Another Characterization of Local Completeness

Sunday Oluyemi

Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso, Nigeria.

Abstract

A separated locally convex space is locally complete if and only if every lower semicontinuous seminorm is bounded. Incidentally, we also establish (i) a seminorm analogue of [9, Definition 13-1-4 of the inductive limit topology], THEOREM 2.3, and (ii) the counterpart of [4, IMPORTANT CONSEQUENCE 5.7] for $\beta^*(E, E')$, THEOREM 3.9.

Keywords: locally complete, lower semicontinuous seminorm, bounded seminorm 2010 Amer.Math. Soc. Subject Classification 46A03, 46A08, 46A17, 46A20

1.0 Introduction

All topologies are assumed separated, and by a *lcs* (E, τ) shall be meant a separa- ted locally convex space, with continuous dual E'. The field of scalars of our spaces shall be $\mathbf{K} = \mathbb{R}$ or \mathbb{C} , the reals or the complex numbers. All notation and terminologies shall be standard as found, for example, in [9], [3], [2], [5] and [4]. /// signifies the end or absence of a proof; and if τ_1 , τ_2 are topologies on $X \neq \emptyset$, by $\tau_1 \ge \tau_2$ is meant that τ_1 is finer than τ_2 .

2.0 $1\tau^{\Re}$

An absolutely convex bounded subset *B* of the lcs (E, τ) is called a *disc* of (E, τ) , and the seminormed space (E_B, q_B) , where E_B is the linear span of *B* in *E* and q_B the Minkowski functional of *B* in E_B , is a normed space[5, third paragraph]. We denote by σp , following [4, Section 1], the pseudometric topology of the semi- norm $p : E \to \mathbb{R}$; and so for disc *B* of (E, τ) , $(E_B, \sigma q_B)$ is a lcs.

Let \Re be a collection of discs of lcs (E, τ) satisfying the condition that $\bigcup_{B \in \Re} E_B$ spans E. Denote by τ^{\Re} the *inductive limit*[9,

Definition 13-1-4, p.210] topology on *E* by the inclusions $i_{E_{B}}$: $(E_{B}, \sigma q_{B}) \rightarrow E, B \in \Re$.

We note the following two lemmas.

LEMMA 1 [3, Paragraph following Definition 2.6.1, p.108] Let *A* and *B* be non-empty subsets of a vector space *X* such that *A* is balanced. Then, *A* absorbs *B* if and only if there exists $\mu \in \mathbf{K}$ such that $B \subseteq \mu A$. ///

LEMMA 2 [3, Fifth and sixth lines p.208] For disc *B* of an lcs (E, τ) , the lcs $(E_B, \sigma q_B)$ has $\{\varepsilon B : \varepsilon > 0\}$ as a base of neighbourhoods of zero. ///

With notation and language as in the paragraph preceding LEMMA 1, immediate from LEMMAS 1 and 2 and [9, Theorem 13-1-11, p.211] is

THEOREM 3 A base of neighbourhood of zero of τ^{\Re} is the collection of all absolutely convex subsets *V* of *E* such that *V* absorbs every $B \in \Re$. ///

COROLLARY 4 Members of $\mathfrak R$ are $\tau^{\mathfrak R}$ -bounded

Proof [9, Problem 4-4-3, p.49]. ///

Corresponding author: Sunday Oluyemi, Tel.: +2348102016571

LEMMA 5 [7, Proposition 3.2.2, p.82] For any disc *B* of lcs (*E*, τ), $\tau | E_B \le \sigma q_B$. i.e., the restriction of τ to E_B is coarser than σq_B . ///

FACT 6 $\tau \leq \tau^{\Re}$. i.e., τ is coarser than τ^{\Re} .

Proof From LEMMA 5 follows that τ is a *test topology*[9, Definition 13-1-1, p.209]. Therefore, $\tau \le \tau^{\Re}$. ///

FACT 7 τ^{\Re} is the finest locally convex topology on *E* with respect to which the members of \Re are bounded.

Proof By COROLLARY 4, members of \Re are τ^{\Re} -bounded. Suppose τ' is another locally convex topology on *E* w.r.t which the members of \Re are bounded. Then, clearly, immediate from definition, $\tau'^{\Re} = \tau^{\Re}$. But $\tau' \leq \tau'^{\Re}$ by BACT 6, and so $\tau' \leq \tau'^{\Re} = \tau^{\Re}$. ///

Clearly, from the proof of FACT 7 above is

THEOREM 8 If \Re is a collection of discs of a dual pair $\langle E, E' \rangle$ [4, Section 2][9, Theorem 8-4-1, p.114] such that $\bigcup E_B$

spans *E*, the topology τ^{\Re} is duality invariant. That is, if τ and τ' are topologies of a dual pair $\langle E, E' \rangle$, then $\tau^{\Re} = \tau'^{\Re}$. ///

Let (E, τ) be a lcs and D the collection of **all** the discs of (E, τ) . Clearly, for any $x \in E$, noting that a singleton is bounded[3, Second paragraph, p.109] and convex, and that [9, Problem 7-1-1, p.93 : the absolutely convex hull of a bounded set is bounded], it follows that there exists $B_x \in D$ such that $x \in B_x$; and so $\cup \{E_B : B \in D\}$ spans *E*. Then, by FACT 7, noting that a subset of a bounded set is bounded and that a subset bounded w.r.t a topology remains bounded w.r.t a coarser topology, τ^D is the finest locally convex topology on *E* having same bounded sets as (E, τ) . τ^D is usually denoted τ^b . By [3, Exercises 3.7.8, p.226] τ^b is called the *bornological*[3, Definition 3.7.1, p.220] *topology associated with* τ . We note this in

FACT 9 For lcs (E, τ) ,

(i) τ^b is the finest locally convex topology on *E* with the same bounded sets as τ , and

(ii) τ^b is the finest locally convex topology with the same local null[5, third paragraph] sequences as τ .

Proof (ii) is immediate from (i) and the definition of a local null sequence. ///

3.0 $2 \tau^{\Re}$ and Generating Seminorms

Let $(E_{\alpha}, \tau_{\alpha}), \alpha \in I \neq \emptyset$, be less and *E* a linear space. For each $\alpha \in I$, let $f_{\alpha} : E_{\alpha} \to E$ be a linear map. Suppose $\bigcup_{\alpha \in I} f_{\alpha}(E_{\alpha})$

spans *E*. Recall that a locally convex topology τ on *E* is called a test topology if f_{α} is $(\tau_{\alpha}-\tau)$ -continuous for each $\alpha \in I$. We have the following.

LEMMA 1 Let *p* be a seminorm on *E*. Then, the topology σp of the seminorm *p* on *E*, is a test topology \Leftrightarrow the compositions $pof_{\alpha} : E_{\alpha} \to \mathbb{R}, \alpha \in I \neq \emptyset$, are continuous.

Proof We have $(E_{\alpha}, \tau_{\alpha}) \xrightarrow{f_{\alpha}} E \xrightarrow{p} \mathbb{R}$, $\alpha \in I$. By [9, Problem 4-5-1(a) \Leftrightarrow (b), p.55], $(E, \sigma p) \xrightarrow{p} \mathbb{R}$ is continuous, and so if σp is a test topology on E, $(E_{\alpha}, \tau_{\alpha}) \xrightarrow{f_{\alpha}} (E, \sigma p)$ is continuous for each α , and therefore, pof_{α} is continuous for each α . For the implication \Leftarrow let $B_{p} = \{x \in E : p(x) < 1\}$, and so for $\varepsilon > 0$, $\varepsilon B_{p} = \{z \in E : p(z) < \varepsilon\}$. A base of neighbourhoods of zero of the topology σp of p on E is $\{\varepsilon B_{p} : \varepsilon > 0\}$. If we now show that $f_{\alpha}^{-1}(\varepsilon B_{p})$ is a neighbourhood of

zero in $(E_{\alpha}, \tau_{\alpha})$ for each $\alpha \in I$ and each $\varepsilon > 0$, then σp is a test topology [9, Problem 4-1-1, p.39]. Now

$$f_{\alpha}^{-1}(\varepsilon B_p) = f_{\alpha}^{-1}(p^{-1}((-\varepsilon,\varepsilon))) = (p \circ f_{\alpha})^{-1}((-\varepsilon,\varepsilon))$$

which by the hypothesis of continuity of each composition pof_{α} , is a neighbourhood of zero of $(E_{\alpha}, \tau_{\alpha})$. Hence, σp is a test topology. ///

LEMMA 2 Denote by ind·lim($f_{\alpha}, \tau_{\alpha})_{\alpha \in I}$ the inductive limit topology[9, Definition 13-1-4, p.210] by the linear maps f_{α} . Let

 $p: (E, \operatorname{ind} \operatorname{lim}(f_{\alpha}, \tau_{\alpha})_{\alpha \in I}) \to \mathbb{R}$

be a seminorm. *p* is continuous \Leftrightarrow the composition pof_{α} is continuous for each $\alpha \in I$, which by LEMMA 1, $\Leftrightarrow \sigma p$ is a test topology on *E*.

Proof We have $E_{\alpha} \xrightarrow{f_{\alpha}} (E, \text{ ind-lim}(f_{\alpha}, \tau_{\alpha})_{\alpha \in I}) \xrightarrow{p} \mathbb{R}$. Clearly *p* is continuous implies pof_{α} is continuous for each $\alpha \in I$. Suppose pof_{α} is continuous for each $\alpha \in I$. By LEM- MA 1, σp is a test topology and so $\text{ind-lim}(f_{\alpha}, \tau_{\alpha})_{\alpha \in I} \ge \sigma p$. And so by [9, Problem 4-5-1, p.55], $p : (E, \text{ ind-lim}(f_{\alpha}, \tau_{\alpha})_{\alpha \in I}) \to \mathbb{R}$ is continuous. ///

Since a locally convex topology is generated by its set of continuous seminorms [9, first line of first paragraph after Definition 7-2-3, p.94], we have a seminorm analogue of the Definition 13-1-4, p.210 of [9].

Another Characterization of... Oluyemi Trans. of NAMP

THEOREM 3 ind·lim($f_{\alpha}, \tau_{\alpha})_{\alpha \in I} = \lor \{\sigma p : p \text{ is a seminorm on } E, pof_{\alpha} \text{ is continu-ous on } (E_{\alpha}, \tau_{\alpha}) \text{ for each } \alpha \in I \} = \lor \{\sigma p : \sigma p \text{ is a test topology on } E\}. ///$

Suppose \Re is a collection of discs of lcs (E, τ) . A sequence $(x_n)_{n=1}^{\infty}$ in *E* shall be called \Re -*null* provided $(x_n)_{n=1}^{\infty}$ is a null sequence in $(E_B, \sigma q_B)$ for some $B \in \Re$.

If E is a vector space, $\emptyset \neq B \subseteq E$ and $p: E \to \mathbb{R}$ a seminorm, we shall say that p is bounded on B provided p(B) is a bounded subset of \mathbb{R} . If $(x_n)_{n=1}^{\infty}$ is a sequence in E, we shall say that p is bounded on $(x_n)_{n=1}^{\infty}$ if it is bounded on its range

[|Compare the definition : $(x_n)_{n=1}^{\infty}$ is *bounded* in the lcs (E, τ) provided its range is a bounded set of (E, τ) . FACT: A convergent sequence is a bounded sequence. This FACT is employed in the proof of $(v) \Rightarrow$ (iv) of THEOREM 7 and

THEOREM 3.3 |].

If (E, τ) is a lcs and $p : E \to \mathbb{R}$ a seminorm, we shall call p a *bounded seminorm* provided p is bounded on every bounded subset B of $(E, \tau)[|$ Compare Definition 4-4-2, p.47 of [9]|].

LEMMA 4[9, Problem 4-4-1, p.49] Let $p : (E, \tau) \to \mathbb{R}$ be a continuous seminorm on an lcs (E, τ) . Then, p is a bounded seminorm. ///

We need a modification or do we say a corollary of [9, Theorem 4-4-1, p.47] to be able to prove one of the implications in the proof of THEOREM 7 below. We state it in

THEOREM 5 The following are equivalent for a set $S \neq \emptyset$ in a topological vector space (E, τ) .

(i) *S* is bounded

(ii) For every sequence $(x_n)_{n=1}^{\infty}$ in S and every null sequence of scalars $(\varepsilon_n)_{n=1}^{\infty}$, we have that $(\varepsilon_n x_n)_{n=1}^{\infty}$ is null in (E, τ) .

(iii) For every sequence $(x_n)_{n=1}^{\infty}$ is S, sequence $(\frac{1}{n^2}x_n)_{n=1}^{\infty}$ is null in (E, τ) .

Proof That (i) \Rightarrow (ii) \Rightarrow (iii) is already given in [9, Theorem 4-4-1, p.47], and so we only need prove (iii) \Rightarrow (i). *Proof* : Assume the opposite that *S* is not bounded. Hence, there exists a balanced neighbourhood of zero *V*, say, of (*E*, τ) that does not absorb *S*. And so, by LEMMA 1.1, $S \notin n^2 V$ for all positive integer *n*. Therefore, there exists a sequence $(x_n)_{n=1}^{\infty}$ in *S* such

that $\frac{1}{n^2} X_n \notin V$ for all *n*, and so $\left(\frac{1}{n^2} X_n\right)_{n=1}^{\infty}$ cannot be eventually in *V*. ///

Let $p : E \to \mathbb{R}$ be a seminorm on a vector space *E*. Then, the pseudometric topology σp of *p* on *E* is a locally convex topology and so $(E, \sigma p)$ is a locally convex space. *p* induces on *E* a pseudometric dp defined by dp(a, b) = p(a - b), $a, b \in E$. A sub-set $B \neq \emptyset$ of *E* is said to be *metrically bounded* provided it is a bounded subset of the pseudometric space (E, dp). i.e., there exists $x_0 \in E$ and $\lambda > 0$ such that $dp(x, x_0) < \lambda$ for all $x \in B$. This is clearly equivalent to, employing the triangle inequality property of *p*, requiring that there exists $\lambda > 0$ such that

$$p(x) = p(x - \theta) = dp(x, \theta) < \lambda \text{ for all } x \in B \qquad \dots(*)$$

THEOREM 6 [9, Second claim of Problem 4-4-1, p.49] Boundedness in the locally convex space $(E, \sigma p)$ is same as metric boundedness

Proof The family $\{\varepsilon Bp : \varepsilon > 0\}[|Bp = \{z \in E : p(x) < 1|]$ is a base of neighbourhoods of zero of $(E, \sigma p)$. And so, by [2, (17.2), p.68] and LEMMA 1.1,

B is σp -bounded \Leftrightarrow there exists $\lambda > 0$ such that $B \subseteq \lambda Bp[= \{z \in E : p(z) < \lambda\} = \{z \in E : p(z - \theta) < \lambda\}]$, which in turn is by (*) above

$$\Leftrightarrow$$
 B is metrically bounded. ///

Now we have

THEOREM 7 Let \Re be a collection of discs of the lcs (E, τ) such that $\bigcup_{B \in \Re} E_B$ spans *E*. Consider the inclusions i_{E_B} : (E_B, τ)

 σq_B) $\rightarrow E$ and the inductive limit topology τ^{\Re} by these inclusions. Let $p : E \rightarrow \mathbb{R}$ be a seminorm on *E*. The following are equivalent.

- (i) The restriction of p to E_B is σq_B -continuous for each $B \in \Re$.
- (ii) p is τ^{\Re} -continuous.
- (iii) p is bounded on members of \Re .
- (iv) p is bounded on \Re -null sequences.
- (v) p maps \Re -null sequence to null sequences.

Proof We have $(E_B, \sigma q_B) \xrightarrow{i_{E_B}} (E, \tau^{\Re}) \xrightarrow{p} \mathbb{R}$.

(i) \Leftrightarrow (ii) : Immediate from LEMMA 2.

(ii) \Rightarrow (iii) : By COROLLARY 1.4, members of \Re are τ^{\Re} -bounded, and so this impli- cation is then immediate from LEMMA 4.

(iii) \Rightarrow (ii) : Suppose *p* is bounded on every member of \Re and so there exists, by THEO- REM 6 and the paragraph preceding it, $\lambda_B > 0$ for every $B \in \Re$, such that $p(x) < \lambda_B$ for a- $\ln x \in B$. And so, $B \subseteq \lambda_B Bp$ [| $Bp = \{x \in E : p(x) < 1\}$ |]. From this follows that $Bp \supseteq \frac{1}{\lambda_B} B$, and by LEMMA 1.2, $Bp \cap E_B$ is a neighbourhood of zero of (E_B , σq_B) for every $B \in \Re$. By [9,

Theorem 13-1-11, p.211], therefore, *Bp* is a neighbourhood of zero of τ^{\Re} . Hence, by [9, Problem 4-5-1, p.55] $\sigma p \le \tau^{\Re}$ and *p* is τ^{\Re} -continuous.

 $(\mathbf{v}) \Rightarrow (\mathbf{iv})$: Immediate from definitions as convergent sequences in $(\mathbb{R}, ||)$ are bounded.

(iii) \Rightarrow (v): Suppose $(x_n)_{n=1}^{\infty}$ is null in $(E_B, \sigma q_B)$ for some $B \in \Re$. Therefore, by LEMMA 1.2, for $\varepsilon > 0$, there exists a positive integer $N(\varepsilon)$ such that $x_n \in \varepsilon B$ for all $n \ge N(\varepsilon)$.

Therefore, $p(x_n) \in \varepsilon p(B)$ for all $n \ge N(\varepsilon)$ and so $p(x_n) \in \varepsilon \Gamma p(B)$ for all $n \ge N(\varepsilon)$. [| ΓM = the absolutely convex hull of M |]. By hypothesis, p(B) is bounded and so by [9, Problem 7-1-1, p.93 : the absolutely convex hull of a bounded set is bounded] $\Gamma p(B)$ is bounded. Hence, since ε was arbitrary, it follows from LEMMA 1.2 that $(p(x_n))_{n=1}^{\infty}$ is null in $(\mathbb{R}_{\Gamma p(B)}, \sigma q_{\Gamma p(B)})$,

where \mathbb{R} is the reals. By LEMMA 1.5, therefore, $(p(x_n))_{n=1}^{\infty}$ is null in $(\mathbb{R}, \sigma | \cdot |)$.

(iv) \Rightarrow (iii): This is the place where we need THEOREM 5. Assume that *p* is bounded on \Re -null sequences. Suppose $B \in \Re$. Let $(y_n)_{n=1}^{\infty}$ be a sequence in p(B), and so $y_n = p(x_n)$ for some $x_n \in B$. Since $x_n \in B$, $\frac{1}{n} x_n \in \frac{1}{n} B$. Let $\varepsilon > 0$. By a property of the real numbers \mathbb{R} [1, Corollary 2.5, p.40] there exists a positive integer $N(\varepsilon)$ such that $\frac{1}{N(\varepsilon)} < \varepsilon$. By another property [1, Exercise 2.1.15, p. 30], $\frac{1}{n} < \frac{1}{N(\varepsilon)}$ for all $n > N(\varepsilon)$. And so, for all $n > N(\varepsilon)$, by [2, (17.2), p.68].

$$\frac{1}{n}X_n \in \frac{1}{n}B \subseteq \frac{1}{N(\varepsilon)}B \subseteq \varepsilon B.$$

Since ε was arbitrary, it follows from LEMMA 1.2 that the sequence $(\frac{1}{n}x_n)_{n=1}^{\infty}$ is null in $(E_B, \sigma q_B)$. By hypothesis, therefore, p is bounded in $(\frac{1}{n}x_n)_{n=1}^{\infty}$. i.e., $\{p(\frac{1}{n}x_n) : n = 1, 2, 3, ...\}$ is a bounded set of \mathbb{R} , and so from elementary Analysis, $\frac{1}{n}p(\frac{1}{n}x_n) \to 0$ as $n \to \infty$. That is, $\frac{1}{n^2}p(x_n) \to 0$ as $n \to \infty$. By THEOREMS 5 and 6, taking cognizance of the metric locally convex space $(\mathbb{R}, \sigma|\cdot|), p$ is bounded on B. ///

Since the collection of seminorms continuous on the lcs (E, τ) generates its topology τ , we have

COROLLARY 8 Let \Re be a collection of discs of (E, τ) such that $\bigcup_{B \in \Re} E_B$ spans E. Then,

 $\tau^{\Re} = \lor \{ \sigma p : p \text{ is a seminorm on } E, p \text{ is bounded on members of } \Re \}$

 $= \lor \{\sigma p : p \text{ is a seminorm on } E, p \text{ is bounded on } \Re\text{-null sequences}\}$

= \lor { σp : *p* is a seminorm on *E*, *p* maps \Re -null sequence to null sequences}

 $= \vee \{\sigma p : p \text{ is a seminorm on } E$, the restriction of p to $(E_B, \sigma q_B)$ is continuous for each disc $B \in \Re$ } (That is, the restriction of p to E_B is σq_B -continuous). ///

COROLLARY 9

 $\tau^b = \lor \{ \sigma p : p \text{ is a seminorm on } E, p \text{ is a bounded seminorm} \}$

 $= \lor \{\sigma p : p \text{ is a seminorm on } E, p \text{ is bounded on local null sequences} \}$

 $= \lor \{ \sigma p : p \text{ is a seminorm on } E, p \text{ maps local null sequence to null sequences} \}$

 $= \lor \{ \sigma p : p \text{ is a seminorm on } E, \text{ the restriction of } p \text{ to } (E_B, \sigma q_B) \text{ is continuous for each disc } B \}.$

3 $\tau^{buc} = \beta^*(E, E')$ Let (E, τ) be a lcs. For the definition of $\beta^*(E, E')$ we need some clarification. Let $\emptyset \neq X$ and \Re a family of subsets of *X*. A subfamily \Re^* of \Re is called a *fundamental subfamily* of \Re if for every $B \in \Re$ there exists $B^* \in \Re^*$ such that $B^* \supseteq B[3, 4$ th paragraph, p.109][6, Paragraph preceding Example 13.21, p. 144].

Example 1 Let (E, τ) be a lcs and \Re the collection of all the bounded sets of (E, τ) . Then, the collection D of all the discs of (E, τ) is a fundamental subfamily of \Re . *Proof* : [9, Problem 7-1-1, p.93 : the absolutely convex hull of a bounded set is bounded]. ///

THEOREM 2 Let (E, τ) be a lcs and \Re a family of bounded sets of (E, τ) . If \Re^* is a fundamental subfamily of \Re , then $\tau_{uc(\Re)} = \tau_{uc(\Re^*)}.$

Proof For $B \in \mathfrak{R}$, there exists $B^* \in \mathfrak{R}^*$ such that $B^* \supseteq B$, and so, clearly, employing the notation of [4, FACT 4.2], $p_{B^*} \ge p_B$. Hence, by [2, Lemma (37.11), p.149] $\sigma p_{B^*} \ge \sigma p_B$. Therefore, $\tau_{uc(\Re)}$ does not have more generators (subbase) than $\tau_{uc(\Re)}$, and so

...(Δ) $\tau_{uc(\Re^*)} \geq \tau_{uc(\Re)}$ But $\Re^* \subseteq \Re$, and so $\cup \{ \sigma p_{B^*} : B \in \mathfrak{R}^* \} \subseteq \cup \{ \sigma p_B : B \in \mathfrak{R} \}.$

Hence, again, this time, $\tau_{uc}(\Re)$ has a bigger subbase than $\tau_{uc(\Re^*)}$. Therefore,

 $\tau_{uc(\Re^*)} \leq \tau_{uc(\Re)}$

From (Δ) and ($\Delta\Delta$) follows that

 $\tau_{uc(\Re^*)} = \tau_{uc(\Re)}. ///$

Now for the lcs (E, τ) consider the dual pair $\langle E, E' \rangle$. If \Re = the $\beta(E', E)$ -bou- nded subsets of E' and \Re^* the absolutely convex $\beta(E', E)$ -bounded subsets of E', then, by the preceding THEOREM 2, and [9, Problem 7-1-1, p.93], $\tau_{uc(\Re^*)} = \tau_{uc(\Re)}$. Denote this topology [7, Paragraph preceding 0.3.1, p.2] [9, Remark 10-1-3, p.150] [3, Exercise 3.6.5, p.220] by $\beta^*(E, E')$.

 $\dots (\Delta \Delta)$

Let (E, τ) be a lcs and consider the dual pair $\langle E, E' \rangle$. Consider the finest topology of uniform convergence τ^{buc} w.r.t the dual pair $\langle E, E' \rangle$, having same bounded sets as τ . CLAIM : τ^{buc} exists. Proof of CLAIM : Immediate from [4, Theorem 4.7] and [9, theorem 4-4-5.p.48, noting that τ itself is a topology of uniform con-vergence w.r.t <*E*, *E* '>]. /// Clearly, all the neighbouhoods of zero of τ^{buc} are τ -bor- nivores. Indeed, being a topology of uniform convergence, τ^{buc} has a base of neighbour- hoods of zero consisting of τ -barrels[4, FACT 4.4] which are of necessity τ -bornivores. Well-known is that $\beta^*(E,$ E') has a base of neighbourhods of zero comprisi-ng all the bornivore barrels of (E, τ) [7, Observation 3.1.5(c), p.82][9, Lemma 10-1-5 p.150]. Hence $\beta^*(E, E')$ and τ have same bounded [Note by [3, Exercise 3.6.5(a), p.220] that $\tau \leq \beta^*(E, E')$] sets and

$$\tau^{buc} \le \beta^*(E, E') \qquad \dots (*)$$

But, $\beta^*(E, E')$ being a topology of uniform convergence, by the maximality of τ^{buc} ,

$$\beta^*(E, E') \le \tau^{buc}$$

...(**)

By (*) and (**)

 $\tau^{buc} = \beta^*(E, E').$

So, we have

THEOREM 3 $\tau^{buc} = \beta^{*}(E, E')$ is the finest topology on E of uniform convergence w.r.t <E, E'> having same bounded sets as τ . Clearly, $\beta^*(E, E')$ is the finest topology of un- iform convergence having same local null sequences as τ .[By the definition of a local null sequence – See third paragraph of 5]. ///

By a local sequential neighbourhood of zero of lcs (E, τ) shall be meant an absolutely convex subset of E in which every local null sequence eventually lies.

FACT 4 [7, Proposition 5.1.3(ii), p.151] Let (E, τ) be a lcs. The sequence $(x_n)_{n=1}^{\infty}$ in E is τ -local null if and only if there exists an unbounded sequence $(\alpha_n)_{n=1}^{\infty}$ of real scalars, $\alpha_n > 0$ for all *n*, such that $(\alpha_n x_n)_{n=1}^{\infty}$ is a τ -null sequence. ///

THEOREM 5 Suppose B is a barrel of lcs (E, τ) . The following are equivalent.

(i) *B* is a local sequential neighbourhod of zero of (E, τ) .

(ii) *B* is a bornivore.

That is, the bornivere barrels are the barrels that are local sequential neighbourhoods of zero

Proof(i) \Rightarrow (ii): Immediate from [5, LEMMA 1].

(ii) \Rightarrow (i): Suppose the barrel B is a bornivore. Let $(x_n)_{n=1}^{\infty}$ be a local null sequence and so, by FACT 4, there exists an

increasing unbounded sequence $(\alpha_n)_{n=1}^{\infty}$, $\alpha_n > 0$ for all *n*, such that $(\alpha_n x_n)_{n=1}^{\infty}$ is a null sequence, and so

$$\{\alpha_n x_n \colon n \in \mathbb{N}\} \qquad \dots (\Delta)$$

is a bounded set. Since B is a bornivoure, it absorbs (Δ) and so by LEMMA 1.1 for some $\lambda > 0$,

 $\alpha_n x_n \in \lambda B$, for all *n*. That is, $x_n \in \frac{\lambda}{\alpha_n} B$, for all *n*.

For some positive integer N, $\frac{\lambda}{\alpha_n} < 1$, for all $n \ge N$. Hence by [2, (17.2), p.68],

Another Characterization of... Oluyemi Trans. of NAMP

 $x_n \in B$, for all $n \ge N$, and so B is a local sequential neighbourhood of zero . ///

OBSERVATIONS 6 If in the lcs (E, τ) the sequence $(x_n)_{n=1}^{\infty}$ is local null, then for scalar $\lambda > 0$ the sequence $(\lambda x_n)_{n=1}^{\infty}$ is also local null. *Proof*: by FACT 4 $(\alpha_n x_n)_{n=1}^{\infty}$ is null for some unbounded increasing sequence $(\alpha_n)_{n=1}^{\infty}$ of real positive scalars. The sequence $(\frac{1}{\lambda}\alpha_n)_{n=1}^{\infty}$ is also clearly increasing unbounded. Clearly $(\frac{1}{\lambda}\alpha_n)\lambda = \alpha_n$, and so

 $\left(\left(\frac{\alpha_n}{\lambda}\right)\lambda x_n\right)_{n=1}^{\infty} = \left(\alpha_n x_n\right)_{n=1}^{\infty}$ is local null.

Hence, the sequence $(\lambda x_n)_{n=1}^{\infty}$ is local null, again by FACT 4. *COROLLARY* : If *V* is a local sequential neighbourhood of zero, then λV , for scalar $\lambda > 0$, is also a local sequential neighbourhood of zero. *Proof* : Suppose $(x_n)_{n=1}^{\infty}$ is local null in (*E*, τ), and so, by the preceding $(\frac{1}{\lambda} x_n)_{n=1}^{\infty}$ is local null. Hence, for some positive integer $N(\lambda)$,

 $\frac{1}{\lambda} X_n \in V$ for all $n \ge N(\lambda)$,

from which follows that

 $x_n \in \lambda V$ for all $n \ge N(\lambda).///$

Let (E, τ) be a lcs and q a seminorm on E. Call q a local sequentially continuous seminorm if $(q(x_n))_{n=1}^{\infty}$ is a null sequence

whenever $(x_n)_{n=1}^{\infty}$ is locally null in (E, τ) . It is clear from THEOREM 2.7 that the local sequentially continuous seminorms are the bounded seminorms

We have

THEOREM 7 The following are equivalent for the lcs (E, τ) .

I Every lower semicontinuous local sequentially continuous seminorm is continuous

II. Every barrel which is a local sequential neighbourhood of zero of (E, τ) is a neighbourhood of zero of (E, τ)

Proof 1=>II: Assume I. Let *B* be a barrel of (E, τ) which is a local sequential neighbourhood of zero of (E, τ) . By [4, Lemma 6.3], $B = \{x \in E : q_B(x) \le 1\}$, where q_B is the Minkowski functional of *B*. By [4, Theorem 5.2], therefore, q_B is lower semicontinuous. Since *B* is a local sequential neighbourhood of zero of (E, τ) , by the COROLLARY in OBSERVATIONS 6, $\varepsilon B = \{x \in E : q_B(x) \le \varepsilon\}$, for any $\varepsilon > 0$, is a local sequential neighbourhood of zero of (E, τ) . From this clearly follows that q_B is local sequentially continuous. By hypothesis, therefore, q_B is τ -continuous. Hence, by [8, Lemma II.11.2, p.106], *B* is a neighbourhood of zero in (E, τ) .

I1 \Rightarrow **I**: Assume **II**. Let *q* be a lower semicontinuous local sequentially continuous semi- norm on (*E*, τ). Then, by [4, Theorem 5.2], *Ucd-q* = { $x \in E : q(x) \le 1$ } is a barrel and so since *q* is local sequentially continuous, *Ucd-q* is a local sequential neighbourhood of zero. By hypothesis, therefore, *Ucd-q* is a neighbourhood of zero of (*E*, τ) and so again by [8, Lemma II.11.2, p.106], *q* is continuous. ///

Call lcs (*E*, τ) a *quasibarrelled* space if $\tau = \beta^*(E, E') = \tau^{buc}$

COROLLARY 8 For lcs (E, τ) , the following are equivalent.

(i) (E, τ) is quasibarrelled [i.e., $\tau = \beta^*(E, E')$].

(ii) Every bornivore barrel is a nieghbourhood of zero of (E, τ) .

(iii) Every barrel which is a local sequential neighbourhood of zero of (E, τ) is a neighbourhood of zero of (E, τ) .

(iv) Every lower semicontinuous local sequentially continuous seminorm is continuous.

Proof (i) \Leftrightarrow (ii) is by [7, Observation 3.1.5(c), p.82].

(ii) \Leftrightarrow (iii) is by THEOREM 5.

(iii) \Leftrightarrow (iv) is by THEOREM 7. ///

We have

THEOREM 9 For lcs (E, τ) ,

 $\tau^{buc} = \beta^*(E, E') = \lor(\sigma p : p \text{ is a lower semicontinous local sequentially continuous seminorm on }(E, \tau)$.

= $\lor(\sigma p : p \text{ is a lower semicontinous bounded seminorm})$.

Proof By [4, FACT 4.5 and THEOREM 5.2] and [COROLLARY in OBSERVATIONS 6, noting that $\mu B = |\mu|B$ for balanced *B* and scalar μ] and the proof of II of THEOREM 7, any topology on *E* generated by a collection, *P*, say, of lower semicontinuous local sequentially continuous seminorms has a base of barrels that are local sequential neighbourhoods of zero. And so, by THEOREM 5 and [7, Observa- tion 3.1.5(c), p.82] such a topology is coarser than $\beta^*(E, E') = \tau^{buc}$. Hence, if

 $\tau^* = \bigvee \{ \sigma p : p \text{ is a lower semicontinous local sequentially continuous seminorm on } E \},$ then

$$\tau^* \leq \tau^{buc}$$

 $\tau^{buc} \leq \tau^*$

 $\dots(\Delta)$

By [4, Main Theorem 5.4], τ^{buc} is generated by a collection Q of lower semicontinuous seminorms. For $q \in Q$, $Ucd-q = \{x \in Q, y \in Q\}$ $E: q(x) \le 1$ is a barrel [4,

Theorem 5.2] and a neighbourhood of zero of $\sigma p \leq \tau^{buc}$, and hence a neighbourhood of zero of $\tau^{buc} = \beta^*(E, E')$. And so by [7, Observation 3.1.5(c), p.82], contains a borni- vore barrel, and so is a bornivore barrel, and so by THEOREM 5 is a local sequential neighbourhood of zero of (E, τ) . Hence, by the COROLLARY in OBSERVATIONS 6, $\varepsilon Ucd-q = \{x \in E :$ $q(x) \le \varepsilon$, for any $\varepsilon > 0$, is a local sequentially neighbourhood of zero of (E, τ) , and so q is local sequentially continuous. Therefore, $\sigma q \leq \tau^*$ for all $q \in Q$, from which follows that

...(ΔΔ) By (Δ) and ($\Delta\Delta$), $\tau^{buc} = \tau^*$. And this proves the second equality. The third follows from the observation in the paragraph preceding THEOREM 7. ///

A corollary of the just mentioned observation in the preceding proof and Coro-llary 8 ((i) \Leftrightarrow (iv)) is

COROLLARY 10 [9, Problem 10-1-109, p.152] Lcs (E, τ) is quasibarrelled \Leftrightarrow every bounded lower semicontinuous seminorm on (E, τ) is continuous. ///

4.0 Another Characterization of Local Compl-eteness

First recall from the paragraph preceding THEOREM 1 of [5] that lcs (E, τ) is locally complete \Leftrightarrow every barrel is a bornivore barrel. By {7, Obser- vation 3.1.5(b) and (c) p.82] we therefore have

THEOREM 1 Lcs (E, τ) is locally complete $\Leftrightarrow \beta^*(E, E') = \beta(E, E')$. ///

Now, we have the characterization advertised by the title of the paper.

THEOREM 2 Lcs (E, τ) is locally complete \Leftrightarrow^1 Every lower semincontinuous seminorm is local sequentially continuous \Leftrightarrow^{2-} Every lower semicontinuous seminorm is bounded.

Proof \Leftrightarrow^2 is the last sentence preceding THEOREM 3.7.

For \Leftrightarrow^1 we consider first the forward implication \Rightarrow : Assume (E, τ) locally complete, and so by THEOREM 1, $\beta^*(E, E') =$ $\beta(E, E')$. By [4, Theorem 5.7], THEOREM 3.9 and [9, Problem 7-2-105, p.97], therefore, it follows that every lower semicontinuous seminorm is local sequentially continuous. For the reverse implication \leftarrow suppose every lower semicontinuous seminorm is local sequentially continuous. Noting that in general $\beta^*(E, E') \leq \beta(E, E')$, it follows from THEOREM 3.9 and [4, Theorem 5.7] that $\beta(E, E') \leq \beta^*(E, E')$ and so $\beta^*(E, E') = \beta(E, E')$. By THEOREM 1, then, (E, τ) is locally complete. ///

5.0 References

- Robert G. Bartle and Donald R. Sherbet, INTRODUCTION TO REAL ANALYSIS, 3rd Edition, [1] John Wiley and Sons. Inc., New York, 2000.
- [2] Sterling K Berberian, Lectures in Functional Analysis and Operator Theory, GTM 15, Springer-Verlag, World Publishing Corporation, Beiging, China, 1974
- [3] John Horvath, Topological Vector Spaces and Distributions I, Addison-Wesley, 1966
- [4] Sunday Oluyemi, The topologies of uniform convergence are the topologies generated by collections of lower semicontinuous seminorms
- [5] Sunday Oluyemi, A characterization of local completeness.
- Warren Page, Topological Uniform Structures, Dover Publications, Inc., New York, 1988. [6]
- [7] Pedro PerezCarrera and Jose Bonet, Barrelled Locally Convex Spaces, North-Holland Mathematics Studies, Vol. 131, North-Holland, 1987.

- [8] Angus E. Taylor and David C. Lay, *Introduction to Functional Analysis*, Second Edition, John Wiley & sons, 1980.
- [9] Albert Wilansky, Modern *Methods in Topological Vector Spaces*, McGraw-Hill, 1978