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Abstract 
 

In this work, Nuclear Reactor safety was modeled inform of quadratic 

functional. The nuclear tokens are structured and used as elements of the 

control matrix operator in our quadratic functional. The numerical results 

obtained through Conjugate Gradient Method (CGM) algorithm identify the 

optimal level of safety required for Nuclear Reactor construction at any 

particular situation. 

 
 

1.0     Introduction 
Nuclear reactors accidents occur when the coolant ceases to work, the reactor will be over heated and produced excess heat in 

form of steam. Most of the internal component of the reactors are made from zirconium in zircalloy cladding used in fuel 

rods oxidizes in reaction with steam to produce zirconium oxide and hydrogen [1]. When mixed with air, hydrogen is 

flammable and its detonation will destroy the containment structure which house the reactor. As a result of this, radiation is 

release to the surrounding causing environmental hazard [2-5]. This work derived the equations for the rate of heat of 

different reactors from energy balance equations. These equations are structured in parametric form to obtain the basis of the 

mathematical model solvable by the Conjugate Gradient Method (CGM) algorithm. The obtained numerical results generate 

the minimal disaster associated with nuclear reactors. 

 

2.0 Energy Balance 
The following results were obtained through Energy Balance Equations. See [6]. For the purpose of our study, we shall 

arrange the equations in terms of the rate of heat. 

 

2.1  The Energy Balance for Chemical Reactors 
Let us consider arbitrary reactor volume element. From the conservation of energy for a reactor system we obtain the 

following: 

RateofEnergy RateofEnergy RateofEnergy Rateofheatadded

accumulated ofinflow ofoutflow tothesystem

Rateofworkdone

onthesystem

       
= − + +       

       

 
 
   (1) 

Equation (1) can be represented mathematically as: 

 0 0 1 1
ˆ ˆdE

m E m E Q W
dt

= − + +  (2) 

where Ê  mean energy per unit mass, 0m  is the mass inflow, 1m  is the mass outflow and Q  is the rate of heat. 

The total rate of work done on a reactor system is expressed as follows: 

 f s bW W W W= − +  (3) 

where W =total rate of work done 

fW =rate of work done by flowstream 
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sW =rate of work done by shaft 

bW =rate of work done by boundary 

The Rate of work done flowstream can be represented by fW  such that 

 0 0 0 1 1 1 0 0 0 0fW v A P v A P Q P Q P= − = −  (4) 

where 0A =area of reactor (inflow), 1A =area of reactor (outflow), 0v =inflow volume of reactor, 1v =outflow volume of 

reactor, 0P = inflow pressure, 1P = outflow Pressure, 
(0)Q =flowrate (in), 1Q =flowrate (out), m =mass 0 =inflow density, 

1 = outflow density and  = general density, also 

 
m

Q


=  (5) 

Substituting (5) in (4) and using the result in (3), we obtain 

 0 1
0 1

0 1

s b

P P
W m m W W

 
= − + + h  (6) 

The energy terms of total energy composed in Internal U , Kinetic K  and Potential energy   is expressed as: 

 E U K = + +  (7) 

Substituting (7) in (2), we obtain 

 0 0 1 1
ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) s b

d
U K m U K m U K Q W W

dt
  + + = + + − + + + + +  (8) 

but in chemical reactors, only the internal energy is considered with the enthalphy H U PV= +  per unit mass, hence (8) 

becomes 

 
. . .

0 0 1 1
ˆ ˆ

s b

d
U m H m H Q W W

dt
= − + + +  (9) 

2.2  The Batch Reactor 

The batch reactors have no flowstream (i.e. 0 0 1 1
ˆ ˆ 0m H m H− = ). 

Therefore, equation (9) in terms of rate of heat becomes 

 11 s b

du
Q W W

dt
= − −  (10) 

Neglecting the work done by stirrer because the mixture is not highly viscous, 

so the stirring operation does not draw significant power, (10) yields 

 b

du
Q W

dt
= −  (11) 

and we know that 
R

b

dV
W P

dt
= − , hence (11) becomes 

 12
RdVdu

Q P
dt dt

= +  (12) 

For Batch reactor in terms of enthalpy, we have 

 RH U PV= +  (13) 

Taking the differential of (13) for RV V=  and substituting in (12), we obtain 

 13 R

dH dP
Q V

dt dt
= −  (14) 

We now consider enthalpy as a function of temperature T , pressure P  and number of moles 
jn , and express its 

differentials as; 
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, ,
, ,j j

k

j

jP n T n j T P n

dndH H dT H dP H

dt T dt P dt n dt

      
= + +              

  (15) 

The first partial derivative is the definitions of the heat capacity, PC , that is 

 ˆ
P R PC V C=  (16) 

The second partial derivative can be expressed as 

 ( )
, ,

1

j jT n P n

H V
V T V T

P T


    
= − = −   

    
 (17) 

where 

,

1

jP n

V

V T


 
=  

 
 is the coefficient of expansion of mixture. 

The final partial derivatives are the partial molar enthalpies, jH  

 

, , k

j

j T P n

H
H

n

 
 








=

 
 (18) 

Substituting (16), (17) and (18) in (15) and using the result in (14), we obtain 

 14
ˆ j

R P R j

j

dndT dP
Q V C TV H

dt dt dt
 = − +  (19) 

But the material balance for batch reactor is 

 
1

1, ,
rn

j

j R ij i R s

i

dn
R V V rV j n

dt =

= = =  (20) 

where 
ijV  is the stoichiometric coefficient for species j  and reaction i , 

jR  is the production rate for j th species and ir  is 

the reaction rate for i th reaction, and the heat of reaction is 

 Ri ij j

j

H V H =  (21) 

Substituting (20) and (21) in (19) we obtain 

 
15

ˆ
R P R Ri i R

j

dT dP
Q V C TV H rV

dt dt
 = − +   (22) 

The constant-pressure batch reactor is the incompressible-fluid and for 0
dP

dt
=  then equation (22), becomes 

 
16

ˆ
R P Ri i R

j

dT
Q V C H rV

dt
= +   (23) 

If the heat removal is manipulated to maintain constant reactor temperature, the time derivative in equation (23) vanishes 

leaving 

 
21 R RQ H rV=   (24) 

When AC =  concentration of species A , k =  reaction rate constant, 
2

Ar kC=  and RH  is the enthalpy change on reaction 

then equation (24) becomes 

 
2

22 R A RQ H kC V=   (25) 

For the constant-volume batch reactor, we considered the pressure as function of temperature, volume and number of moles, 

and also expressed its differentials as: 

 

, ,
, ,j j

k

j

jV n T n j T V n

dndP P dT P dV P

dt T dt V dt n dt

 
 
 

     
= + +   

      
  (26) 
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For reactor operation at constant volume, 0
dV

dt
= , and forming time derivatives, just as we did in (15) to (17) and 

substituting into equation (19) gives 

 
, ,

,

ˆ ( )
k

j

j

R P R j R T V n

jV n j

dnP dT P
Q V C TV H TV

T dt n dt
  

     
= − + −    

       
  (27) 

Note that the first term in brackets is the total constant-volume heat capacity, that is 

 

,

ˆ

j

v R P R

V n

P
C V C TV

T
 

 
 
 

= −


 (28) 

Substitution (28) and the material balance in (20), yields the rate of heat for the energy balance of the Constant-Volume batch 

Reactor. That is 

 
23 , ,

ˆ ( )
kR v Ri R ij T V n i R

j j j

dT P
Q V C H TV V rV

dt n
 

 
= +  − 

  
   (29) 

If we consider a constant volume-ideal gas, where 1T =  and 

, , k
j T V n

P RT

n V

 
 







=

 

. 

Substituting these into (29) gives 

 
24

ˆ
R v Ri i i R

j

dT
Q V C H RTV rV

dt
  = +  −   (30) 

Where 

 i ij

j

V V=  (31) 

2.3  The Continuous Stirred Tank Reactor (CSTR) 
In order to describe the dynamic operation of a CSTR, the energy balance equation must be developed. The CSTR has 

flowstream, hence using the equations (8) 

 0 0 1 1
ˆˆ ˆ ˆ ˆˆ( ) ( ) ( ) s b

d
U K m U K m U K Q W W

dt
  + + = + + − + + + + +  (32) 

As in (9) only the internal energy is considered. The out flow stream is flowing out of a well-mixed reactor, thus, the CSTR 

rate of heat equation using (32) is 

 25
ˆ ˆ

f f f s b

du
Q Q H Q H W W

dt
 = − + − −  (33) 

where 
fQ =volumetric flow rate, 

f =flow density, 

fH =flow enthalpy, 

jfC =flow concentration with component j  and 

Q =flow rate. 

As before, if sharf work is neglected for the CSTR, equation (33) becomes 

 26
ˆ ˆ R

f f f

dVdu
Q Q H Q H P

dt dt
 = − + +  (34) 

and if the enthalpy is considered, we obtain 

 31
ˆ ˆ

R f f f

dH P
Q V Q H Q H

dt dt
 = − − +  (35) 

We consider the change in enthalpy of the continuous stirred tank reactor (CSTR) as a function of temperature, pressure and 

number of moles, and express its differentials as; 
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 ˆ (1 )
j

R P R j

j

dndH dT dP
V C T V H

dt dt dt dt
 = + − +  (36) 

and substituting into equation (35) gives 

 32
ˆ ˆ ˆj

R P R j f f f

j

dndT dP
Q V C TV H Q H Q H

dt dt dt
   = − + − +  (37) 

The material balance for the CSTR is 

 
j

f jf j ij i R

i

dn
Q C QC v rV

dt
= − +  (38) 

After substituting (38) in (37) and re-arrangement yields 

 
33

ˆ ( )R P R Rj i R if f jf j

j j

dT dP
Q V C TV H rV C Q H H

dt dt
 = − +  − −   (39) 

The equation of rate of heat for constant-pressure in CSTR that is Incompressible fluidand its mean in equation (39) is 

0
dp

dt
=  and hence we have 

 
34

ˆ ( )R P Ri i R if f jf j

i j

dT
Q V C H rV C Q H H

dt
= +  − −   (40) 

From equation (40), we obtained the equation of rate of heat for constant-volume in. CSTR as follows: 

 
34

ˆ ( )R P Ri i R if f jf j

i j

dT
Q V C H rV C Q H H

dt
= +  − −   (41) 

Also, from equation (41), the equation of rate of heat for ideal gas is: 

 ( )36
ˆ ( ) ( )R V Ri i i R jf f jf j jf f j

i j j

dT
Q V C H RTV rV C Q H H RT C Q C Q

dt
= +  − − − − −    (42) 

For steady state constant, we have ˆ
PC , 

fP P=  and  

 ( )jf j ps fH H C T T− = −  (43) 

If we re-arrange equation (39) in the form 

 ˆ ( )R P R Rj i R if f jf j

j j

dT dP
V C TV Q H rV C Q H H

dt dt
 − = −  + −   (44) 

By setting the Right hand side of (44) equals zero and substituting (43) in the result gives 

 41
ˆ ( )Rj i R f f f f

j j

Q H rV Q C T T=  − −   (45) 

The heat removal rate of CSTR required bringing CSTR reactor out-flow stream from final temperature 
fT  to temperature 

T and is given (from 45) by 

 
42

ˆ
f f PQ Q C T=   (46) 

2.4 The Semi-Batch Reactor 
The development of the semi-batch reactor energy balance follows directly from the CSTR energy balance derivation of the 

rate of heat by setting 0Q = . The main results in this paper are therefore summarized below: 

Neglecting the Kinetic Energy in Equation 33 of the CSTR, when 0Q = , we obtain 

 43
ˆ

f f f s b

du
Q Q H W W

dt
= − − −  (47) 

Also, by neglecting the Sharf work and consider the Enthalpy when 0Q =  in (34) and (35) yields 

 44
ˆR

f f f

dVdu
Q P Q H

dt dt
= + −  (48) 
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and if the enthalpy is used, we obtain 

 45
ˆ

R f f f

dH P
Q V Q H

dt dt
= − −  (49) 

By setting 0Q = in equations (37) and (39) respectively, we have the enthalpy change of semi-batch reactor as 

 46
ˆ j

R P R j f f f

j

dndT dP
Q V C TV H Q H

dt dt dt
  = − + −  (50) 

and 

 
51

ˆ ( )R P R Ri i R jf f jf f

i j

dT dP
Q V C TV H rV C Q H H

dt dt
 = − +  − −   (51) 

The constant pressure semi-batch reactor is the incompressible-fluid batch reactor and in equation (51) when 0
dP

dt
= , we 

obtain 

 
52

ˆ ( )R P Ri i R jf f jf f

i j

dT
Q V C H rV C Q H H

dt
= +  − −   (52) 

For steady state semi-batch reactor when ˆ .PC  is constant, we have 

 53
ˆ ˆ ( )R P Ri i R f f P f

i

dT
Q V C H rV Q C T T

dt
 = +  − −  (53) 

The equation is derived from the energy balance equation for Plug-flow reactor (PFR) single phase for rate of heat, and is 

given by: 

 54
ˆ (1 )P Ri i

i

dT dP
Q Q C Q T H r

dV dV
 = + − +   (54) 

Neglecting pressure drop or ideal gas for PFR and from (54), for an Ideal gas 1T =  we have 

 55
ˆ

P Ri i

i

dT
Q Q C H r

dV
= +   (55) 

The rate of heat equation of PFR for Incompressible fluid is obtain by setting 0
dP

T
dV

 =  in equation (54) 

 56
ˆ

P Ri i

i

dT dP
Q Q C Q H r

dV dV
= + +   (56) 

The remaining six existing equations related to the rate of heat of a reactor for temperature of 

heat transfer medium aT  are as stated below: 

 
61

( )

1 ( )
Af R

k T
Q C H

k T 
= − 

+
 (57) 

 
62 ( )PS

f

C
Q T T


= −  (58) 

 
63

2
( )O

aQ T T
R

=  −  (59) 

 
64 2 ( )O

Z aQ R T T=  −  (60) 

 
65 1

1

1 ˆ[ ( )] ( )A Af A R R f P fQ K C C C H V Q C T T
k

= − −  − −  (61) 

 
66

ˆ( )
d

Q Q H
dV

=  (62) 

The equations derived above from the energy balance equation of chemical reactors [7] are thirty; namely: (10), (12), (14), 

(19), (22-25), (29-30), (33-35), (37) , (39-42) and (45-56). These equations with the six existing equations, namely (57)-(62), 
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 were structured into mathematical model in form of quadratic functional. The model with some given existing nuclear tokens 

were solved by the Conjugate Gradient Method algorithm, with MATLAB as a support soft-ware. 

 

3.0 The Gradient Method (CGM) Algorithm 
The CGM algorithm was originally developed by Hestenes and Stiefel [8] to minimize and solve problems in quadratic 

functional of the form: 

 0

1
( ) , ,

2H H
f X f a X X AX= + +  (63) 

Where 0f , is a constant in H , x  is a vector in H . A  is a positive definite, symmetric and constant matrix operator.  

It has a well worked out theory with an elegant convergence profile. No approximation is used in the proving its 

convergency. 

3.1  Property of Conjugate Gradient Method (CGM) 
Algorithm 

Some of the several properties of CGM are: 

i. It has a quadratic convergence property that is for a quadratic functional on an n-dimensional Hilbert space, it 

 converges in at most n steps. 

ii. It requires a relatively small increase in computer time per iteration and memory space. iii. It has a well  worked 

out theory. 

3.2  Algorithm 
The first element of the descent sequence x0 is simply guessed. The remaining members of the sequence are then found as 

follows: 

 0 0 0( )P g a A= − = − +  (64) 

 
1

,

,

i i

i i i i i

i i

g g
X X P

P AP
 + = + =  (65)

 1i i i ig g P+ = +  (66) 

 1 1

1 1

,

,

i i

i i i i i

i i

g g
P g P

g g
  + +

+ += − + =  (67) 

Where ig  is the gradient at the ith element of the descent sequence iX  

It has been proved that the algorithm converges at most, in n iteration in a well posed problem and the convergence rate is 

given as: 

 

2

0

1

( ) ( )

1

n

n

m

ME x E x
m

M

 
− 

=  
 +
 

 (68) 

Where m  and M  are smallest and spectrums of matrix A  respectively. That is, for an n dimensional problem, the 

algorithm will converge in at most n iterations [9]. 

 

4.0 Computational Results 
Our model is: 

 
0

1
( ) , ,

2H H
f X f a X X AX= + +  (69) 

where 
6X   i.e, 

1 2 3 4 5 6( )TX x x x x x x= ,  (111111)Ta = , 0 1f =  and 

 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

 
 
 
 

=  
 
 
  
 

A
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where 

ija  = values of the rate of heat, 1,2,3,4,5,6i = ; and  1,2,3,4,5,6j =  

Numerical values are now calculated for our parameters or tokens. In all cases our initial guess is 0 vector that is 

0 (000000)Tx =  and the results are as shown below: 

Problem 1 (For arbitrary tokens) 

 

360 2 0 173 173 173

10 208 32 37 34 2

3 173 173 16 9 3

2 0 173 173 173 173

0 1 0 2 113 2

10 0 1 1 5 108

 
 

− 
 −

=  
 
 − −
  − 

A

 

Problem 2 (For arbitrary tokens) 

 

108.422 2.0 0.4032 173.16 173.16 173.16

10.316 113.1035 31.5015 36.5015 34.4964 1.7986

3. 173.151 173.169 15.813 9. 2.9065

2.0935 0.4967 173.151 173.2535 173.151 173.151

0.0003 0.6565 0.1720 1.7986 207.6612 1.7986

10.4951 0

−

−
=

− − −

−

A

.0201 0.8280 0.8280 5.3300 359.991

 
 
 
 
 
 
 
  
 

 

Problem 3 (For nuclear tokens) 

 

59.9559 4.0000 24.5726 4.0935 0.8280 0.3726

4.0000 52.9559 24.5816 24.5636 31.7636 24.5726

24.5726 24.5816 38.5015 1.0887 3.0935 3.5910

4.0935 24.5636 1.0887 38.5015 9.0000 0.3726

0.8280 31.7636 3.0935 9.0000 37.5

− −

− − − −

− − −
=

− − −

−

A

015 0.0845

0.3726 24.5726 3.5910 0.3726 0.0845 9.9289

 
 
 
 
 
 
 
  − − − 

 

Problem 4 (For nuclear tokens) 

 

80.4469 4.0000 24.5726 4.0935 0.8280 0.3726

4.0000 59.9559 24.5816 24.5636 31.7636 24.5726

24.5726 24.5816 52.9559 1.0887 3.0935 3.5910

4.0935 24.5636 1.0887 38.5015 9.0000 0.3726

0.8280 31.7636 3.0935 9.0000 38.5

− −

− − − −

− − −
=

− − −

−

A

015 9.9289

0.3726 24.5726 3.5910 0.3726 9.9289 37.5015

 
 
 
 
 
 
 
  − − − 

 

4.1 Tables of Results 
The following Tables are Table 1 for Problem 1, Table 2 for problem 2, Table 3 for problem 3 and Table 4 for problem 4 

respectively. 

Table 1: Generated from Problem 1 

Number of Iteration Minimizing vectors X Objective function Gradient 

1  
1 6 to  nillx x =  nill 2.449 

2  
1 6 to  nillx x =  0.99 1.704 

3  
1 6 to  nillx x =  0.99 5.016 

4  
1 6 to  nillx x =  1.01 9.724 

5  
1 6 to  nillx x =  1.06 14.045 

6  
1 6 to  nillx x =  1.13 17.715 

7  
1 6 to  nillx x =  1.22 20.808 
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8  
1 6 to  nillx x =  1.33 23.440 

9  
1 6 to  nillx x =  1.45 25.713 

10  
1 6 to  nillx x =  1.58 27.704 

11  
1 6 to  nillx x =  1.73 29.474 

12  
1 6 to  nillx x =  1.89 31.067 

13  
1 6 to  nillx x =  2.06 32.519 

14  
1 6 to  nillx x =  2.23 33.855 

15  
1 6 to  nillx x =  2.42 35.097 

16  
1 6 to  nillx x =  2.61 36.260 

17  
1 6 to  nillx x =  2.81 37.358 

18  
1 6 to  nillx x =  3.02 38.401 

19  
1 6 to  nillx x =  3.24 39.397 

20  
1 6 to  nillx x =  3.46 40.353 

21  
1 6 to  nillx x =  3.68 41.275 

22  
1 6 to  nillx x =  3.91 42.167 

23  
1 6 to  nillx x =  4.15 43.032 

24  
1 6 to  nillx x =  4.39 43.873 

25  
1 6 to  nillx x =  4.64 44.694 

26  
1 6 to  nillx x =  4.89 45.495 

27  
1 6 to  nillx x =  5.15 46.279 

28  
1 6 to  nillx x =  5.41 47.046 

29  
1 6 to  nillx x =  5.68 47.799 

30  
1 6 to  nillx x =  5.95 48.537 

31  
1 6 to  nillx x =  6.22 49.261 

32  
1 6 to  nillx x =  6.50 49.973 

33  
1 6 to  nillx x =  6.78 50.671 

34  
1 6 to  nillx x =  7.06 51.358 

35  
1 6 to  nillx x =  7.35 52.033 

36  
1 6 to  nillx x =  7.64 52.696 

37  
1 6 to  nillx x =  7.93 53.347 

38  
1 6 to  nillx x =  8.23 53.988 

39  
1 6 to  nillx x =  8.52 54.617 

40  
1 6 to  nillx x =  8.82 55.235 

41  
1 6 to  nillx x =  9.13 55.842 

42  
1 6 to  nillx x =  9.43 56.439 
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43  
1 6 to  nillx x =  9.74 57.024 

44  
1 6 to  nillx x =  10.04 57.599 

45  
1 6 to  nillx x =  10.35 58.164 

46  
1 6 to  nillx x =  10.66 58.718 

47  
1 6 to  nillx x =  10.97 59.263 

48  
1 6 to  nillx x =  11.28 59.797 

49  
1 6 to  nillx x =  11.60 60.321 

50  
1 6 to  nillx x =  11.91 60.836 

51  
1 0.0737x = , 

2 0.0563,x = −

3 0.0192x = , 

4 0.4714x = , 

5 0.1788x = − , 

6 0.1705x = −  

nill Nill 

 

TABLE 2: Generated from Problem 2 

Number of Iteration Minimizing vectorsX Objective function Gradient 

1 x1 to x6 =nill nill 2.449 

2 x1 to x6 =nill 0.99 1.110 

3 x1 to x6 =nill 0.99 2.598 

4 x1 to x6 =nill 1.00 3.647 

5 x1 to x6 =nill 1.01 3.931 

6 x1 to x6 =nill 1.02 3.987 

7 x1 to x6 =nill 1.04 4.060 

8 x1 to x6 =nill 1.05 4.240 

9 x1 to x6 =nill 1.06 4.564 

10 x1 to x6 =nill 1.07 5.050 

11 x1 to x6 =nill 1.09 5.705 

12 x1 to x6 =nill 1.10 6.538 

13 x1 to x6 =nill 1.12 7.551 

14 x1 to x6 =nill 1.14 8.746 

15 x1 to x6 =nill 1.17 10.120 

16 x1 to x6 =nill 1.20 11.665 

17 x1 to x6 =nill 1.23 13.375 

18 x1 to x6 =nill 1.27 15.229 

19 x1 to x6 =nill 1.31 17.217 

20 x1 to x6 =nill 1.36 19.319 

21 x1 to x6 =nill 1.41 21.516 

22 x1 to x6 =nill 1.47 23.788 

23 x1 to x6 =nill 1.54 26.117 

24 x1 to x6 =nill 1.61 28.485 
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25 x1 to x6 =nill 1.69 30.874 

26 x1 to x6 =nill 1.78 33.272 

27 x1 to x6 =nill 1.87 35.663 

28 x1 to x6 =nill 1.96 38.038 

29 x1 to x6 =nill 2.07 40.387 

30 x1 to x6 =nill 2.17 42.701 

31 x1 to x6 =nill 2.29 44.974 

32 x1 to x6 =nill 2.41 47.201 

33 x1 to x6 =nill 2.53 49.377 

34 x1 to x6 =nill 2.66 51.501 

35 x1 to x6 =nill 2.80 53.569 

36 x1 to x6 =nill 2.94 55.579 

37 x1 to x6 =nill 3.09 57.532 

38 x1 to x6 =nill 3.24 59.427 

39 x1 to x6 =nill 3.39 61.263 

40 x1 to x6 =nill 3.55 63.042 

41 x1 to x6 =nill 3.71 64.764 

42 x1 to x6 =nill 3.88 66.436 

43 x1 to x6 =nill 4.05 68.041 

44 x1 to x6 =nill 4.23 69.599 

45 x1 to x6 =nill 4.41 71.104 

46 x1 to x6 =nill 4.59 72.559 

47 x1 to x6 =nill 4.78 73.965 

48 x1 to x6 =nill 4.97 75.324 

49 x1 to x6 =nill 5.16 76.636 

50 x1 to x6 =nill 5.36 77.904 

51 x1 = −0.2289 x2 = 

−0.0724 

x3 = 0.2464 

x4 = −0.0587 x5 = 

0.1224 x6 = 0.0549 

5.56 Nill 

 

TABLE 3: Generated from Problem 3 

Number of Iteration Minimizing vectorsX Objective Function Gradient 

1 
1 0.000x =  

2 0.000x =

3 0.000x =  

4 0.000x =  

5 0.000x =  

6 0.000x =  

nil 2.449 
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2 
1 0.261x = −  

2 0.261x = −  

3 0.261x = −

4 0.261x = −

5 0.261x = −  

6 0.261x = −  

0.22 19.149 

3 
1 0.033x =  

2 0.174x =  

3 0.108x =

4 0.061x =  

5 0.071x =  

6 0.118x =  

1.28  

4 
1 0.013x = −  

2 0.124x =  

3 0.070x =  

4 0.045x =  

5 0.068x =  

6 0.127x =  

1.21 1.978 

5 
1 0.024x = −

2 0.106x =

3 0.007x =

4 0.032x =

5 0.060x =

6 0.147x =  

1.16 0.234 

6 
1 0.022x = −

2 0.103x =

3 0.008x =

4 0.031x =

5 0.053x =

6 0.1152x =  

1.16 0.006 

7 
1 0.022x = −

2 0.103x =

3 0.008x =

4 0.032x =

5 0.053x =

6 0.152x =  

1.16 0.000 
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TABLE 4: Generated from Problem 4 

Number of Iteration Minimizing vectors X Objective function Gradient 

1  
1 0.000x =

2 0.000x =

3 0.000x =

4 0.000x =

5 0.000x =

6 0.000x =  

nil 2.449 

2  
1 0.053x = −

2 0.053x = −

3 0.053x = −

4 0.053x = −

5 0.053x = −

6 0.053x = −  

0.84 4.114 

3  
1 0.071x = −

2 0.321x = −

3 0.201x = −

4 0.163x = −

5 0.153x = −

6 0.162x = −  

0.46 2.970 

4  
1 0.040x = −

2 0.367x = −

3 0.217x = −

4 0.211x = −

5 0.206x = −

6 0.199x = −  

0.38 1.930 

5  
1 0.040x = −

2 0.395x = −

3 0.198x = −

4 0.230x = −

5 0.226x = −

6 0.209x = −  

0.35 0.092 

6  
1 0.040x = −

2 0.395x = −

3 0.198x = −

4 0.228x = −

5 0.228x = −

6 0.209x = −  

0.35 0.019 
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7  
1 0.040x = −

2 0.395x = −

3 0.198x = −

4 0.228x = −

5 0.228x = −

6 0.209x = −  

0.35 0.000 

 

4.2 Discussion of Results 
The initial nuclear tokens used in problems 1 and 2 to represent the vectors and control operators of the quadratic 

model were arbitrary. Our results clearly shown that arbitrary composition of nuclear tokens will not guarantee 

safety. This is evidence from tables 1 and 2 (non convergence) which did not satisfied the properties of the CGM 

algorithm. See [10]. 

After restructuring, nuclear tokens were used as the vectors and control operators of the quadratic model to 

generate problems 3 and 4 and were solved using the CGM algorithm. We were able to get two results that 

converge (Tables 3 and 4). The convergency satisfied the properties of the CGM algorithm, which shows good 

results. See [11] and [12]. 

 

5.0 Conclusion 
The nuclear reactors tokens are the main components that make up the reactors, example of the components are 

Internal energy, Reactor volume, Molar mass and so on, which produces the rate of heat of the reactor that causes 

the accidents. See 

[13]-[20]. 

Our results clearly indicate that if the nuclear tokens used for the structured model, are use for the construction of 

nuclear reactors, then the nuclear safety will be maximize while the disaster will be minimized. 
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