔 = 2𝑛 − 3

(22𝑛 − 1)(22𝑛 + 1) ≤ 𝑋 < 22𝑛(22𝑛 + 1)                𝜔 = 0
                                                                                               

  (5) 

From Equation (5), the values of ω can be obtained as follows:  

Even values of 𝜔:0, 2, 4, …,22𝑛-2 

Odd values of 𝜔:1, 3, …,22𝑛-3 

The obtained values of 𝜔 are then given 1 bit right rotate to perform modular subtraction and that gives ώ = 0,1,2,…,22𝑛-3, 

22𝑛-2.With the values of β and ώ known, the group number of any residue number in RNS is defined as:    

 α = |ώ − 𝛽|2𝑛−10≤ α ≤ 22𝑛 − 2        (6) 

For purposes of implementation of the proposed algorithm, we simply add one (1) to the obtained group number in (6). In 

this case, if X is an integer, with residues (x1, x2, x3), then its group number g(X) is given by : 

g(X)= α+1,    1≤ g (X) ≤ 22𝑛 – 1.                            (7) 

Table 1 below shows the distribution of the numbers in dynamic range [0, 26𝑛-22𝑛) which is given as a product of the 

elements in the moduli set {22𝑛-1, 22𝑛, 22𝑛+1}. 

 

Table I: Distribution of Numbers in Dynamic Range 

Number Group 

0 ⟶ 22𝑛(22𝑛 + 1) -1 

22𝑛(22𝑛 + 1)  ⟶ 2[22𝑛(22𝑛 + 1)] -1 

⋮ 
(22𝑛-2)22𝑛(22𝑛 + 1)]  ⟶ (22𝑛-

1) [22𝑛(22𝑛 + 1)] -1 

1 

2 

 

γ 

Theorem 1:Let X and Y represent any two operands in the process of addition, Z=X + Y and g(X) and g(Y) are the group 

numbers of the operands respectively, then the following hold true: 

i. If g(X) + g(Y) <22𝑛, no overflow will occur. 

ii. If g(X) + g(Y) >22𝑛, overflow must occur. 

iii. If g(X) + g(Y) = 22𝑛, overflow may or may not occur. So, it requires further investigations and this will be 

described later. 

Proof: In case iii, the range of the sum, X + Y in binary system from Table1is given by 

(22𝑛-2) [22𝑛(22𝑛+1)] ≤ Z ≤ 22𝑛[22𝑛(22𝑛+1)] – 2            (8) 

Since, M is exactly located in the middle of the obtained range, (8) can be written as 

(22𝑛-2)[22𝑛(22𝑛+1)] ≤ M ≤ 22𝑛[22𝑛(22𝑛+1)] – 2            (9)                                                                    

In order to proof g(X) + g(Y) = 22𝑛, we replace the values of (22𝑛-2) and 22𝑛in terms of g(X)+g(Y). Therefore, the final 

form of (9) is 

((g(X) -1) + (g(Y)-1)) 22𝑛(22𝑛+1)< (22𝑛-1) [22𝑛(22𝑛+1)]< (g(X) + g(Y)) [22𝑛(22𝑛+1)](10)                                                                                                        

From (10), the term 22𝑛(22𝑛+1) is common in all the sides of the inequality, thus it can be eliminated as follows: 

g(X) + g(Y) -2 <22𝑛-1 < g(X) + g(Y)            (11)                                                                                          

After adding one to each term in (11), the resulting inequality can be defined as 

g(X) + g(Y) - 1<22𝑛 <g(X) + g(Y) +1                 (12) 

Finally (12) can be divided into two parts, that is  

{

g(X) +  g(Y) < 22𝑛 + 1 

                         ⟹   g(X) +  g(Y) =

g(X) +  g(Y) > 22𝑛 − 1

22𝑛       (13) 

We can be detect by comparing the sum of the groups of operands with  22𝑛 . If the sum of groups of operands 

exceeds22𝑛, overflow must occur otherwise no overflow will occur. Overflow possibility should be further investigated in the 

third mode. In this case, g(X) + g(Y) = 22𝑛 is given 1-bit right rotate as 22𝑛/2 = 22𝑛−1. The results is subsequently compared 

with the group number of sum of operands g(Z). In this case, if g(Z) >22𝑛−1  then overflow has not occurred otherwise there 

is overflow. 
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3.0 Reverse Conversion 
Theorem 2: Remainder Theorem states that  if a polynomial f(x) is divided by the factor  (x-b), then the remainder is the 

value of f(x), at x = b. i.e., f(b) is the remainder.  

Proof: Let f(x) be a polynomial divided by (x-b). Let q(x) be the quotient and R be the remainder. By division algorithm, 

Dividend =(Divisor)(quotient)+ Remainder  

i.e. f(x) = q(x)(x-b)+R   (14) 

Substitute x = b in  

implies f(b) = q(b)(b-b)+R 

f(b)=R. 

Hence the remainder, R=f(b) 

Proposition1. If X is a decimal number representing the RNS number (𝑥1, 𝑥2, 𝑥3) with respect to the moduli set {22𝑛 −
1,  22𝑛, 22𝑛 + 1}, then X = λ(22n − 1)+ 𝑥3, where λ is the floor of X defined by λ = 𝛽 + α(22𝑛). 𝛽 is a subgroup number and 

α is the group number of x. 

Proof: It can be proved by mere substitution of X for f(x), (22n + 1) for q(x) and λ for (x-b) in Equation (14). Hence X = 

λ(22n + 1) + 𝑥3  (15) 

 

4.0 Hardware Implementation  
To successively implement the proposed scheme, the following Lemmas are used. 

Lemma 1: Modulo 2s of a number is equivalent to s Least Significant Bit LSBs of the number [10]. 

Lemma 2: Modulo (2s −  1) of a negative number is equivalent to the one’s complement of the number, which is obtained 

by subtracting the number from (2s −  1) [10].  

Lemma 3: Modulo (2s −  1) multiplication of a residue number by 2t, where s and t are positive integers, is equivalent to t 
bit circular left shifting [10]. 

Let 𝑋 = 𝑧1 + 𝑧2 + 𝑧3         (16) 

where 

𝑧1 = 2
2𝑛λ,𝑧2 = 𝜆  and𝑧3 = 𝑥3        (17) 

But𝜆 = 𝛽 + 22𝑛𝛼,         (18) 

𝛽 = |𝑥2 − 𝑥3|22𝑛, 𝛼 = |𝜔́ − 𝛽|22𝑛−1;                        (19) 

Where 𝜔́ is a one-bit right rotate of 𝜔 = |𝑥1 − 𝑥3|22𝑛−1 

The binary representation of equation (16) – (19) is 

𝛽 = |𝑥2,2𝑛−1𝑥2,2𝑛−2…𝑥2,1𝑥2,0⏞              
2𝑛−𝑏𝑖𝑡𝑠

+ 𝑥̅3,2𝑛−1𝑥̅3,2𝑛−2… 𝑥̅3,1𝑥̅3,0⏟              
2𝑛−𝑏𝑖𝑡𝑠

|

22𝑛

  = 𝛽2𝑛−1𝛽2𝑛−2…𝛽1𝛽0 (20) 

𝜔 = |𝑥1,2𝑛𝑥1,2𝑛…𝑥1,1𝑥1,0⏞            
2𝑛−𝑏𝑖𝑡𝑠

+ 𝑥̅3,2𝑛−1𝑥̅3,2𝑛−2… 𝑥̅3,1𝑥̅3,0⏟              
2𝑛−𝑏𝑖𝑡𝑠

|

22𝑛−1

  = 𝜔2𝑛−1𝜔2𝑛−2…𝜔1𝜔0 (21) 

𝜔́is a  one-bit right rotate of 𝜔 modulo 22𝑛 − 1 which gives; 

𝜔́ = |𝜔2𝑛−2𝜔2𝑛−3…𝜔0𝜔2𝑛−1|22𝑛−1       (22) 

= 𝜔́2𝑛−1𝜔́2𝑛−2…𝜔́1𝜔́0 

Therefore, 

𝛼 = |𝜔́2𝑛−1𝜔́2𝑛−2… 𝜔́1𝜔́0⏞            
2𝑛−𝑏𝑖𝑡𝑠

+ 𝛽̅2𝑛−1𝛽̅2𝑛−2… 𝛽̅1𝛽̅0⏟            
2𝑛−𝑏𝑖𝑡𝑠

|

22𝑛−1

  = 𝛼2𝑛−1𝛼2𝑛−2…𝛼1𝛼0 (23) 

 

For (18), since 𝛽 is an2n-bit number, it will concatenate with 22𝑛𝛼 which implies no hardware needed to implement: that is 

𝜆 = 𝛽 + 22𝑛𝛼 

= 𝛼𝑛−1𝛼𝑛−2…𝛼1𝛼0⏟          
2𝑛−𝑏𝑖𝑡𝑠

00…0⏞    
2𝑛−𝑏𝑖𝑡𝑠

⋈ 𝛽𝑛−1𝛽𝑛−2…𝛽1𝛽0⏟          
2𝑛−𝑏𝑖𝑡𝑠

 

= 𝛼𝑛−1𝛼𝑛−2…𝛼1𝛼0⏟          
2𝑛−𝑏𝑖𝑡𝑠

𝛽𝑛−1𝛽𝑛−2…𝛽1𝛽0⏟          
2𝑛−𝑏𝑖𝑡𝑠⏟                      

4𝑛−𝑏𝑖𝑡𝑠

        (24) 

For Equation (17),  

 𝑧1 = 2
2𝑛λ, Implies, 

 𝑧1 = 𝜆4𝑛−1𝜆4𝑛−2…𝜆1𝛼0⏟            
4𝑛−𝑏𝑖𝑡𝑠

00…0⏟  
2𝑛−𝑏𝑖𝑡𝑠⏟                

6𝑛−𝑏𝑖𝑡𝑠

       (25) 
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𝑧2 = 𝜆4𝑛−1𝜆4𝑛−2…𝜆1𝛼0⏟            
4𝑛−𝑏𝑖𝑡𝑠

 `    (26) 

𝑧3 = 𝑥3, Implies, 

𝑧3 = 𝑧3,2𝑛−1𝑧3,2𝑛−2…𝑧3,1𝑧3,0⏟              
2𝑛−𝑏𝑖𝑡𝑠

 (27) 

Now, for Equation (16), 

𝑋 = 𝑧1,3𝑛−1𝑧1,3𝑛−2…𝑧1,1𝑧1,0⏟              
6𝑛−𝑏𝑖𝑡𝑠

+ 𝑧2,2𝑛−1𝑧2,2𝑛−2…𝑧2,1𝑧2,0⏟              +

4𝑛−𝑏𝑖𝑡𝑠

𝑧3,𝑛−1𝑧3,𝑛−2…𝑧3,1𝑧3,0⏟              
2𝑛−𝑏𝑖𝑡𝑠⏟                                                

6𝑛+1−𝑏𝑖𝑡𝑠

           (28) 

 

The architecture of the scheme is based on equations (20) – (28)and described in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0 Performance Analysis 
Table II: Comparison of Area and Delay  

Design Area Delay 

 [4] 37n + 18   16n + log n + 13   

 [15] 76n + (33/2)n +log2 n 6log2 n + 23 

Our Proposal 20n + 2 14𝑛 +  2 

From Table II, our proposed scheme is compared with the schemes proposed in [4] and[15] in terms of area and delay. As 

can be seen in Table II, our proposal is faster thanthe previously proposed schemes with a moderate increase in hardware 

cost. In addition, our scheme detects overflow and performs reverse conversion which is a unique feature that makes it 

different from other existing schemes.Also, the proposed scheme has a dynamic range of 6n bits which is better than 3n bits 

dynamic range proposed in [4] and [15]. 

 

6.0 Conclusion 
In this paper, we extended the dynamic range of the proposal suggested in [15] from 3n bits to 6n bits and then proposed an 

overflow detector and a reverse converter for the moduli set {22𝑛 − 1, 22𝑛 ,  22𝑛 + 1} for the sum of operands. As in [15], the  
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numbers in the legitimate range [0,𝑀 − 1] are distributed in to groups. The group numbers of operands are then used to 

detect overflow. The proposed scheme also utilizes the Remainder Theorem and the group numbers of operands to perform 

reverse conversion. Increased in the dynamic range in this case has improved the performance of the RNS architecture since 

more numbers have been captured within the legitimate range. This is the first step normally taken in addressing the problem 

of overflow in RNS system. As a result, the proposal has achieved improved delay at the expense of moderately increase in 

area cost compared with similar existing schemes. 
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