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Abstract 
 

Reservoir architecture may vary widely, giving rise to an architecture 

akin to Letter "F" in addition to compartmentalization or layering. If 

such reservoirs are subject to edge external fluid drive, well completion 

strategies, rate profiling, well re-completion, would require informed 

knowledge of boundary distribution and boundary types. All these tasks can 

be accomplished through correct understanding of pressure distributions of 

the reservoir system.  

This paper identifies all the possible edge external fluid combinations that 

may drive fluid in a reservoir with letter "F" architecture and derives 

possible real time dimensionless pressure expressions for horizontal wells in 

the layers of the reservoir.  

Both crossflow and no-crossflow interface cases were considered. 

Appropriate source and Green's functions were selected to build the 

dimensionless pressure models.  

Results obtained show that layered reservoir with letter ‘F’ architecture 

presents three (3)  external boundary types that may be sealing or constant-

pressured, and three (3) mandatory infinite-acting external boundaries that 

can neither be sealing nor constant-pressured. Hence, dimensionless 

pressure expressions derived showed generally that at very early flow times 

dimensionless flow pressures do not exhibit layering for individual layers for 

both crossflow and no-flow interfaces. However, for crossflow and no-

crossflow interfaces, the dimensionless pressure for the top layer is inversely 

proportional to reservoir layer area at very late flow times or the reservoir 

length exposed to flow at intermediate or transitional flow periods preceding 

late flow period, whether individual or extended reservoir cases.  

For individual layer, optimum dimensionless pressure drop to guarantee 

regional flow only shows strong capability for individual layer 

characterization. Finally, the most important drivers for well performances 

were identified as the dimensionless well lengths, radii, reservoir or reservoir 

layer areas, interface permeability and the reservoir or reservoir layer’s fluid 

properties. 

  

1.0     Introduction 
A reservoir experiences edge external fluid drive if the external fluid flows into the reservoir through a direction or directions 

parralel to the reservoir bedding planes. In this case, only wells nearest the source of edge external fluid will manifest earlier 

water production than wells farther away. Edge fluid movement into a reservoir can be modelled using dimensionless 

pressure distribution. Furthermore, dimensionless pressure distributions are invaluable in (1) rate profiling (2) well test 

analysis formulation (3) reservoir simulation validation (4) well engineering design (5) volumetric material balance 

calculations and (6) reservoir external boundary characterization.  

Reservoir layering results when the reservoir possesses more than one permeability value at different points in the same 

reservoir. It is the largest heterogeneity traceable to reservoir formation. The process of layering may precipitate an  
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architecture likeable to letter ‘F’ in description. Only seismic impressions can reveal such complex structural event in better 

detail compared to well logs or other subsurface surveys. Several literature[1-6] have described other architecture that may be 

encountered. This paper provides general expressions for dimensionless pressure distribution in a vertically-stacked two 

layered reservoir considering only edge external fluid influences and a horizontal well in each layer. With the interface 

considered as an internal boundary, the expressions will be derived for crossflow and no-crossflow interface cases. 

Real time dimensionless pressure distribution expressions have been derived for several reservoir systems[7-9] . Source and 

Green’s functions discussed in Ref. [10], and as compiled by Refs.[4-7] and Ref.[11] will be utilized throughout the 

derivations. 

 

2.0 Description of Letter ‘F’ Layered Reservoir Architecture 

Fig. 1 shows the normal and all inverted forms of a vertically-stacked reservoir with letter ‘F’ architecture. The layers of each 

of the reservoirs are completed with a horizontal well. The architecture with solid lines represents the normal 

architecture,while the architectures with broken lines are the inverted forms. In both normal and inverted architectures, all the 

bounding lines represent external boundaries. The dotted crosslike lines act as ‘plane mirrors’ producing the image 

architectures. Edge external fluid can occur only along horizontal directions of the external boundaries. The internal line 

within the external boundaries in each architecture is an interface. An external boundary can be either sealing; i.e., not 

allowing flow, or constant-pressured; i.e., allow flow through it. Hence, there are three (3) external boundaries that can be 

sealing or constant-pressured, one (1) at the lower layer (Layer 1) and two (2) at the upper layer (Layer 2). The normal letter 

‘F’ architecture can be visualized as being constituted by reservoirs akin to letter ‘C’ at the upper layer and an inverted letter 

‘L’ at the lower layer. There is an interface separating the two layers. The interface may be sealing (no-crossflow) or 

permeable (crossflow). From Fig. 1, the architecture may be subject to two (2) edge external fluid possibilities having one (1) 

edge at each layer or one (1) edge external fluid possibility each at the upper and lower layer. The interface is considered as 

an internal boundary. There is one (1) ‘infinitely far away’ boundary at each of the layers laterally, but only one (1) ‘infinitely 

far away’ at the lower layer along the vertical axis. 

 

 

 

 

 

 

 

                     

 

 

 

 

 

 

                      

 

3.0 Reservoir System Mathematical Description 
x-axis 

In all cases considered, let the well length coincide with the x-axis and is assumed centrally located. Hence, all source 

functions for x-axis originate from infinite-acting slab source strength in infinite slab reservoirs at all flow times. 

Furthermore, particular sources selected will depend on actual nature of external boundary contributing to flow.  

y-axis 

All the sources coinciding with the well width (y-axis) are considered as infinite plane sources from infinite plane reservoirs, 

either infinite-acting or sealed. All mirror images of the architecture that produce only vertical stacking of the layers are 

considered as shown in Fig. 1. 

z-axis 

Finally, the z-axis has the interface and the top reservoir boundary. If the interface is considered as permeable (crossflow), 

then it is assumed to produce constant-pressure effect, since both layers pressures and fluid velocities are the same here. For 

impermeable interface, the z-axis source strength are essentially sealing. However, in both cases of crossflow and no-

crossflow, all the z-axes source functions are infinite planes in infinite reservoirs. 

All the edge external influx meet the horizontal wells at their heels. All horizontal well toes are in the direction of the 

‘infinitely far away’ lateral boundaries.  
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4.0 Dimensionless Pressure Distribution Expressure 
Generally, using Newman product rule[10-11], the layers dimensionless pressures can be written for no-crossflow layers as  

)1(),().,().,(2
0

=
Dt

DDDDDi dzsysxshp   

and crossflow layers as 

)2(),().,().,(2
0

=
Dt

DDDDDi dzsysxsEhp   

In Eq. 2, E is a weighting factor, which compensates the z-axes sources for the interface effects. The source and Green’s 

functions in both equations are selected from those listed in the Appendix.  

5.0 Results and Discussion 
Table 1 shows a full compilation of all the possible edge external fluid (constant-pressure) boundaries obtainable for the 

letter ‘F’ architecture. There are three (3) normal and six (6) inverted (mirror) versions of the architecture. The mirror image 

versions are obtained when the mirror is viewed horizontally and vertically. In the normal architecture, the wells lie along the 

x-axis with their heels adjacent to the vertical z-axis and their toes adjacent to the ‘infinitely far away’ top boundaries in each 

layer. The first horizontal image version shows all the well toes now heels and all the well heels now toes. All the 

architectures obtained simply turned object lower layer top and top layer bottom, but retained the well heels and toes 

orientation of the parent object wells. 

All the dimensionless pressures for cases of crossflow are generally characterized by functions x(x) and ix(z) at late flow 

times for Layer 1 in all versions of the architecture, depicting edge influx at the heel and crossflow interface, respectively. In 

Layer 2, vi(z), showing crossflow interface dominate dimensionless pressures. The function x(x) describes boundaries 

without an edge influx in all crossflow cases. In Layer 2, the function vi(z) dominates flow expressions due to crossflow 

interface.  

Table 1: List of Source and Green’s Functions in Equations (1) and (2) 
S/N Model 

Diagram 

s(x,t) . s(x,t) . s(x,t) 

Crossflow No-Crossflow 

Layer 1 Layer 2 Layer 1 Layer 2 

1.  

 

 

ii(x).i(y).i(z) 

ii(x).i(y).i(z) 

xiii(x).vii(y).ix(z) 

ii(x).i(y).i(z) 

ii(x).i(y).i(z) 

xiii(x).vii(y).vi(z) 

ii(x).i(y).i(z) 

ii(x).i(y).i(z) 

xiii(x).vii(y).vii(z) 

ii(x).i(y).i(z) 

ii(x).i(y).i(z) 

xiii(x).vii(y).vii(z) 

2.  

 

 

x(x).i(y).i(z) 

x(x).vii(y).ix(z) 

ii(x).i(y).i(z) 

ii(x).i(y).i(z) 

xiii(x).vii(y).vi(z) 

x(x).i(y).i(z) 

x(x).vii(y).vii(z) 

ii(x).i(y).i(z) 

ii(x).i(y).i(z) 

xiii(x).vii(y).vii(z) 

3.  

 

 

ii(x).i(y).i(z) 

xii(x).i(y).i(z) 

xiii(x).vii(y).ix(z) 

x(x).i(y).i(z) 

x(x).vii(y).vi(z) 

ii(x).i(y).i(z) 

ii(x).i(y).i(z) 

xii(x).i(y).i(z) 

xiii(x).vii(y).vii(z) 

x(x).i(y).i(z) 

x(x).vii(y).vii(z) 

ii(x).i(y).i(z) 

4.  

 

 

xiii(x).i(y).i(z) 

ii(x).i(y).i(z) 

xiii(x).vii(y).ix(z) 

xiii(x).vii(y).vi(z) 

ii(x).i(y).i(z) 

 

xiii(x).i(y).i(z) 

ii(x).i(y).i(z) 

xiii(x).vii(y).vii(z) 

xiii(x).vii(y).vii(z) 

ii(x).i(y).i(z) 

 

5.  

 

 

xiii(x).i(y).i(z) 

ii(x).i(y).i(z) 

xiii(x).vii(y).ix(z) 

x(x).vii(y).vi(z) 

ii(x).i(y).i(z) 

x(x).i(y).i(z) 

xiii(x).i(y).i(z) 

ii(x).i(y).i(z) 

xiii(x).vii(y).vii(z) 

x(x).vii(y).vii(z) 

ii(x).i(y).i(z) 

x(x).i(y).i(z) 

6.  

 

 

x(x).vii(y).ix(z) 

ii(x).i(y).ix(z) 

x(x).i(y).i(z) 

xiii(x).vii(y).vi(z) 

ii(x).i(y).i(z) 

 

x(x).vii(y).vii(z) 

ii(x).i(y).vii(z) 

x(x).i(y).i(z) 

xiii(x).vii(y).vii(z) 

ii(x).i(y).i(z) 

 

7.  

 

 

xii(x).i(y).i(z) 

xii(x).vii(y).ix(z) 

ii(x).i(y).ix(z) 

ii(x).i(y).i(z) 

xii(x).vii(y).vi(z) 

xii(x).i(y).i(z) 

ii(x).i(y).vi(z) 

ii(x).i(y).i(z) 

xii(x).i(y).i(z) 

xii(x).vii(y).vii(z) 

ii(x).i(y).vii(z) 

ii(x).i(y).i(z) 

xii(x).vii(y).vii(z) 

xii(x).i(y).i(z) 

ii(x).i(y).vii(z) 

ii(x).i(y).i(z) 

8.  

 

 

 

x(x).i(y).i(z) 

ii(x).i(y).ix(z) 

x(x).vii(y).ix(z) 

ii(x).i(y).i(z) 

xii(x).vii(y).vi(z) 

xii(x).i(y).i(z) 

ii(x).i(y).vi(z) 

ii(x).i(y).i(z) 

x(x).i(y).i(z) 

ii(x).i(y).vii(z) 

x(x).vii(y).vii(z) 

ii(x).i(y).i(z) 

xii(x).vii(y).vii(z) 

xii(x).i(y).i(z) 

ii(x).i(y).vii(z) 

ii(x).i(y).i(z) 

9.  

 

 

 

xii(x).vii(y).xii(z) 

xii(x).i(y).i(z) 

ii(x).i(y).xii(z) 

ii(x).i(y).i(z) 

x(x).vii(y).vi(z) 

x(x).i(y).i(z) 

ii(x).i(y).vi(z) 

ii(x).i(y).i(z) 

xii(x).vii(y).vii(z) 

xii(x).i(y).i(z) 

ii(x).i(y).vii(z) 

ii(x).i(y).i(z) 

x(x).vii(y).vii(z) 

x(x).i(y).i(z) 

ii(x).i(y).vii(z) 

ii(x).i(y).i(z) 
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The no-crossflow models show dimensionless pressures characterized by the function vii(z) for all models, because of no 

flow (sealing, prescribe flux) interface. In all the models considered, possible transition flow periods are suggested. Where 

there is a pair of sealing or constant pressure external boundary and an infinite-acting boundary, it is assumed that as of the 

period when the sealing or constant-pressure boundary is felt, the infinite-acting tendency is truncated and the influence of a 

pseudo-sealing boundary prevails. Purely infinite-acting boundary effects are also suggested for all the models. 

Dimensionless pressure drops are generally inversely proportional to the reservoir layer width for Layer 1 in particular and 

inversely proportional to areal extent for layers not experiencing edge external fluid drive for both crossflow and no-

crossflow cases. Except for Models 3, 5 and 9, dimensionless pressures are enhanced if the reservoir or reservoir layer width 

is less than the reservoir or reservoir layer thickness for both crossflow and no-crossflow cases. Where both lateral extent and 

pay thickness affect productivity, square horizontal well drainages would reduce the adverse effect of an adjacent lateral 

boundary. For rectangular reservoir layers, horizontal wells completed along the well length would mitigate the reduction in 

productivities. Reservoir lateral extent along the length axis of the well do not directly affect pressure drops except where the 

layer has no edge external fluid drive. All possible transition flow periods between the early radial (infinite-acting) flow 

periods have been suggested. However, where a transition period involves an external edge drive, such period may terminate 

further pressure decline especially if the external fluid has low compressibility. Cases where the wells experience all the 

external boundary influences are really rare if there is more than one external fluid of low compressibility and one of them is 

felt first. In other words, late time flow periods involving more than one low compressibility fluid are attainable if the 

external fluid compressibilities are the same and are felt all at the same time. 

 

6.0 Conclusion 
All the possible external flow boundaries characterising a vertically-stacked two layered reservoir with letter ‘F’ architecture 

have been considered in deriving dimensionless pressure obtained with a horizontal well in each layer. Results obtained show 

that: 

(1) There are three (3) normal architecture and six (6) inverted architecture. 

(2) In every version of the architecture, there are only three (3) external boundaries that may be sealed or constant-

pressured. 

(3) Dimensionless pressures for cases of crossflow are characterised at late time by the functions xiii(x) and ix(z) for the 

bottom layer and vi(z) for the top layer. 

(4) Dimensionless pressure for no-crossflow layers are characterised at late time by vii(z). 

(5) Dimensionless pressures are inversely proportional to reservoir or reservoir layer width, during transitional flow, 

and area at late flow time. 
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Nomenclature 

B Formation volume factor, rbbl/stb 

ct Total compressibility, 1/psi 

E1 Late time flow boundary effects constant for Layer 1 

E2 Late time flow boundary effects constant for Layer 2 

(i) Axial flow directions  x, y, or z 

h Layer pay thickness, ft 

k Average geometric permeability, md 

L Well length, ft 

∆p Pressure drop, psi 

q Flow rate, bbl/day 

µ Reservoir fluid viscosity, cp 

 Porosity, fraction 

s  Source 

t  Time, hours 
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Appendix 
Table of Source and Green’s Functions[9-11]  

S/N Function Type Basic Green’s Functions Green’s 

Functions 

Number 

1. Infinite plane   ttii ii  24)(exp 2'−−  i(i) 

2. Infinite slab  )2)(2/()2)(2/(
2

1 '' tiixerftiixerf ifif  −−+−+  
ii(i) 

Basic Source Functions for Late Flow Periods 

3. Infinite plane in an infinite slab 

reservoir with sealed boundaries 







−+ 



= ee

w

n e

i

e i

in

i

in

i

tn

i


coscos)exp(21

1

1
2

22

 
vii(i) 

4. 

 

Infinite plane source in an infinite slab 

reservoir with constant-pressure 

boundaries ee

w

n e

i

e i

in

i

in

i

tn

i


sinsin)exp(

2

1
2

22




=

−  
iv(i) 

    

5. Infinite plane source in an infinite slab 

reservoir with a sealed boundary at the 

bottom and a constant-pressure 

boundary at the top 

ee

w

n e

i

e i

in

i

in

i

tn

i

 )12(
cos

)12(
cos)

4

)12(
exp(

2

1
2

22
+++

−


=  

ix(i) 

6. Infinite plane source in an infinite slab 

reservoir with a constant-pressure 

boundary at the bottom and a sealed 

boundary at the top 

ee

w

n e

i

e i

in

i

in

i

tn

i 2

)12(
sin

2

)12(
sin)

4

)12(
exp(

2

1
2

22  −−−
−



=  

vi(i) 

7. Infinite slab source in an infinite slab 

reservoir with both boundaries sealed 













−+ 



= ee

w

e

f

n e

i

f

e

e

f

i

in

i

in

i

xn

i

tn

x

i

i

x 


coscos

2
sin)exp(

4
1

1
2

22

 

x(i) 

8. Infinite slab source in an infinite slab 

reservoir with constant-pressure 

boundaries at both ends ee

w

e

f

n e

i

i

in

i

in

i

xn

i

tn

n




sinsin

2
sin)exp(

14

1
2

22




=

−

 

viii(i) 

9. Infinite slab source in an infinite slab 

reservoir with a sealed bottom 

boundary and a constant-pressure top 

boundary 

eee

w

n e

i

i

in

i

in

i

in

i

tn

n 2

)12(
cos

2

)12(
cos

2

)12(
sin)

4

)12(
exp(

12

18

1

2

22 



++++
−

+


=  

xii(i) 

10. Infinite slab source in an infinite slab 

reservoir with a sealed top boundary 

and a constant-pressure bottom 

boundary 

ee

w

e

f

n e

i

i

in

i

in

i

xn

i

tn

n 2

)12(
sin

2

)12(
sin

4

)12(
cos)

4

)12(
exp(

12

18

1

2

22 



−−−−
−

−


=  

xiii(i) 
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