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Abstract

A separated locally convex space is locally complete if and only if every
lower semicontinuous seminorm is bounded.

Incidentally, we also establish

(i) a seminorm analogue of [9, Definition 13-1-4 of the inductive limit
topology], THEOREM 2.3, and

(ii) the counterpart of [4, IMPORTANT CONSEQUENCE 5.7] for g*(E,
E’ ), THEOREM 3.9.
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1.0 Introduction

All topologies are assumed separated, and by a Ics (E, t) shall be meant a separa- ted locally convex space, with continuous
dual E '. The field of scalars of our spaces shall be K = R or C, the reals or the complex numbers. All notation and
terminologies shall be standard as found, for example, in [9], [3], [2], [5] and [4]. //I signifies the end or absence of a proof;
and if t1, 12 are topologies on X = &, by 11 > 12 is meant that 11 is finer than ..

2.0 1%

An absolutely convex bounded subset B of the Ics (E, 1) is called a disc of (E, t), and the seminormed space (Es, qg), where

Es is the linear span of B in E and gg the Minkowski functional of B in Eg, is a normed space[5, third paragraph]. We denote

by op, following [4, Section 1], the pseudometric topology of the semi- norm p : E — R; and so for disc B of (E, 1), (Es, oQs)

isalcs.

Let R be a collection of discs of Ics (E, t) satisfying the condition that U Eg spans E. Denote by ™ the inductive limit[9,
BeR

Definition 13-1-4, p.210] topology on E by the inclusions iEB :(BEg,008) > E,B € Q.

We note the following two lemmas.

LEMMA 1 [3, Paragraph following Definition 2.6.1, p.108] Let A and B be non-empty subsets of a vector space X such

that A is balanced. Then, A absorbs B if and only if there exists u € K such that B < pA. ///

LEMMA 2 [3, Fifth and sixth lines p.208] For disc B of an Ics (E, 1), the Ics (Eg, oQs) has {eB : € > 0}as a base of

neighbourhoods of zero. ///

With notation and language as in the paragraph preceding LEMMA 1, immediate from LEMMAS 1 and 2 and [9, Theorem

13-1-11, p.211] is

THEOREM 3 A bhase of neighbourhood of zero of t™ is the collection of all  absolutely convex subsets V of E such that V

absorbs every B € R. ///

COROLLARY 4 Members of R are t -bounded

Proof [9, Problem 4-4-3, p.49]. ///
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LEMMA 5 [7, Proposition 3.2.2, p.82] For any disc B of Ics (E, 1), t|Es < 60z .. i.€., the restriction of t to Eg is coarser than
oqs. !l

FACT 6 t<t" i.e., tiscoarser than t*.

Proof From LEMMA 5 follows that t is a test topology[9, Definition 13-1-1, p.209]. Therefore, t© < . ///

FACT 7 % is the finest locally convex topology on E with respect to which the members of R are bounded.

Proof By COROLLARY 4, members of R are t*-bounded. Suppose t’ is another locally convex topology on E w.r.t which
the members of R are bounded. Then, clearly, immediate from definition, t" ¥ = t*. But ' <t ® by BACT 6,and so t' < v’ ¥
=%l

Clearly, from the proof of FACT 7 above is

THEOREM 8 If R is a collection of discs of a dual pair <E, E >[4, Section 2][9, Theorem 8-4-1, p.114] such that U (=
BeR

spans E, the topology t* is duality invariant. That is, if t and t’ are topologies of a dual pair <E, E ">, then % =" % J//

Let (E, t) be a Ics and D the collection of all the discs of (E, t). Clearly, for any x € E, noting that a singleton is bounded][3,

Second paragraph, p.109] and convex, and that [9, Problem 7-1-1, p.93 : the absolutely convex hull of a bounded set is boun-

ded], it follows that there exists By € D such that x € By; and so {Es : B € D} spans E. Then, by FACT 7, noting that a

subset of a bounded set is bounded and that a subset bounded w.r.t a topology remains bounded w.r.t a coarser topology, <P is

the finest locally convex topology on E having same bounded sets as (E, t). t° is usually denoted t°. By [3, Exercises 3.7.8,

p.226] t° is called the bornological[3, Definition 3.7.1, p.220] topology associated with . We note this in

FACT 9 For Ics (E, 1),

(i) < is the finest locally convex topology on E with the same bounded sets as t, and

(i) ©° is the finest locally convex topology with the same local null[5, third paragraph] sequences as .

Proof (ii) is immediate from (i) and the definition of a local null sequence. ///

3.0 21%and Generating Seminorms
Let (Ea, 10), o € | = &, be Icss and E a linear space. For each a € I, let f. : E. — E be a linear map. Suppose U f.(E,)

ael
spans E. Recall that a locally convex topology t on E is called a test topology if fa. is (t«-1)-continuous for each a € 1. We
have the following.
LEMMA 1 Let p be a seminorm on E. Then, the topology op of the seminorm p on E, is a test topology < the compositions
pofe : Ea —> R, a € | # ), are continuous.

Proof We have (Eq, ta) —*—>E —2> R, o € I. By [9, Problem 4-5-1(a) <> (b), p.55], (E, p) —2—> R is continuous,

and so if op is a test topology on E, (Eq, Ta)#)(E, op) is continuous for each a, and therefore, pof. is continuous for
each a. For the implication < let B, = {x € E : p(x) < 1}, and so for ¢ > 0, By, = {z € E : p(z) < €}. A base of

neighbourhoods of zero of the topology op of p on E is {eB, : € > 0}. If we now show that f;l(a Bp) is a neighbourhood of

zero in (Eq, 1o) for each o e | and each € > 0, then op is a test topology [9, Problem 4-1-1, p.39]. Now

fl(eB,) = f.5(pU(Ce ) = (pof) (~ce)
which by the hypothesis of continuity of each composition pof., is a neighbourhood of zero of (E., t«). Hence, op is a test
topology. /l/

LEMMA 2 Denote by ind-lim( fo, To)aer the inductive limit topology[9, Definition 13-1-4, p.210] by the linear maps f.
Let

p . (E, ind'llm(fa, Ta)ae|) —> [R

be a seminorm. p is continuous < the composition pof. is continuous for each o € I, which by LEMMA 1, < op is a test
topology on E.

Proof We have Ea#)(E, ind-lim( fo, ta)ac)) —2—> R. Clearly p is continuous implies pofs is continuous for each o e

I. Suppose pofo, is continuous for each o € I. By LEM- MA 1, op is a test topology and so ind-lim( f«, To)aer = op. And so
by [9, Problem 4-5-1, p.55], p: (E, ind-lim( fa, Ta)aer) = R is continuous. ///

Since a locally convex topology is generated by its set of continuous seminorms [9, first line of first paragraph after
Definition 7-2-3, p.94], we have a seminorm analogue of the Definition 13-1-4, p.210 of [9].
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THEOREM 3 ind-lim( fa, ta)ac = v{op : p is a seminorm on E, pof. is continu-ous on (Eq, 1.) foreacha e 1} =v{op:
op is a test topology on E}. ///

Suppose R is a collection of discs of Ics (E, 1). A sequence (X, ), in E shall be called RR-null provided (X,),_, is a null

sequence in (Eg, cqg) for some B € R.
If E is a vector space, =B c Eand p:E — R aseminorm, we shall say that p is bounded on B provided p(B) is a

bounded subset of R. If (X,),_; is a sequence in E, we shall say that p is bounded on (X, ), if it is bounded on its range

[[Compare the defini- tion : (X,),, is bounded in the Ics (E, ) provided its range is a bounded set of (E, 7). FACT: A

convergent sequence is a bounded sequence. This FACT is employed in the proof of (v) = (iv) of THEOREM 7 and
THEOREM 3.3 ].

If (E, ) isalcsand p: E— R aseminorm, we shall call p a bounded seminorm provided p is bounded on every bounded
subset B of (E, t)[| Compare Definition 4-4-2, p.47 of [9]]].

LEMMA 4[9, Problem 4-4-1, p.49] Letp : (E, t) — R be a continuous seminorm on an Ics (E, t). Then, p is a bounded
seminorm. ///

We need a modification or do we say a corollary of [9, Theorem 4-4-1, p.47] to be able to prove one of the implications in the
proof of THEOREM 7 below. We state it in

THEOREM 5 The following are equivalent for a set S = & in a topological vector space (E, t).

(1 S is bounded

(i) For every sequence (X, ), in S and every null sequence of scalars (g,),_, , we have that (g X, ), is nullin (E,

1).

(iii) For every sequence (X, )., isS, sequence (n% X,)ny isnullin (E, 7).

Proof That (i) = (ii) = (iii) is already given in [9, Theorem 4-4-1, p.47], and so we only need prove (iii) = (i). Proof :
Assume the opposite that S is not bounded. Hence, there exists a balanced neighbourhood of zero V, say, of (E, t) that does
not absorb S. And so, by LEMMA 1.1, S & n?V for all positive integer n. Therefore, there exists a sequence (Xn):":1 in S such

that - X, & V forall n,and so (=X, ), cannot be eventually in V. ///

Let p: E — R be a seminorm on a vector space E. Then, the pseudometric topology op of p on E is a locally convex

topology and so (E, op) is a locally convex space. p induces on E a pseudometric dp defined by dp(a, b) =p(a—b),a,b € E.
A sub-set B = & of E is said to be metrically bounded provided it is a bounded subset of the pseudometric space (E, dp). i.e.,
there exists Xo € E and A > 0 such that dp(x, Xo) < A for all x € B. This is clearly equivalent to, employing the triangle
inequality property of p, requiring that there exists A > 0 such that
p(x)= p(x —06) = dp(x,0) <A forallx e B ..

THEOREM 6 [9, Second claim of Problem 4-4-1, p.49] Boundedness in the locally convex space (E, op) is same as metric
boundedness
Proof The family {eBp : ¢ > 0}[| Bp = {z € E : p(x) < 1] is a base of neigh- bourhoods of zero of (E, op). And so, by [2,
(17.2), p.68] and LEMMA 1.1,
B is op-bounded <> there exists A > 0 such that Bc ABp[ ={z € E : p(z2) < A} ={z € E : p(z — 6) < A}], which in turn is by
(*) above

< B is metrically bounded. ///

Now we have

THEOREM 7 Let R be a collection of discs of the Ics (E, t) such that U E; spans E. Consider the inclusions iEB . (Eg,
BeR

oQs) — E and the inductive limit topology t* by these inclusions. Let p : E — R be a seminorm on E. The following are

equivalent.

(i) The restriction of p to Eg is ogg-continuous for each B € ‘R.
(i) pis t"-continuous.

(iif) p is bounded on members of R.

(iv) pisbounded on R-null sequences.

(v) p maps R-null sequence to null sequences.
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Proof We have (Es, oQs) —=—> (E, ") —P> R,
(i) < (ii) : Immediate from LEMMA 2.

(ii) = (iii) : By COROLLARY 1.4, members of R are t™-bounded, and so this impli- cation is then immediate from
LEMMA 4.

(iif) = (ii) : Suppose p is bounded on every member of R and so there exists, by THEO- REM 6 and the paragraph
preceding it, Ag > O for every B € R, such that p(x) <Ag fora- 1l x € B. And so, B < AsBp [| Bp = {x € E : p(X) < 1}{]. From

this follows that Bp ;i B, and by LEMMA 1.2, BpnEg is a neighbourhood of zero of (Es, oqg) for every B € R. By [9,

Theorem 13-1-11, p.211], therefore, Bp is a neighbourhood of zero of t*. Hence, by [9, Problem 4-5-1, p.55] op < t™ and p is
t¥-continuous.
(v) = (iv): Immediate from definitions as convergent sequences in (R, | | ) are bounded.

(iif) = (v): Suppose (Xn)f:l is null in (Eg, ogg) for some B € R. Therefore, by LEMMA 1.2, for ¢ > 0, there exists a

positive integer N(g) such that x, € B for all n > N(g).
Therefore, p(xn) € ep(B) for all n > N(g) and so p(xn) € eI'p(B) for all n > N(g). [| M = the absolutely convex hull of M []. By
hypothesis, p(B) is bounded and so by [9, Problem 7-1-1, p.93 : the absolutely convex hull of a bounded set is bounded ]

I'p(B) is bounded. Hence, since ¢ was arbitrary, it follows from LEMMA 1.2 that (P(X,)),, is null in (Rrye), o0rpe),

where R is the reals. By LEMMA 1.5, therefore, (P(X,)),.; isnullin (R, o).
(iv) = (iii): This is the place where we need THEOREM 5. Assume that p is bounded on R-null sequences. Suppose B e
R. Let (Y, )r, be asequence in p(B), and so y, = p(x,) for some x, € B. Since x, € B, X, € £ B. Lete > 0. By a property

of the real numbers R [1, Corollary 2.5, p.40] there exists a positive integer N(g) such thatﬁ < &. By another property [1,

Exercise 2.1.15, p. 30], + < ﬁ for all n > N(g). And so, for all n > N(g), by [2, (17.2), p.68].

1 1 1
=X, EFBQWB c €B.

Since ¢ was arbitrary, it follows from LEMMA 1.2 that the sequence (% X, )i, is null in (Es, oqs). By hypothesis, therefore,
p is bounded in (£ X)), . ie, { P(:X,) :n=1,2,3, ...} is a bounded set of R, and so from elementary Analysis,
Lp(tX,)—> 0asn — oo Thatis, n% P(X,) — 0 as n — . By THEOREMS 5 and 6, taking cognizance of the metric

locally convex space (R, o), p is bounded on B. ///
Since the collection of seminorms continuous on the Ics (E, t) generates its topology t, we have

COROLLARY 8 Let ‘R be a collection of discs of (E, 1) such that U Eg spans E. Then,
BeR
™ = v{op : pisaseminormon E, p is bounded on members of R}
=v{op : pisaseminorm on E, p is bounded on R-null sequences}
=v{op : pisaseminorm on E, p maps R-null sequence to null sequences}
=v{op: pis aseminorm on E, the restriction of p to (Eg, oQg) is continuous for each disc B € R} (That is, the
restriction of p to Eg is ogs-continuous). ///
COROLLARY 9
™ = v{op : pis aseminorm on E, p is a bounded seminorm}
=v{op: pisaseminormon E, p is bounded on local null sequences}
=v{op : pisaseminorm on E, p maps local null sequence to null sequences}
=v{op : pis aseminorm on E, the restriction of p to (Eg, ogg) is continuous for each disc B}.
3t = B*(E, E') Let (E, 1) be a Ics. For the definition of B*(E, E ') we need some clarification. Let & # X and R a family
of subsets of X. A subfamily R* of ‘R is called a fundamental subfamily of R if for every B € ‘R there exists B* € R* such
that B* o B[3, 4th paragraph, p.109][6, Paragraph preceding Example 13.21, p. 144].
Example 1 Let (E, 1) be a Ics and R the collection of all the bounded sets of (E, t). Then, the collection D of all the discs of
(E, 7) is a fundamental subfamily of R. Proof : [9, Problem 7-1-1, p.93 : the absolutely convex hull of a bounded set is
bounded]. ///
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THEOREM 2 Let (E, t) be a Ics and R a family of bounded sets of (E, t). If R* is a fundamental subfamily of R, then
Tuc(R) =Tuc(R*)-
Proof For B € %R, there exists B* € R* such that B* o B, and so, clearly, employing the notation of [4, FACT 4.2], pe~ > ps.
Hence, by [2, Lemma (37.11), p.149] ope= > ope. Therefore, t,x) does not have more generators (subbase) than tycm+), and
o)

Tue®*) > Tuc(h) ...(A)
But R* < R, and so
w{ope+: B € R*} < U{ops : B € R}
Hence, again, this time, t,.(R) has a bigger subbase than tywx=. Therefore,

T < Tueh) ...(AA)
From (A) and (AA) follows that

Tue@®) = Tue). [/
Now for the Ics (E, t) consider the dual pair <E, E '>. If R = the B(E ', E)-bou- nded subsets of E ' and R* the absolutely
convex B(E’, E)-bounded subsets of E ', then, by the preceding THEOREM 2, and [9, Problem 7-1-1, p.93], tuc@*) = Tucw).
Denote this topology[7, Paragraph preceding 0.3.1, p.2][9, Remark 10-1-3, p.150][3, Exercise 3.6.5, p.220] by B*(E, E ).
Let (E, t) be a Ics and consider the dual pair <E, E ">. Consider the finest topology of uniform convergence t**° w.r.t the dual
pair <E, E ">, having same bounded sets as t. CLAIM : 1™ exists. Proof of CLAIM : Immediate from [4, Theorem 4.7] and
[9, theorem 4-4-5.p.48, noting that t itself is a topology of uniform con- vergence w.r.t <E, E '>]. /// Clearly, all the
neighbouhoods of zero of 1™ are t-bor- nivores. Indeed, being a topology of uniform convergence, t° has a base of
neighbour- hoods of zero consisting of t-barrels[4, FACT 4.4] which are of necessity t-bornivores. Well-known is that *(E,
E ") has a base of neighbourhods of zero comprisi-ng all the bornivore barrels of (E, t)[7, Observation 3.1.5(c), p.82][9,
Lemma 10-1-5 p.150]. Hence B*(E, E ') and 1 have same bounded [|Note by [3, Exercise 3.6.5(a), p.220] that t < B*(E, E ' )]
sets and

< B*(E, E .
But, B*(E, E ") being a topology of uniform convergence, by the maximality of toc,
B*(E, E ") < tbue L (FF)
By (*) and (**)
,L.buc - B*(EY E /)_

So, we have

THEOREM 3 t™¢ = B*(E, E ") is the finest topology on E of uniform convergence w.r.t <E, E "> having same bounded sets
as t. Clearly, B*(E, E ) is the finest topology of un- iform convergence having same local null sequences as t.[By the
definition of a local null sequence — See third paragraph of 5]. ///

By a local sequential neighbourhood of zero of Ics (E, t) shall be meant an absolutely convex subset of E in which every
local null sequence eventually lies.

FACT 4 [7, Proposition 5.1.3(ii), p.151] Let (E, t) be a Ics. The sequence (X, ), in E is t-local null if and only if there

o0

exists an unbounded sequence (),

of real scalars, o, > 0 for all n, such that (o, X,,),.; is @ T-null sequence. //

THEOREM 5 Suppose B is a barrel of Ics (E, t). The following are equivalent.

(i) B isa local sequential neighbourhod of zero of (E, 7).

(ii) B isabornivore.

That is, the bornivere barrels are the barrels that are local sequential neighbourhoods of zero
Proof(i) = (ii): Immediate from [5, LEMMA 1].

(if) = (i): Suppose the barrel B is a bornivore. Let (Xn)‘r’f:1 be a local null sequence and so, by FACT 4, there exists an
increasing unbounded sequence (o, ),_,, an> 0 forall n, such that (o, X,),; is a null sequence, and so

{onXn: n eN} ...(A)
is a bounded set. Since B is a bornivoure, it absorbs (A) and so by LEMMA 1.1 for some A > 0,

anXn €AB, forall n.
That is,

Xn € ﬁ B, for all n.

For some positive integer N, ﬁ <1, forall n>N. Hence by [2, (17.2), p.68],
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Xn € B, for all n > N, and so B is a local sequential neighbourhood of zero . ///
OBSERVATIONS 6 If in the Ics (E, t) the sequence (X, ), is local null, then for scalar & > 0 the sequence (AX,),_, is

also local null. Proof : by FACT 4 (o, X, ), is null for some unbounded increasing sequence (c,),., of real positive
scalars. The sequence (% ()Ln)ff:1 is also clearly increasing unbounded. Clearly (%un) A =, and so

(G AX)ms = (o, X, )iy is local null.

Hence, the sequence (A Xn)‘r’f:1 is local null, again by FACT 4. COROLLARY : If V is a local sequential neighbourhood of
zero, then AV, for scalar A > 0, is also a local sequential neighbourhood of zero. Proof : Suppose (xn);":1 is local null in (E,
7), and so, by the preceding (3 X, )., is local null. Hence, for some positive integer N(1),

X, e Vforalln > N(Q),

from which follows that
Xn € AV foralln > N(L).///

Let (E, ) be a Ics and g a seminorm on E. Call q a local sequentially continuous seminorm if (q(X,)),_; is a null sequence

whenever (X, ), is locally null in (E, 7). It is clear from THEOREM 2.7 that the local sequentially continuous seminorms

are the bounded seminorms

We have

THEOREM 7 The following are equivalent for the Ics (E, ).

I Every lower semicontinuous local sequentially continuous seminorm is continuous

I1. Every barrel which is a local sequential neighbourhood of zero of (E, t) is a neighbourhood of zero of (E, 1)

Proof 1=11: Assume I. Let B be a barrel of (E, t) which is a local sequential neighbourhood of zero of (E, t). By [4, Lemma
6.3], B = {x € E : gs(x) < 1}, where gg is the Minkowski functional of B. By [4, Theorem 5.2], therefore, gg is lower
semicontinuous. Since B is a local sequential neighbourhood of zero of (E, 1), by the COROLLARY in OBSERVATIONS 6,
eB ={x e E: gs(x) < ¢}, forany ¢ > 0, is a local sequential neighbourhood of zero of (E, t). From this clearly follows that gg
is local sequentially continuous. By hypothesis, therefore, gs is t-continuous. Hence, by [8, Lemma 11.11.2, p.106], B is a
neighbourhoood of zero in (E, 1).

11= I: Assume Il. Let q be a lower semicontinuous local sequentially continuous semi- norm on (E, t). Then, by [4,
Theorem 5.2], Ucd-q = {x € E : q(x) < 1}is a barrel and so since q is local sequentially continuous, Ucd-q is a local
sequential neighbourhood of zero. By hypothesis, therefore, Ucd-q is a neighbourhood of zero of (E, 1) and so again by [8,
Lemma 11.11.2, p.106], q is continuous. ///

Call Ics (E, 1) a quasibarrelled space if t = B*(E, E ') = 10

COROLLARY 8 For Ics (E, 1), the following are equivalent.

(i) (E, 1) is quasibarrelled [i.e., t = B*(E,E")].

(ii) Every bornivore barrel is a nieghbourhood of zero of (E, t).

(iii) Every barrel which is a local sequential neighbourhood of zero of (E, t) is a neighbourhood of zero of (E, 1).

(iv) Every lower semicontinuous local sequentially continuous seminorm is continuous.

Proof (i) < (ii) is by [7, Observation 3.1.5(c), p.82].

(i) < (iii) is by THEOREM 5.

(iii) < (iv) is by THEOREM 7. ///

We have

THEOREM 9 For Ics (E, 1),

U =B*(E, E ") = v(op : p is a lower semicontinous local sequentially continuous seminorm on (E, 1)}.

= v(op : p is a lower semicontinous bounded seminorm}.

Proof By [4, FACT 4.5 and THEOREM 5.2] and [COROLLARY in OBSERVATIONS 6, noting that uB = |u/B for
balanced B and scalar ] and the proof of 11 of THEOREM 7, any topology on E generated by a collection, P, say, of lower
semicontinuous local sequentially continuous seminorms has a base of barrels that are local sequential neighbourhoods of
zero. And so, by THEOREM 5 and [7, Observa- tion 3.1.5(c), p.82] such a topology is coarser than B*(E, E ') = t™C. Hence,
if
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v = v{op : p is a lower semicontinous local sequentially continuous seminorm on E},
then

T* < hue ...(A)
By [4, Main Theorem 5.4], t¢ is generated by a collection Q of lower semicontinuous seminorms. For q € Q, Ucd-q ={x <
E:q(x) <1} isabarrel [4,
Theorem 5.2] and a neighbourhood of zero of op < ¢, and hence a neighbourhood of zero of t™° = B*(E, E ). And so
by [7, Observation 3.1.5(c), p.82], contains a borni- vore barrel, and so is a bornivore barrel, and so by THEOREM 5 is a
local sequential neighbourhood of zero of (E, t). Hence, by the COROLLARY in OBSERVATIONS 6, eUcd-q = {x € E :
q(x) < €}, for any € > 0, is a local sequentially neighbourhood of zero of (E, t), and so q is local sequentially continuous.
Therefore, oq < t* for all g € Q, from which follows that

e < o* ...(AA)

By (A) and (AA), T = t*, And this proves the second equality. The third follows from the observation in the paragraph
preceding THEOREM 7. ///
A corollary of the just mentioned observation in the preceding proof and Coro- llary 8 ((i) < (iv)) is
COROLLARY 10 [9, Problem 10-1-109, p.152] Lcs (E, t) is quasibarrelled < every bounded lower semicontinuous
seminorm on (E, t) is continuous. ///

4.0  Another Characterization of Local Compl-eteness

First recall from the paragraph preceding THEOREM 1 of [5] that Ics (E, t) is locally complete < every barrel is a bornivore
barrel. By {7, Obser- vation 3.1.5(b) and (c) p.82] we therefore have

THEOREM 1 Lecs (E, 1) is locally complete < B*(E,E") =B(E,E") . /l/

Now, we have the characterization advertised by the title of the paper.

THEOREM 2 Lcs (E, 1) is locally complete <>! Every lower semincontinuous seminorm is local sequentially continuous
<2 Every lower semicontinuous seminorm is bounded.

Proof <2 is the last sentence preceding THEOREM 3.7.

For <! we consider first the forward implication =: Assume (E, t) locally complete, and so by THEOREM 1, B*(E, E ') =
B(E, E ). By [4, Theorem 5.7], THEOREM 3.9 and [9, Problem 7-2-105, p.97], therefore, it follows that every lower
semicontinuous seminorm is local sequentially continuous. For the reverse implication < suppose every lower
semicontinuous seminorm is local sequentially continuous. Noting that in general B*(E, E ') < B(E, E '), it follows from
THEOREM 3.9 and [4, Theorem 5.7] that B(E, E") < B*(E, E') and so B*(E, E') = B(E, E ). By THEOREM 1, then, (E, 1) is
locally complete. ///
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