A Characterization of Local Completeness

Sunday Oluyemi

Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso, Nigeria.

Abstract

A separated locally convex space is locally complete if and only if all the precompact sets are strongly bounded.

Keywords: Precompact sets, strongly bounded sets, locally complete space 2010 Amer Math.Soc. Subject Classification 46A03, 46A08, 46A17, 46A20

1.0 Introduction

All topologies are assumed separated and by a *lcs* (*E*, τ) shall be meant a separated locally convex space with continuous dual *E*'. The field of scalars is **K** = \mathbb{R} , the real numbers or \mathbb{C} , the complex numbers[1, First paragraph, p.47]. All dual pairs $\langle X, Y \rangle$ [7, Section 2. We shall freely use the language and notation of [7]] shall be separated, with polars taken w.r.t them absolute, and, by $\sigma(X, Y)$ and $\beta(X, Y)$ shall, respectively, be meant the *weak topology* and the *strong topology* on *X* of the dual pair. If *p* is a seminorm on the linear space *X*, following Wilansky in [8], we shall denote its pseudometric topology by σp . The topology τ_1 on *X* being finer than τ_2 on *X* is indicated by $\tau_1 \ge \tau_2$, while the subspace topology of τ_1 induced on $\emptyset \ne A \subseteq X$ is denoted $\tau_1|A$. /// signifies the end or absence of a proof.

For lcs (E, τ) , an absolutely convex absorbing closed subset *B* of *E* is called a *barrel* of (E, τ) . A subset *W* of *E* absorbing all bounded sets is called a *bornivore*, [8, Definition 4-4-6, p. 48], while $P \subseteq E$ is called a *precompact set* if for every neighbourhood

of zero V, of (E, τ) , there exists a finite subset $\{x_1, x_2, ..., x_n\}$ of E such that $P \subseteq \bigcup_{i=1}^n (x_i + V)$ [8, First paragraph of Section 6-4,

p.83][4, Theorem 2.10.2(c), p.145].

An absolutely convex bounded subset *B* of the lcs (E, τ) is called a *disc*; [3, Definition 3.2.1, p.82] if E_B is the linear span of *B* in *E*, then *B* is absorbing in E_B and the Minkowski functional q_B of *B* in E_B is a norm, and so, (E_B, q_B) is a normed space[3, Proposition 3.2.2., p.82][4, Proposition 3.5.6(a), p.207]. A sequence $(x_n)_{n=1}^{\infty}$ in *E* that converges to $x \in E$ in the normed space (E_{B^*}, q_{B^*}) , for some disc B^* of (E, τ) , is said to *locally converge to x in* (E, τ) ; if x = 0, the zero of *E*, $(x_n)_{n=1}^{\infty}$ is called a *local null sequence*. The sequence $(z_n)_{n=1}^{\infty}$ in *E* is called a *locally Cauchy sequence* [3, Definition 5.1.1, p.151] of (E, τ) if it is Cauchy in (E_B, q_B) for some disc *B* of (E, τ) ; and (E, τ) called a *locally complete space*[5, p.8][3, Definition 5.1.5, p.152] if every locally Cauchy sequence locally converges. Hans Jarchow noted in [5] that (E, τ) being locally complete is equivalent to requiring that for every closed disc *B* of (E, τ) , (E_B, q_B) is a Banach space[3, Proposition 5.1.6, p.152]. Again, by [3, Proposition 5.1.6, p.152], every closed disc *B* of (E, τ) implying (E_B, q_B) Banach is equivalent to: Every bounded subset of *E* is included in a Banach disc[| Disc *B* is a *Banach disc* if (E_B, q_B) is a Banach space []. Carlos Bosch and Jan Kucera employed the two pages of [2] to show that a space (E, τ) meets this last condition [they called such a space *fast complete*] if and only if its bounded sets are strongly bounded. Albert Wilansky, however, in [8, Definition 10-4-3, p.158] a space is Banach-Mackey if and only if every barrel is a brornivore. We here add to all these characterization two others the first of which is

THEOREM 1 Lcs (E, τ) is locally complete if and only if every precompact set is strongly bounded (i.e., $\beta(E, E')$ -bounded). Before giving a proof of THEOREM 1 we note that a contribution of this paper is that

(i) While the Bosch-Kucera characterization requires our examining all bounded sets for strong boundedness, THEOREM 1 prescribes that we restrict our examination to the smaller class of precompact sets[8, Lemma 6-4-1, p.83].

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 89 – 90

A second contribution is that

Corresponding author: Sunday Oluyemi, Tel.: +2348102016571

A Characterization of... Oluyemi Trans. of NAMP

(ii) This is the first characterization, known to the author, relating local completeness with precompact sets, and as a consequence we are able to relate the topology of precompact convergence[4, p.234] with the strong* topology $\beta(X', X)$ [8, Section 10-1, last two lines of second paragraph, p.149 and Remark 10-1-3, first line, p.150] for a locally complete space, thus coming up with another characterization of local completeness, our THEOREM 2 below.

For the proof of THEOREM 1, we need some lemmas.

LEMMA 1 [8, Problem 8-6-114, p.126] A set absorbing all local null sequences (i.e., absorbing their range) is a bornivore. /// **LEMMA 2** Local null sequences are also ordinarily null.

Proof For a disc *B* of lcs (*E*, τ), by [3, Proposition 3.2.2., p.82], $\tau |E_B \le \sigma q_B.///$

LEMMA 3 A bornivore barrel is a barrel absorbing precompact sets.

Proof From LEMMA 2, local null sequences are null. Null sequences are precompact sets (i.e., the range of a null sequence is precompact) and so local null sequences are precompact. The \Leftarrow claim of this lemma is now immediate from LEMMA 1. For the \Rightarrow claim, it suffices to note that a prompact set is a bounded set. ///

Now to the

Proof of THEOREM 1 The forward implication \Rightarrow is clear, since by local completeness τ and $\beta(E, E')$ have same bounded sets[the Bosch-Kucera characterization] and precompact sets are bounded.

For the implication \Leftarrow observe that the barrels of (E, τ) constitute a base of neighbourhoods of zero of $\beta(E, E')$ [3, Observation 3.1.5, p.82] and so all $\beta(E, E')$ -bounded sets are the subsets of *E* absorbed by all the barrels of (E, τ) . Therefore, if every precompact set is $\beta(E, E')$ -bounded, then the precompact sets are absorbed by all the barrels of (E, τ) and so by

LEMMA 3 all the barrels of (E, τ) are bornivores. And the two sentences preceding the statement of THEOREM 1 complete the proof. ///

Let $\langle X, Y \rangle$ be a dual pair. Wilansky in [8, Definition 8-5-1, p.118] calls a non-empty collection \Re of non-empty $\sigma(Y, X)$ -bounded subsets of *Y* a polar family[7, Paragraph preceding CLAIM 4.3] if

(i) for $A, B \in \mathfrak{R}$, there exists $C \in \mathfrak{R}$ such that $A \cup B \subseteq C$, and

(ii) for $D \in \mathfrak{R}$, there exists $E \in \mathfrak{R}$ such that $E \supseteq 2D$;

and in [8, Definitions 8-5-9, p.120] calls the polar family \Re a *saturated polar family* if subsets of double polars, A^{oo} , of members A of \Re are also members of \Re . We denote by $\tau_{p(\Re)}$ the polar topology on X determined by \Re . [It is denoted τ_{\Re} by [8] on its page 119]. **LEMMA 4** $\tau_{p(\Re)}$ is also the topology on X of uniform convergence $\tau_{uc(\Re)}$, on the sets of \Re .

Proof [7, CLAIM 4.3]. ///

LEMMA 5[6, the LEMMA of p.13] Let (E, τ) be a lcs.

(a) The collection of precompact sets is a saturated polar family.

(b) The collection of $\beta(E, E')$ -bounded sets is a saturated polar family. ///

LEMMA 6 [8, Theorem 8-5-11, p.120] Let $\langle X, Y \rangle$ be a dual pair and \mathcal{F} and \mathcal{B} polar families in Y with \mathcal{F} saturated. Then, $\tau_{uc(\mathcal{F})} \geq \tau_{uc(\mathcal{B})}$ if and only if $\mathcal{F} \supseteq \mathcal{B}$. ///

If \mathcal{B} is the collection of precompact sets of the lcs (E, τ) , considering the dual pair $\langle E, E' \rangle$, $\tau_{uc(\mathcal{B})}$ is called the *topology of precompact convergence* on E' [4, Definition 3. 9.2, p.234] pc(E', E); if \mathfrak{R} is the collection of the $\beta(E, E')$ -bounded sets, $\tau_{uc(\mathfrak{R})}$ is denoted $\beta^*(E', E)$ [4, Exercise 5, p.220][8, Remark 10-1-3, p.150].

Considering LEMMAS 5 and 6, if \mathcal{B} is the collection of precompact sets of the lcs (E, τ) and \mathcal{F} the collection of strongly bounded sets (i.e., $(\beta(E, E')$ -bounded sets) and considering the dual pair $\langle E, E' \rangle$, it is immediate from THEOREM 1, therefore, that **THEOREM 2** Lcs (E, τ) is locally complete if and only if $pc(E', E) \leq \beta^*(E', E)$. ///

2.0 Reference

- [1] Sterling K Berberian, Lectures in Functional Analysis and Operator Theory, GTM 15, Springer-Verlag, World Publishing Corporation, Beiging, China, 1974
- [2] Carlos Bosch and Jan Kucera, A Necessary and sufficient condition for w*-bounded sets to be strongly bounded, Proc. AMS, vol, 101, No.3, (1987), 453-454.
- [3] Pedro PerezCarreras and Jose Bonet, Barrelled Locally Convex Spaces, North-Holland Mathematics Studies, Vol, 131, North-Holland 1987.
- [4] John Horvath, Topological Vector Spaces and Distribution I, Addison-Wesley, 1966.
- [5] Hans Jarchow, On generalizations of DF-spaces, Analele Universitatii Din Craiova, Seria Matamatica, Fizica-Chimie, vol. VIII (1980), 8 17.
- [6] Sunday Oluyemi, A characterizations of BTB Space, Science Focus, LAUTECH, (Nigeria) vol. 2 (2003) 13 14.
- [7] Sunday Oluyemi, The topologies of uniform convergence are the topologies generated by collections of lower semicontinuous seminorms.
- [8] Albert Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, 1978

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 89 – 90