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1.0 Introduction 
By a lcs (E, )[6, Abbreviation 8-1-12, p.105] we shall mean a separated locally convex space[6, First two lines of Section 7-

1, p.91][2, Definition 2. 4.1, p.86]. Our terminologies shall be standard as found, for example, in [1], [5], [2] and [6]. We 

signify with /// the end or absence of a proof. Finally, the first number x in each square bracket, as in [𝑥,⋯ ,⋯ ], refers to 

reference number [x]  listed at the end of the paper.  
 

2.0 Seminorm Generators   

All topological vector spaces are over K = ℝ or ℂ, the real field or the complex field. Of course, ℝ and ℂ, with their usual 

topologies, are locally convex spaces in their own right. If  is a collection of topologies on a non-empty set E, say, by , 

pronounced sup [6, Theorem1-6-8, p.11], we denote the suprenum of . If E is  a vector space and  p : E → ℝ a seminorm 

on E, then following Wilanky[6, Definition 4-1-7, p.38], by p we denote the pseudometric topology of p which is a vector 

topology by [6, Example 4-1-2, p.37]; indeed locally convex [1, Lemaa (37.10), p.149]. If P is a collection of seminorms on 

E, by P we mean {p : p  P}. If  is a vector topology and  = P, then we say that  is ge- nerated by P[6, Theorem 7-

2-2 and paragraph preceding Theorem 7-2-4, p.94] [5, Definition, p.107][1, Definition (37.9), p.149] and may write the 

locally convex space (E, ) as (E, P). If E is a non-empty set with 1, 2 topologies on E, by 1  2 we shall mean that 1 is 

coarser than 2. 
 

3.0 Dual Pair    

Let X and Y be vector spaces over the same field K = ℝ or ℂ. A mapping 

B : XxY  → K        …()          

of the Cartesian product XxY into K is called a bilinear form  or a bilinear functional  if for every  x  X and every  y  Y  the 

mappings   

  Bx  : Y →  K           and  By : X →  K 

          z  ↦ B(x, z)          z   ↦ B(z, y) 

are linear functionals[1, Definition (38.1), p.155]. Bilinear forms abound. Of particular importance is the bilinear form from 

the Cartesian product ExE# of a vector space E over K and its vector space E# of linear forms on it, called its algebraic dual: 

B : ExE# →  K, B(x,  f ) =  f(x)  for all  f  E# and all xE. If (E, ) is a topological vector space, the linear space of 

continuous linear forms on (E, ), denoted E  or (E, ), is called its continuous dual. With E# replaced by E  above, B is also 

a bilinear form.   

If in () the bilinear form B has the property [1, Definition (38.1)(v) and (vi), p.155] that for x  X, B(x,  y) = 0 for all y  Y 

 x = the zero of X, it is said to separate the points of X. Similarly, B is said to separate the points of Y if for y  Y, B(x,  y) 

= 0 for all x  X  y = the zero of Y . If B separates the points of X and the points of Y, then the triple (X, Y, B) is said to 

constitute a separated dual pair  or simply a dual pair  or a dual system[2, Definition 3.2.1, p.183] and this indicated by  
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writing  X, Y , and for x  X , y  Y, write B(x, y) as x,  y. For an instance, if (E, ) is a lcs, then the canonical bilinear 

form B : ExE   →  K, B(x,  f ) =  f(x), for all x  E and all  f  E , gives a separated dual pair  E, E  [6, 8-2-2, p.107]. 

 

4.0  Barrels of A Dual Pair   
Let  X, Y  be a dual pair, assumed, he- nceforth, always separated, and   a locally convex  topology on X.  is said to be 

compatible with  X, Y  [6, Definition 8-2-8, p.108][2, Definition 3.4.1, p.198] provided (X, )  = Ŷ , where Ŷ  = { ŷ : y  

Y, ŷ (x) =  x,  y , x  X  i.e, ŷ = By}. By (X, Y )/ (Y, X ) is meant the weak topology by the maps Ŷ / X̂ , and it is 

compatible with  X, Y , and is indeed the smallest compatible[6, Theorem 8-2-12, p.108][2, Last line of Example 3.4.2, 

p.198, and, first two lines of paragraph preceding Proposition 3.2.3, p.187]. 

If (E, ) is a lcs, an absolutely convex, absorbing and closed subset of (E, ) is called a barrel  of (E, )[6, Definition 3-3-1, 

p.32][2, Definition 3.5.2, p.208]. 

We have, using Albert Wilansky’s language of duality invariant[6, Theorem 8-4-1, p.114], 

FACT 1  [2, Proposition 3.4.3, p.198]  Being closed convex is a duality invariant. That is, if  X, Y  is a dual pair, then the 

closed convex sets of X are the same for all locally convex topologies on X which are compatible with the dual pair. Or said 

this way : If X, Y is a dual pair, then all compatible topologies for X have the same closed convex sets. /// 

We have immediately from this that  

FACT 2  [6, Remark 8-3-7, p.112]  Being a barrel is duality invariant. That is, if  X, Y  is a dual pair, then all compatible 

topologies for X have the same barrels. In particular, being a barrel of an lcs (E, ) is a duality invariant. That is, all barrels of 

(E, ) are the barrels of any other (E, *) where * is compatible with   E, (E, ) . /// 

Hence, for a given dual pair  X, Y , we may simply talk of the barrels of  X, Y ,  since by FACT 2 any barrel of (X, ) for 

compatible  is also a barrel of (X, *) for any other compatible *. 

 

5.0 Topology of Uniform Convergence and PO-LAR Topology    
Let  X, Y  be a dual pair and  a collection of (Y, X )-bounded sets. i.e., bounded sets of the lcs (Y, (Y, X )). Then, the 

collection of polars (always absolute)[6, Definition 8-3-1, p.110][2, Definition 3.3.1, p.190] 0 = {A0 : A  } is a colle- 

ction of absolutely convex absorbing subsets of X [2, Proposition 3.3.1(e) and (f ), p.190 and 191] and so by [2, Proposition 

2.4.6, p.88][5, Last paragraph, p.167] furnishes X  with a locally convex topology uc()[Second paragraph, Section 3.4, p.195 

of 2] called the topology of uniform convergence on the sets of . If  is the collection of all (Y, X )-bounded sets, uc() is 

called the strong topology  and denoted (X, Y ). (Y, X) is also clear. 

From the citation above [2, Proposition 2.4.6, p.88][5, Last paragraph, p.167] and [Sec- ond paragraph, Section 3.4, p.195 of 

2] we have 

Fact 1  A base of neighbourhoods of zero of  uc() is     

{1
0

1A 2
0

2A  … n
0

nA  : 1, 2, …, n  0, A1, A2, …, An  }. ///  

Fact 2 [1, (37.28), p.154][2, last paragraph, p.195]   Let  X, Y  be a dual pair and  a non-empty collection of  non-

empty (Y, X )-bounded sets. Then,   

uc() = {pA : A  ,  pA is a seminorm on X defined by  pA(x) = 
Aa

sup {|x, a  |}}. 

Proof  We give this for clarity. Let A  . Define  pA(x) = 
Aa

sup {|x, a|}, x  X. One checks that pA is a seminorm [2, last 

paragraph, p.195]. Proof : Let x  X . We first show that pA(x)  ∞. x, a = )(ˆ ax . (Y , (Y, X)) = X̂ . By [6, Theorem 4-4-

3,p.57], )(ˆ Ax is a bounded set of real numbers and so |,|sup 


ax
Aa

 = |)(ˆ|sup ax
Aa

  ∞. Clearly,  pA(x) ≥ 0. Let x, y X. 

Then,  pA(x + y) = |,|sup +


ayx
Aa

 = |,,|sup +


ayax
Aa

 ≤  |,||,|sup +


ayax
Aa

≤ |,|sup 


ax
Aa

 + 

|),|sup ay
Aa




 = pA(x) + pA(y). 

Similarly,  pA(x) = || pA(x), K. By FACT 1 the finite intersections of the sets A0, where   0, and  A   form a base 

of neighbourhoods of zero of uc(). Clearly, for   0, and x  X , 

Aa

sup {|x, a|} =  pA(x)        x  A0. 

From this follows, by taking finite intersections, that the topology generated by the pA’s, {pA :  
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A  }, has the same base of neighbourhoods of zero as uc(). Hence, uc() = {pA : A  }.  

///  

Albert Wilansky in [6, Definition 8-5-1, p.118] calls a non-empty collection  of  non-empty (Y, X )-bounded subsets of Y, 

 X, Y  a dual pair, a polar family  if the following two conditions are satisfied: 

(i)   For A, B  , there exists C   such that AB  C, and  

(ii)  For D  , there exists E   such that E  2D. 

Clearly, from (i) follows that  

(i) For A1, A2, …, An  ,  n  ℕ = {1, 2, 3, …}, there exists C   such that A1  A2 … An         C.  

The collection of polars {A0 : A  } is an additive[6, Definition 4-2-1, p.40] filterbase of absolutely convex absorbing 

subsets of X[6, Theorem 8-5-3, p.119] and so by [6, Theorem 4-3-5, p.45] form a base of neighbourhoods of zero for a locally 

convex topology p() on X called a polar topology of X, Y. Of course,  being a collection of (Y, X )-bounded sets, it also 

furnishes X with a topology of uniform convergence uc(). We have  

Claim 3  p() = uc(), and so p() is a topology of uniform convergence. That is, a polar topology is a topology of uniform 

convergence.  

Proof: From the preceding paragraph  

{A0 : A  }        …() 

is a base of neighbourhoods of zero of p(). By FACT 1, the collection of sets  

{1
0

1A 2
0

2A  … n
0

nA  : 1, 2, …, n  0, A1, A2, …, An  , n  ℕ}       …()  

is a base of neighbourhoods of zero of uc(). Clearly, ()  (), and so  

p()   uc()     …(*) 

We establish the revere inequality of (*). Consider the typical member  

1
0

1A 2
0

2A  … n
0

nA                 …() 

of (). By [1, (17.2), p.68], if  = min {½ , 1, 2, …, n}, then   

 0

1A   1
0

1A ,  
0

2A   2
0

2A , …,  0

nA   n
0

nA , 

and so  

()   0

1A  0

2A … 0

nA  

               = ( 0

1A  0

2A …. 0

nA )               

                                   = 








=

0

1
k

n

k

A . 

By the condition (i) (defining a polar family) there exists A   such that  A 
k

n

k

A
1=

 , and so  

A0  

0

1









=
k

n

k

A  = 
0

1
k

n

k

A
=

  

Hence,  








=

0

1
k

n

k

A    A0. That is, ()  A0. Clearly, A0 is a neighbourhood of zero of  p(), and so () is a neighbouhood 

of zero of p(). Since () was arbitrary, it follows that  p()
   uc() which is the reverse inequality of (*) that we set out to 

prove. /// 

We have a  

CRUCIALFACT 4 [6, 8-5-8, p.120].  Let X, Y be a dual pair. A locally convex  topology  on X is a polar topology 

of  X, Y  if and only if  has  a base of neighbour-  hoods of zero which are barrels of  X, Y . /// 

FACT 5   Let  X, Y  be a dual pair. 

(i)   If B is a barrel of  X, Y , so is B for any non-zero scalar . [For absorbing,  note that 
α
x  B for all ||  x   

x  (B) for all ||  x][2, Definition 2.6.1, p. 108].      

(ii)  If B1, B2, …, Bn, n  ℕ, are barrels of  X, Y , so is B1B2 …Bn. 

(iii)  If 1, 2, …, n, n  ℕ, are non-zero scalars and B1, B2, …,Bn are barrels of  X, Y , so is  1B12B2 …nBn. 

Proof (i) and (ii) are easily verified. [|For absolute convexity apply directly the FACT [3, p.4] : A is absolutely convex  rA 

+ sA  A for r, s scalars, |r| + |s|  1. /// Note also that an intersection of closed sets is closed |] (iii) is immediate from (i) and  
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(ii). /// 

CLAIM 6  A topology of uniform convergence is a polar topology. 

Proof 1:  Let  X, Y  be a dual pair. Suppose  is a non-empty collection of non-empty (Y, X)-bounded sets. By FACT 2, 

employing the notation there, for A   the closed unit disc of pA, 

Ucd-pA = {x  X :  pA(x)  1} 

is the polar A0 of A. By [2, Proposition 3.3.1, p.190/191], A0 is a barrel of  X, Y . By FACT 1 and FACT 5(iii), therefore, 

uc() has a base of neighbourhoods of zero which are barrels of  X, Y . By the CRUCIAL FACT 4, therefore, uc() is a 

polar topology of  X, Y . /// 

Proof 2:  Suppose  is a non-empty collection of non-empty (Y, X)-bounded sets. Let sc = {V :   K, V  } be the 

collection of scalar multiples of members of , and FU(sc) the collection of finite unions of members of sc. By [2, 

Proposition 3.4.2(c) and (b), p.196], uc() = uc(sc), and uc(sc) = uc(FU(sc)), and so  

                                 uc()  = uc(FU(sc))                                                                                           …() 

One checks easily that FU(sc) is a polar family as  

(i)  (1A12A2…nAn)(1B12B2…mBm) 

        1A12A2…nAn1B12B2…mBn, and  

(ii)  21A122A2…2nAn   2(1A12A2…nAn), 

      the A’s and B’s members of  and the ’s and ’s scalars. By CLAIM 3,  

                        p(FU(sc))  = uc(FU(sc))     …() 

() and () give  

                                                       uc() = p(FU(sc)). /// 

CLAIM 3 and CLAIM 6 assure us that a polar topology of a dual pair  X, Y  is a topology of uniform convergence and 

vice-versa. 

We have from CLAIM 3, CLAIM 6, FACT 4 and FACT 5, the following result which is of independent interest. 

THEOREM 7  Let  X, Y  be a dual pair. The supremum α
α
τ

I
 , of a collection { :   I } of topologies on X of uniform 

convergence w.r.t.  X, Y , is a topology on X of uniform convergence. /// 

We proceed to prove our  

 

6.0  Main Theorem   
That the topologies of uniform convergence are the topologies generated by collections of lower semicontinuous seminorms.  

Let (X, ) be a topological space,  f : (X, ) → ℝ a real function and a  X .  f  is said to be lower semicontinuous at a [4, 

Exercise 4, p.132] if for each real  with    f(a) there exists a neighbourhood Va of a such that  f(x)   for all x  Va.  f  

is called lower semicontinuous if it is lower semicontinuous at every a  X. We have from [4, Exercise 4(b) p.132] that  f  is 

lower semcontinuous if and only if the set {x  X :  f(x)  } is open in (X, ) for each   ℝ. Immediate from this is  

FACT 1 [2, Exercise 3.6.1(a), p.219][6, Problem 8-3-113, p.113]. For topological space (X, ), real-valued  f  : (X, ) → ℝ 

is lower semicontinous if and only if the set {x  X :  f(x)  } is closed in (X, ) for each   ℝ. ///            

Now we have  

THEOREM 2 [2, Exercise 3.6.1(b), p.219]  Let (E, ) be a lcs and  p : E → ℝ a  seminorm on E. Then, the closed 

unit disc of  p, Ucd-p = {x  E :  p(x)  1} is a barrel of  the dual pair E, E   p is lower semicontinous for any 

compatible topology on E for  the dual pair  E, E . 

Proof  By [3, Proposition 1.4.6, p.13][2, Last Paragraph, p.88][6, Problem 2-1-101, p.17] the closed unit disc of p, Ucd-p = 

{x  E : p(x)  1} is absolutely convex and absorbing for any seminorm  p at all. Therefore, from FACT 1  is now 

immediate. 

Now for . We verify FACT 1 for p in place of  f  there. 

I.   If   0, then {x  E :  p(x)  } = . The empty set is a closed set in any topological      space. 

II.  Suppose   = 0. By hypothesis, Ucd-p = {x  E :  p(x)  1} is a barrel of he dual pair                  E, E . And so, 
n
1 Ucd-

p = 
n
1 {x  E :  p(x)  1} = {x  E :  p(x)  

n
1 } is a barrel for all n  ℕ, of the dual pair  E, E , by FACT 4.5(i), and hence 

closed for all n  ℕ in any compatible topology on E of the dual pair. Since the intersection of closed sets is closed, so is 

pUcd
n

n
-

1

1


=

 = 


=


1

1})(:{
n

n
xpEx . 
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But  




=


1

1})(:{
n

n
xpEx  = {x  E : p(x) = 0}. 

So, {x  E : p(x)  0} = {x  E : p(x) = 0} is closed. 

III.  Suppose   0. Ucd-p being by hypothesis a barrel of the dual pair E, E  is closed in any compatible topology on E 

for E, E , and so, by FACT 4.5(i), Ucd-p being still a barrel is closed. But  

Ucd-p = {x  E : p(x)  1} = {x  E : p(x)  }. 

Thus, we have shown that for all   ℝ , and in any compatible topology on E for the dual E, E , {x  E : p(x)  } is 

closed, and so by FACT 1, p is lower semicontinuous. /// 

We now have  

FACT 3 Lower semicontinuous seminorms are duality invariant. And so we can talk of the lower semicontinuous seminorms 

of a dual pair.  

Proof Immediate! But a proof will only be repetitive. Perhaps for emphasis, let  X, Y  be a dual pair, and suppose * is a 

topology on X compatible with this dual pair. Let  p  be a seminorm on X. By THEOREM 2, p is  (X, *)-lower semi- 

continuous  Ucd-p = {x  E : p(x)  1} is a barrel of (X, *). If ** is any other compatible topology on X for the dual pair 

 X, Y , Ucd-p = {x  E : p(x)  1}is also a barrel of (X, **)  

being a barrel of (X, *) already [FACT 3.1], and so by THEOREM 2 again  p is (X, **)-lower semicontinuous. Hence, the 

lower semicontinuity of  p is  X, Y -duality invariant. /// 

Now, the 

MAIN THEOREM 4 Let  X, Y  be a dual pair. The topologies of uniform conver-gence w.r.t X, Y  are the topologies 

generated by collections of lower semi continuous seminorms of X, Y . 

Proof Let P be a collection of lower semicontinuous seminorms of  X, Y . By THEOREM 2, therefore, Ucd-p = {x  E : 

p(x)  1}, for p  P, is a barrel of  X, Y . i.e., is a barrel of (X, ) for any topology  on X compatible with  X, Y . And so 

by FACT 4.5(i), Ucd-p, for   0, is a barrel of X, Y . But {Ucd-p :   0} is a base of neighbourhoods of zero of p and 

so, since  P = {p : p  P}, the sets  

1Ucd-p12Ucd-p2 …nUcd-pn : p1,  p2, … 

           …, pn  P, 1, 2, ..., n  0, n  ℕ } 

 

constitute a base of neighbourhoods of zero of P. By FACT 4.5(iii), members of () are also barrels of  X, Y . Thus, P 

has a base of neighbourhoods of zero which are barrels of X, Y. By FACT 4.4, therefore, P is a polar topology and so by 

CLAIM 4.3, a topology of uniform convergence. This concludes the proof of the implication . 

For  suppose  is a non-empty collection of non-empty (Y, X)-bounded sets of Y, and so consider the topology uc() on X 

of uniform convergence on the sets of . By FACT 4.2, 

uc() = {pB : B  , pB is the seminorm defined by  pB(x) = |},{|sup 


bx
Bb

}, …(TUC) 

and, for B  , 

Ucd-pB = B0 

By [2, Proposition 3.3.1(e) and (f ); p.190], B0 is a barrel of X, Y, and so by THEOREM 2, pB is a lower semicontinuous 

seminorm of X, Y. Hence, uc() is generated by a collection { pB : B  } of lower semicontinous seminorms of X, Y. /// 

FACT 5 For a dual pair X, Y, there is a finest topology of uniform convergence, which is P, where P is the collection of 

all the lower semicontinuous seminorms of  X, Y .  

Proof  Immediate from MAIN THEOREM 4. /// 

FACT 6 [1, (37.28)(iii), p.154][2, Definition 3.4.2, p.201][6, Paragraph between 8-5-4 and 8-5-5, p.119]. (X, Y ) is the 

finest topology of  uniform convergence of the dual pair  X, Y .  

Proof If   and  are non-empty collections of non-empty (X, Y )-bounded sets, and   , then it is clear from (TUC) 

preceding FACT 5 that uc() ≤  uc()  

Immediate from FACT 5, FACT 6 and CLAIMS 4.3 and 4.6 is  

IMPORTANT CONSEQUENCE 7  For a dual pair  X, Y ,   

(X, Y ) = {p : p is a lower semicontinuous seminorm of  X, Y }. 

That is, (X, Y) is generated by the collection of all lower semicontinuous seminorms. /// 

 

7.0 Barrelledness And Lower Semicontinuous SEM-INORMS    

We recall that a lcs is called a barrelled space if every barrel of the space is a neighbourhood of zero[6, Definition 9-3-1,  
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p.136]. The only theorem that we wish to prove in this section is  

THEOREM 1 A lcs is barrelled if and only if every lower semicontinuous seminorm is continuous.  

A proof of this theorem is difficult to locate in the literature. Indeed, Albert Wilansky and John Horvath stated this theorem 

as exercises in their books [6, Problem 9-3-105, p.139][2, Exercise 3.6.1(c), p.219]. We furnish two proofs here. First some 

lemmas. 

LEMMA 2 [6, Lemma 7-2-1, p.94][5, Lemma 11.2, p.106]. Let p be a seminorm on the topological vector space (E, ). 

Then, p is continuous  Ucd-p = {x  E : p(x)  1} is a neighbourhood of zero in (E, ). /// 

LEMMA 3  Let B be a barrel of the lcs (E, ) and qB the Minkowski functional [2, paragraph following Example 2.4.22, 

p.94][5, Section II.12, p.111-114][(*)of the proof of Theorem (37.4) of [1], p.146] of B. Then, 

            Ucd-qB {x  E : qB(x)  1} = B                   …(*) 

and since B is a closed set, Ucd-qB is a closed set in (E, ), and so by THEOREM 5.2, qB is a lower semicontinuous seminorm 

on (E, ). 

Proof Only (*) need be proved. The proof is a careful adaptation of some parts of the proof of [1, Theorem (37.4), p.146]. Let  

x  E and since B is absorbing, being a barrel, let  

ℝ+
B(x) = {  0 : x  B} 

and so  qB(x) = inf ℝ+
B(x). 

Suppose x0  B. Then, x0  B = 1B, from which follows that qB(x0)  1, and so x0  {x  E : qB(x)  1} = Ucd-qB . This 

proves the inclusion . For , suppose x0  Ucd-qB = {x  E : qB(x)  1}. Hence, qB(x0)  1. i.e., inf ℝ+
B(x0)  1. If   1  

inf ℝ+
B(x0) = qB(x0), then there exists   ℝ+

B(x0) such that inf ℝ+
B(x0)    . And so,  x0  B and since by [1, (17.2), 

p.68] B   

B, it follows that x0   B. Hence,  – 1x0  B. But  was arbitrary. And we have thus shown that   

 – 1x0  B for all   1. 

By the continuity of the partial maps[2, Last sentence of the first paragraph p.74]  – 1x0 → x0 as  → 1, and so x0 belongs to 

the closure of B, which is B since B is closed. /// 

Now to a  

Proof of THEOREM 1  : Let (E, ) be a barreled lcs and p a seminorm on (E, ). Suppose p is lower semicontinuous. By 

THEOREM 5.2, Ucd-p = {x  E :  p(x)  1}is a barrel, and so since (E, ) is a barrelled space, Ucd-p is a neighbourhood of 

zero. By  LEMMA 2, therefore, p is continuous. 

 :   Suppose every lower semicontinous seminorm  p : (E, ) → ℝ on the lcs (E, ) is continuous. Let B be a barrel of (E, ). 

By LEMMA 3, its Minkowski functional qB is lower semicontinuous, and so, by hypothesis, continuous. Since also by 

LEMMA 3,  

Ucd-qB = {x  E : qB(x)  1} = B, 

and by the continuity of qB, {x  E : qB(x)  1} is a neighbourhood of zero[LEMMA 2] of (E, ), it follows that B is a 

neighbourhood of zero of (E, ). Since B was arbitrary, (E, ) is barrelled. /// 

Another Proof of THEOREM 1  By [6, Theorem 9-3-10, p.138] lcs (E, ) is barreled   = (E, E ). The forward 

implication in THEOREM 1 now follows from IMPORTANT CONSEQUENCE 5.7 and [6, Problem 4-5-1, p. 55]. For the 

reverse implication, suppose that every lower semicontinuous seminorm  p  on lcs (E, ) is continuous. Again by [6, Problem 

4-5-1, p.55, p  . By the IMPORTANT CONSEQUENCE 5.7, therefore, (E, E  )  . But, in general,     (E, E  ), and 

so,  =  (E, E  ). Hence, by [6, 9-3-10, p.138] again, (E, ) is barrelled. /// 

While THEOREM 6.1 is well-known, even with a proof difficult to locate in the literature, IMPORTANT CONSEQUENCE 

5.7 and our MAIN THEOREM 5.4 are unknown. We discuss elsewhere some consequences of our MAIN THEOREM. 
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