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Abstract 
 

A separated locally convex space is locally complete if and only if every 

lower semicontinuous seminorm is bounded.  

Incidentally, we also establish  

(i) a seminorm analogue of [9, Definition 13-1-4 of the inductive limit 

topology], THEOREM 2.3, and  

(ii) the counterpart of [4, IMPORTANT CONSEQUENCE 5.7] for *(E,  

E  ), THEOREM 3.9. 
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1.0 Introduction 
All topologies are assumed separated, and by a lcs (E, ) shall be meant a separa- ted locally convex space, with continuous 

dual E . The field of scalars of our spaces shall be K = ℝ or ℂ, the reals or the complex numbers. All notation and 

terminologies shall be standard as found, for example, in [9], [3], [2], [5] and [4]. /// signifies the end or absence of a proof; 

and if 1, 2 are topologies on X  , by  1  2  is meant that 1 is finer than 2. 

 

2.0 1    
An absolutely convex bounded subset B of the lcs (E, ) is called a disc of (E, ), and the seminormed space (EB, qB), where 

EB is the linear span of B in E and qB the Minkowski functional of B in EB, is a normed space[5, third paragraph]. We denote 

by p, following [4, Section 1], the pseudometric topology of the semi- norm p : E → ℝ; and so for disc B of (E, ), (EB, qB) 

is a lcs. 

Let  be a collection of discs of lcs (E, )  satisfying the condition that 
B

BE  spans E. Denote by   the inductive limit[9, 

Definition 13-1-4, p.210] topology  on E by the inclusions 
BEi  : (EB, qB) → E , B   . 

We note the following two lemmas. 

LEMMA 1 [3, Paragraph following Definition 2.6.1, p.108]  Let A and B be non-empty subsets of a vector space X such 

that A is balanced. Then, A absorbs B if and only if there exists   K such that B  A. /// 

LEMMA 2 [3, Fifth and sixth lines p.208]  For disc B of an lcs (E, ), the lcs (EB, qB) has {B :   0}as a base of 

neighbourhoods of zero. /// 

With notation and language as in the paragraph preceding LEMMA 1, immediate from LEMMAS 1 and 2 and [9, Theorem 

13-1-11, p.211] is  

THEOREM 3 A base of neighbourhood of zero of   is the collection of all  absolutely convex subsets V of E such that V 

absorbs every B  . /// 

COROLLARY 4  Members of  are  -bounded  

Proof [9, Problem 4-4-3, p.49]. /// 
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LEMMA 5 [7, Proposition 3.2.2, p.82]  For any disc B of lcs (E, ), |EB  qB . i.e., the restriction of  to EB is coarser than  

qB . /// 

FACT 6     .  i.e.,  is coarser than  . 

Proof  From LEMMA 5 follows that  is a test topology[9, Definition 13-1-1, p.209]. Therefore,   . /// 

FACT 7  is the finest locally convex topology on E with respect to which the  members of  are bounded.              

Proof By COROLLARY 4, members of  are -bounded. Suppose  is another locally convex topology on E w.r.t which 

the members of  are bounded. Then, clearly, immediate from definition,   = . But     by BACT 6, and so     

= . /// 

Clearly, from the proof of FACT 7 above is  

THEOREM 8  If   is a collection of discs of a dual pair E, E [4, Section 2][9, Theorem 8-4-1, p.114] such that
B

BE  

spans E, the topology  is duality invariant. That is, if  and  are topologies of a dual pair E, E , then  =  . /// 

Let (E, ) be a lcs and D the collection of all the discs of (E, ). Clearly, for any x  E, noting that a singleton is bounded[3, 

Second paragraph, p.109] and convex, and that [9, Problem 7-1-1, p.93 : the absolutely convex hull of a bounded set is boun- 

ded], it follows that there exists Bx  D such that x  Bx; and so  {EB : B  D} spans E. Then, by FACT 7, noting that a 

subset of a bounded set is bounded and that a subset bounded w.r.t a topology remains bounded w.r.t a coarser topology, D is 

the finest locally convex topology on E having same bounded sets as (E, ). D is usually denoted b. By [3, Exercises 3.7.8, 

p.226] b is called the bornological[3, Definition 3.7.1, p.220] topology associated with . We note this in  

FACT 9  For lcs (E, ), 

(i) b is the finest locally convex topology on E with the same bounded sets as , and  

(ii) b is the finest locally convex topology with the same local null[5, third paragraph] sequences as . 

Proof   (ii) is immediate from (i) and the definition of a local null sequence. /// 

 

3.0 2  and Generating Seminorms   

Let (E, ),   I  , be lcss and E a linear space. For each   I, let  f : E  → E be a linear map.  Suppose )( α

α

α Ef
I




 

spans E. Recall that a locally convex topology  on E is called a test topology if  f  is (-)-continuous for each   I. We 

have the following. 

LEMMA 1 Let p be a seminorm on E. Then, the topology p of the seminorm  p on E, is a test topology  the compositions  

pof  :  E  → ℝ,   I  , are continuous. 

Proof We have (E, ) ⎯→⎯ αf E ⎯→⎯
p

ℝ,   I. By [9, Problem 4-5-1(a)  (b), p.55], (E, p) ⎯→⎯
p

ℝ is continuous, 

and so if p is a test topology on E, (E, ) ⎯→⎯ αf (E, p) is continuous for each , and therefore,  pof is continuous for 

each . For the implication  let Bp = {x  E : p(x)  1}, and so for   0, Bp = {z  E : p(z)  }. A base of  

neighbourhoods of zero of the topology p of p on E is {Bp :   0}. If we now show that )(ε1

α pBf −
 is a neighbourhood of 

zero in (E, ) for each   I and each   0, then p is a test topology [9, Problem 4-1-1, p.39]. Now      

)(ε1

α pBf −
 = 

1

α

−f ( p – 1((– , )))   = 
1

α )( −fp  (( – , )) 

which by the hypothesis of continuity of each composition pof, is a neighbourhood of zero of (E, ). Hence, p is a test 

topology. /// 

LEMMA 2  Denote by  indlim( f, )I
   the inductive limit topology[9, Definition 13-1-4, p.210] by the linear maps  f. 

Let  

p : (E, indlim(f, )I) → ℝ 

be a seminorm. p is continuous  the composition pof is continuous for each   I , which by LEMMA 1,   p is a test 

topology on E. 

Proof We have E ⎯→⎯ αf (E, indlim( f, )I) ⎯→⎯
p

ℝ. Clearly p is continuous implies pof is continuous for each   

I.  Suppose pof is continuous for each   I. By LEM- MA 1, p is a test topology and so indlim( f, )I   p. And so 

by [9, Problem 4-5-1, p.55],  p : (E, indlim( f, )I) → ℝ is continuous. /// 

Since a locally convex topology is generated by its set of continuous seminorms [9, first line of first paragraph after 

Definition 7-2-3, p.94], we have a seminorm analogue of the Definition 13-1-4, p.210 of [9]. 
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THEOREM 3  indlim( f, )I = {p : p is a seminorm on E, pof is continu-ous on (E, )  for each   I } = {p : 

p is a test topology on E}. /// 

Suppose  is a collection of discs of lcs (E, ). A sequence 


=1)( nnx  in E shall be called -null provided 


=1)( nnx  is a null 

sequence in (EB, qB) for some B  . 

If E is a vector space,   B  E and  p : E  → ℝ a seminorm, we shall say that  p is bounded on B provided p(B) is a 

bounded subset of ℝ. If 


=1)( nnx  is a sequence in E, we shall say that p is bounded on 


=1)( nnx  if it is bounded on its  range 

[|Compare the defini- tion : 


=1)( nnx  is bounded  in the lcs (E, ) provided its  range is a bounded set of (E, ). FACT: A 

convergent sequence is a bounded sequence. This FACT is employed in the proof of (v)  (iv) of THEOREM 7 and 

THEOREM 3.3 |]. 

If (E, ) is a lcs and p : E → ℝ a seminorm, we shall call p a bounded seminorm  provided p is bounded on every bounded 

subset B of (E, )[| Compare Definition 4-4-2, p.47 of [9]|]. 

LEMMA 4[9, Problem 4-4-1, p.49]  Let p : (E, ) → ℝ be a continuous seminorm on an lcs (E, ). Then,  p is a bounded 

seminorm. /// 

We need a modification or do we say a corollary of [9, Theorem 4-4-1, p.47] to be able to prove one of the implications in the 

proof of THEOREM 7 below. We state it in 

THEOREM 5  The following are equivalent for a set S   in a topological vector space (E, ). 

(i)    S is bounded  

(ii)   For every sequence 


=1)( nnx   in S and every null sequence of scalars 


=1)(ε nn
, we have that 



=1)(ε nnn x  is null in (E, 

 ). 

(iii)    For every sequence 


=1)( nnx   is S, sequence 


=1
1 )( 2 nnn

x   is null in (E, ). 

Proof That (i)  (ii)  (iii) is already given in [9, Theorem 4-4-1, p.47], and so we only need prove (iii)  (i).  Proof  : 

Assume the opposite that S is not bounded. Hence, there exists a balanced neighbourhood of zero V, say, of (E, ) that does 

not absorb S. And so, by LEMMA 1.1, S ⊈ n2V for all positive integer n. Therefore, there exists a sequence


=1)( nnx  in S such 

that nn
x2

1  V for all n, and so 


=1
1 )( 2 nnn

x  cannot be eventually in V. /// 

Let p : E  → ℝ be a seminorm on a vector space E. Then, the pseudometric topology p of p on E is a locally convex 

topology and so (E, p) is a locally convex space. p induces on E a pseudometric dp defined by dp(a, b) = p(a – b), a , b  E. 

A sub-set B   of E is said to be metrically bounded  provided it is a bounded subset of the pseudometric space (E, dp). i.e., 

there exists x0  E and   0 such that dp(x, x0)   for all x  B. This is clearly equivalent to, employing the triangle 

inequality property of p, requiring that there exists   0 such that  

              p(x) =  p(x  – )  =  dp(x, )    for all x  B    …(*)      

THEOREM 6 [9, Second claim of Problem 4-4-1, p.49] Boundedness in the locally convex space (E, p) is same as metric 

boundedness   

Proof   The family {Bp :   0}[| Bp = {z  E : p(x)  1|] is a base of neigh- bourhoods of zero of (E, p). And so, by [2, 

(17.2), p.68] and LEMMA 1.1, 

B is p-bounded  there exists   0 such that B  Bp[ = {z  E : p(z)  } ={z  E : p(z  – )  }], which in turn is by 

(*) above  

               B is metrically bounded. /// 

Now we have   

THEOREM 7  Let  be a collection of discs of the lcs (E, ) such that 
B

BE  spans E. Consider the inclusions 
BEi  : (EB,  

qB) → E and the inductive limit topology  by these inclusions. Let p : E  → ℝ be a seminorm on E. The following are 

equivalent. 

 (i)    The restriction of  p to EB is qB-continuous for each B   . 

 (ii)    p is -continuous. 

 (iii)   p is bounded on members of . 

 (iv)   p is bounded on -null sequences. 

 (v)    p maps -null sequence to null sequences. 
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Proof  We have  (EB,  qB) ⎯→⎯ BEi
(E,  ) ⎯→⎯

p
ℝ. 

(i)  (ii) : Immediate from LEMMA 2. 

(ii)  (iii) : By COROLLARY 1.4, members of   are -bounded, and so this impli- cation is then immediate from 

LEMMA 4. 

(iii)  (ii) : Suppose p is bounded on every member of   and so there exists, by THEO- REM 6 and the paragraph 

preceding it, B  0 for every B  , such that  p(x)  B for a-  ll x  B. And so, B  BBp [| Bp = {x  E : p(x)  1}|]. From 

this follows that Bp 
Bλ

1 B, and by LEMMA 1.2, BpEB is a neighbourhood of zero of (EB,  qB) for every B  . By [9, 

Theorem 13-1-11, p.211], therefore, Bp is a neighbourhood of zero of . Hence, by [9, Problem 4-5-1, p.55] p   and p is 

-continuous. 

(v)  (iv): Immediate from definitions as convergent sequences in (ℝ, | | ) are bounded.  

(iii)  (v): Suppose 


=1)( nnx  is null in (EB, qB) for some B  . Therefore, by LEMMA 1.2, for   0, there exists a 

positive integer N() such that xn  B for all n  N().  

Therefore, p(xn)  p(B) for all n  N() and so p(xn)  p(B) for all n  N(). [| M = the absolutely convex hull of M |]. By 

hypothesis, p(B) is bounded and so by [9, Problem 7-1-1, p.93 : the absolutely convex hull of a bounded set is bounded ] 

p(B) is bounded. Hence, since  was arbitrary, it follows from LEMMA 1.2 that 


=1))(( nnxp  is null in (ℝp(B) , qp(B)), 

where ℝ is the reals. By LEMMA 1.5, therefore, 


=1))(( nnxp  is null in (ℝ, ||).     

(iv)  (iii):  This is the place where we need THEOREM 5. Assume that p is bounded on -null sequences. Suppose B   

. Let 


=1)( nny  be a sequence in p(B), and so yn = p(xn) for some xn  B. Since xn  B, nn
x1   B

n
1 . Let   0. By a property 

of the real numbers ℝ [1, Corollary 2.5, p.40] there exists a positive integer N() such that
ε)(

1
N

  . By another property [1, 

Exercise 2.1.15, p. 30], 
n
1  

ε)(
1

N
 for all n  N(). And so, for all n  N(), by [2, (17.2), p.68]. 

nn
x1   B

n
1   

ε)(
1

N
B    B. 

Since  was arbitrary, it follows from LEMMA 1.2 that the sequence 


=1
1 )( nnn

x  is null in (EB, qB). By hypothesis, therefore, 

p is bounded in 


=1
1 )( nnn

x . i.e., )({ 1
nn

xp  : n = 1, 2, 3, …} is a bounded set of ℝ, and so from elementary Analysis, 

)( 11
nnn

xp → 0 as n → . That is, )(2

1
nn

xp → 0 as n → . By THEOREMS 5 and 6, taking cognizance of the metric 

locally convex space (ℝ, ||), p is bounded on B. /// 

Since the collection of seminorms continuous on the lcs (E, ) generates its topology , we have  

COROLLARY 8  Let  be a collection of discs of (E, ) such that 
B

BE  spans  E. Then, 

  = {p : p is a seminorm on E, p  is bounded on members of } 

      = {p : p is a seminorm on E, p is  bounded on -null sequences} 

      = {p : p is a seminorm on E, p maps -null sequence to null sequences} 

      = {p : p is  a seminorm on E, the restriction of p to (EB, qB) is continuous  for each disc B  } (That is, the 

 restriction of p to EB is qB-continuous). /// 

 COROLLARY 9 

 b = {p : p is a seminorm on E, p  is a bounded seminorm} 

      = {p : p is a seminorm on E, p is  bounded on local null sequences} 

      = {p : p is a seminorm on E, p maps local null sequence to null sequences} 

      = {p : p is  a seminorm on E, the restriction of  p to (EB, qB) is continuous for each disc B}. 

3 buc = *(E, E )  Let (E, ) be a lcs. For the definition of  *(E, E ) we need some clarification. Let   X and  a family 

of subsets of X. A subfamily * of  is called a fundamental subfamily of  if for every B   there exists B*  * such 

that B*  B[3, 4th paragraph, p.109][6, Paragraph preceding Example 13.21, p. 144]. 

Example 1  Let (E, ) be a lcs and  the collection of all the bounded sets of (E, ). Then, the collection D of all the discs of 

(E, ) is a fundamental subfamily of . Proof : [9, Problem 7-1-1, p.93 : the absolutely convex hull of a bounded set is 

bounded]. /// 
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THEOREM 2  Let (E, ) be a lcs and  a family of bounded sets of (E, ). If * is a fundamental subfamily of  , then 

uc() =uc(*). 

Proof  For B  , there exists B*  * such that B*  B, and so, clearly, employing the notation of [4, FACT 4.2], pB*  pB. 

Hence, by [2, Lemma (37.11), p.149] pB*  pB. Therefore, uc() does not have more generators (subbase) than uc(*), and 

so               

           uc(*)     uc()      …() 

But *  , and so 

{pB* : B  *}   {pB  : B  }. 

Hence, again, this time, uc() has a bigger subbase than uc(*). Therefore,  

           uc(*)     uc()               …() 

From () and () follows that  

           uc(*)   =  uc(). /// 

Now for the lcs (E, ) consider the dual pair E, E . If   = the (E , E)-bou- nded subsets of E  and * the absolutely 

convex  (E , E)-bounded subsets of E , then, by the preceding THEOREM 2, and [9, Problem 7-1-1, p.93], uc(*)   =  uc(). 

Denote this topology[7, Paragraph preceding 0.3.1, p.2][9, Remark 10-1-3, p.150][3, Exercise 3.6.5, p.220] by *(E, E ). 

Let (E, ) be a lcs and consider the dual pair E, E . Consider the finest topology of uniform convergence buc w.r.t the dual 

pair E, E , having same bounded sets as . CLAIM : buc exists. Proof of CLAIM : Immediate from [4, Theorem 4.7] and 

[9, theorem 4-4-5.p.48, noting that   itself is a topology of uniform con- vergence w.r.t E, E ]. /// Clearly, all the 

neighbouhoods of zero of  buc  are -bor- nivores. Indeed, being a topology of uniform convergence, buc has a base of 

neighbour- hoods of zero consisting of -barrels[4, FACT 4.4] which are of necessity -bornivores. Well-known is that *(E, 

E ) has a base of neighbourhods of zero comprisi-ng all the bornivore barrels of (E, )[7, Observation 3.1.5(c), p.82][9, 

Lemma 10-1-5 p.150]. Hence *(E, E ) and  have same bounded [|Note by [3, Exercise 3.6.5(a), p.220] that   *(E, E  )|] 

sets and  

           buc  *(E, E )          …(*) 

But, *(E, E ) being a topology of uniform convergence, by the maximality of buc, 

               *(E, E )  buc                 …(**) 

By (*) and (**) 

buc = *(E, E ). 

So, we have  

THEOREM 3 buc = *(E, E ) is the finest topology on E of uniform convergence w.r.t E, E  having same bounded sets 

as . Clearly, *(E, E ) is the finest topology of un- iform convergence having same local null sequences as .[By the 

definition of a local null sequence – See third paragraph of 5]. /// 

By a local sequential neighbourhood of zero of lcs (E, ) shall be meant an absolutely convex subset of E in which every 

local null sequence eventually lies. 

FACT 4 [7, Proposition 5.1.3(ii), p.151]  Let (E, ) be a lcs. The sequence 


=1)( nnx  in E is -local null if and only if there 

exists an unbounded sequence 


=1)(α nn
 of real scalars, n  0 for all n, such that 



=1)(α nnn x  is a -null sequence. ///  

THEOREM 5  Suppose B is a barrel of lcs (E, ). The following are equivalent. 

(i)   B is a local sequential neighbourhod of zero of (E, ). 

(ii)  B is a bornivore. 

That is, the bornivere barrels are the barrels that are local sequential neighbourhoods of zero  

Proof(i)  (ii):  Immediate from [5, LEMMA 1]. 

(ii)  (i):  Suppose the barrel B is a bornivore. Let 


=1)( nnx  be a local null sequence and so, by FACT 4, there exists an 

increasing unbounded sequence 


=1)(α nn
,  n  0 for all n, such that 



=1)(α nnn x  is a null sequence, and so  

                       {nxn : n ℕ}                  …() 

is a bounded set. Since B is a bornivoure, it absorbs () and so by LEMMA 1.1 for some   0, 

nxn B, for all n. 

That is,  

xn  
nα
λ B, for all n. 

For some positive integer N, 
nα
λ   1, for all n  N.  Hence by [2, (17.2), p.68], 
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xn  B, for all n  N, and so B is a local sequential neighbourhood of zero . /// 

OBSERVATIONS 6 If in the lcs (E, ) the sequence


=1)( nnx   is local null, then for scalar   0 the sequence 


=1)(λ nnx  is 

also local null. Proof : by FACT 4 


=1)(α nnn x  is null for some unbounded increasing sequence 


=1)(α nn
 of real positive 

scalars. The sequence 


=1λ
1 )α( nn

 is also clearly increasing unbounded. Clearly λ)α(
λ
1

n  = n, and so   



=1λ

α
)λ)(( nnxn  = 



=1)(α nnn x  is local null. 

Hence, the sequence


=1)(λ nnx  is local null, again by FACT 4. COROLLARY : If V is a local sequential neighbourhood of 

zero, then V, for scalar   0, is also a local sequential neighbourhood of zero. Proof : Suppose 


=1)( nnx  is local null in (E, 

), and so, by the preceding 


=1λ
1 )( nnx  is local null. Hence, for some positive integer N(), 

nx
λ
1  V for all n   N(), 

from which follows that  

xn  V  for all n   N()./// 

Let (E, ) be a lcs and q a seminorm on E. Call q a local sequentially continuous seminorm if 


=1))(( nnxq  is a null sequence 

whenever


=1)( nnx  is locally null in (E, ). It is clear from THEOREM 2.7 that the local sequentially continuous seminorms 

are the bounded seminorms  

We have 

THEOREM 7 The following are equivalent for the lcs (E, ). 

I  Every lower semicontinuous local sequentially continuous seminorm is continuous      

II.  Every barrel which is a local sequential neighbourhood of zero of (E, ) is a neighbourhood of zero of (E, )  

Proof 1II:  Assume I. Let B be a barrel of (E, ) which is a local sequential neighbourhood of zero of (E, ). By [4, Lemma 

6.3], B = {x  E : qB(x)  1}, where qB is the Minkowski functional of B. By [4, Theorem 5.2], therefore, qB is lower 

semicontinuous. Since B is a local sequential neighbourhood of zero of (E, ), by the COROLLARY  in OBSERVATIONS 6, 

B = {x  E : qB(x)  }, for any   0, is a local sequential neighbourhood of zero of (E, ). From this clearly follows that qB 

is local sequentially continuous. By hypothesis, therefore, qB is -continuous. Hence, by [8, Lemma II.11.2, p.106], B is a 

neighbourhoood of zero in (E, ). 

I1 I:  Assume II. Let q be a lower semicontinuous local sequentially continuous semi- norm on (E, ). Then, by [4, 

Theorem 5.2], Ucd-q = {x  E : q(x)  1}is a barrel and so since q is local sequentially continuous, Ucd-q is a local 

sequential neighbourhood of zero. By hypothesis, therefore, Ucd-q is a neighbourhood of zero of (E, ) and so again by [8, 

Lemma II.11.2, p.106], q is continuous. /// 

Call lcs (E, ) a quasibarrelled space if  =  *(E, E ) =  buc 

COROLLARY 8  For lcs (E, ), the following are equivalent. 

(i)      (E, ) is quasibarrelled [i.e.,  =  *(E, E )]. 

(ii)     Every bornivore barrel is a nieghbourhood of zero of  (E, ). 

(iii)    Every barrel which is a local sequential neighbourhood of zero of (E, ) is a neighbourhood of zero of (E, ). 

 (iv)    Every lower semicontinuous local sequentially continuous seminorm is continuous. 

Proof  (i)  (ii) is by [7, Observation 3.1.5(c), p.82]. 

(ii)  (iii) is by THEOREM 5. 

(iii)  (iv) is by THEOREM 7. /// 

We have  

THEOREM 9  For lcs (E, ), 

buc = *(E, E ) = (p : p is a lower semicontinous local sequentially continuous seminorm on (E, )}. 

= (p : p is a lower semicontinous bounded seminorm}. 

Proof  By [4, FACT 4.5 and THEOREM 5.2] and [COROLLARY in OBSERVATIONS 6, noting that B  = ||B for 

balanced B and scalar ] and the proof of II of THEOREM 7, any topology on E generated by a collection, P, say, of lower 

semicontinuous local sequentially continuous seminorms has a base of barrels that are local sequential neighbourhoods of 

zero. And so, by THEOREM 5 and [7, Observa- tion 3.1.5(c), p.82] such a topology is coarser than *(E, E ) =  buc. Hence, 

if     
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* = {p : p is a lower semicontinous local sequentially continuous seminorm on E}, 

then  

              *   buc       …() 

By [4, Main Theorem 5.4], buc is generated by a collection Q of lower semicontinuous seminorms. For q  Q, Ucd-q ={x  

E : q(x)  1} is a barrel [4,  

Theorem 5.2] and a neighbourhood of zero of  p     buc, and hence a neighbourhood of zero of  buc  = *(E, E ). And so 

by [7, Observation 3.1.5(c), p.82], contains a borni- vore barrel, and so is a bornivore barrel, and so by THEOREM 5 is a 

local sequential neighbourhood of zero of (E, ). Hence, by the COROLLARY in OBSERVATIONS 6, Ucd-q = {x  E : 

q(x)  }, for any   0, is a local sequentially neighbourhood of zero of (E, ), and so q is local sequentially continuous. 

Therefore, q   * for all q  Q, from which follows that 

               buc   *     …() 

By () and (), buc =  *. And this proves the second equality. The third follows from the observation in the paragraph 

preceding THEOREM 7. /// 

A corollary of the just mentioned observation in the preceding proof and Coro- llary 8 ((i)  (iv)) is  

COROLLARY 10 [9, Problem 10-1-109, p.152]  Lcs (E, ) is quasibarrelled  every bounded lower semicontinuous 

seminorm on (E, ) is continuous.  /// 

 

4.0  Another Characterization of Local Compl-eteness   

First recall from the paragraph preceding THEOREM 1 of [5] that lcs (E, ) is locally complete  every barrel is a bornivore 

barrel. By {7, Obser- vation 3.1.5(b) and (c) p.82] we therefore have  

THEOREM 1  Lcs (E, ) is locally complete  *(E, E ) = (E, E ) . /// 

Now, we have the characterization advertised by the title of the paper. 

THEOREM 2  Lcs (E, ) is locally complete 1 Every lower semincontinuous seminorm is local sequentially continuous  

2- Every lower semicontinuous seminorm is bounded.  

Proof  2 is the last sentence preceding THEOREM 3.7. 

For  1 we consider first the forward implication : Assume (E, ) locally complete, and so by THEOREM 1, *(E, E ) = 

(E, E ). By [4, Theorem 5.7], THEOREM 3.9 and [9, Problem 7-2-105, p.97], therefore, it follows that every lower 

semicontinuous seminorm is local sequentially continuous. For the reverse implication  suppose every lower 

semicontinuous seminorm is local sequentially continuous. Noting that in general *(E, E )  (E, E ), it follows from 

THEOREM 3.9 and [4, Theorem 5.7] that (E, E )  *(E, E ) and so *(E, E ) = (E, E ). By THEOREM 1, then, (E, ) is 

locally complete. /// 
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