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Abstract 
 

The effects of smearing on the highest optical branch (HOB) in the 

phonon dispersion of graphene is looked at using the density functional 

theory (DFT) and the generalised gradient approximation (GGA) performed 

using the Quantum-ESPRESSO code. The calculated phonon dispersion is 

matched with some inelastic neutron scattering (INS) and inelastic X-ray 

scattering (IXS) experimental data. The crossing of the HOB at K is found to 

depend on the value of the Gaussian spreading used for the Brillouin-zone 

integration. While it is almost flat at for a large value, the situation is a little 

different for a very small value of the spreading. 

 

 

1.0     Introduction 
Graphene which is a single layer of graphite is at the verge of overtaking silicon in electronics applications. This is largely 

due to the ability to control the carrier density [1] an attribute which endows it with ballistic conduction at room temperature 

thereby making it a suitable material for both flexible transistors [2, 3, 4] and interconnects. 

The dependence of the highest optical branch (HOB) on Kohn anomaly stems from the observation by Ref. [5] that electrons 

possess the ability to screen the ionic electric field due to the geometry of the Fermi surface. This screening, however, results 

in a change in the frequency of some phonon and 

consequently an increase in its dispersion.  

The effects of smearing on the phonon dispersion of graphene will be examined using the exchange-correlation interaction. 

This will be treated with the generallised gradient approximation (GGA) which employs the Perdew and Zunger 

parameterization of the correlation energy[6]. The Calculations will be carried out within density functional theory (DFT) 

using the PWSCF code [7]. The interaction between electrons and ionic cores will be described by an ultra-soft 

pseudopotential of Ref. [8] and the wave function will be expanded using energy cut-off of 25 Ry. The smearing method 

described in Ref. [9] is used in the calculations with a degauss value (i.e. the value of the Gaussian spreading used for the 

Brillouin-zone integration) set to 0.007 Ry and 16 ×  16 × 1 Monkhorst-Pack grid used for the Brillouin zone sampling. In 

addition, an in-plane lattice constant 𝑎0 of 2.461 Åand a large interlayer distance per lattice constant of 10 is used. 

 

2.0 Method 
The phonon frequencies 𝜔(𝑞) are determined by solving the secular equation: 

|
1

√𝑀𝑠𝑀𝑡

𝐶𝑠𝑡
𝛼𝛽(𝒒) − 𝜔2(𝒒)| = 0,                                                        (1) 

where the 𝑀𝑠and𝑀𝑡are the atomic masses of atoms 𝑠 and 𝑡 respectively and 

the dynamical matrix is given as: 

                        𝐶𝑠𝑡
𝛼𝛽(𝒒) =

𝜕2𝐸

𝜕𝑢𝑠
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𝑢𝑠is the displacement of atom s in the direction 𝛼. The second derivative of theenergy in (2) is the change in the force 𝐹𝑡
𝛼(𝒒) 

acting on atom 𝑡 in the direction𝛽 due to a displacement of the atom 𝑠 in the direction 𝛼: 

                        𝐶𝑠𝑡
𝛼𝛽(𝒒) =

𝜕

𝜕𝑢𝑠
∗𝛼

𝐹𝑡
𝛽(𝒒)                                                              (3) 

                                                         =
el ion( ) ( )st stC q C q +                                (4) 

However it can be shown, see for example Ref. [10], that: 

𝑒𝑙𝐶𝑠𝑡
𝛼𝛽(𝒒) =

1

𝑁𝑐

[∫
𝜕𝑛(𝒓)

𝜕𝑢𝑠
∗𝛼(𝒒)

𝜕𝑉𝑖𝑜𝑛(𝒓)

𝜕𝑢𝑡
𝛽(𝒒)

𝑑𝒓 + 

∫ 𝑛(𝒓)
𝜕2 𝑉𝑖𝑜𝑛(𝒓)

𝜕𝑢𝑠
∗𝛼(𝒒)𝜕𝑢𝑡

𝛽(𝒒)
𝑑𝒓],                              (5) 

Where 𝑉𝑖𝑜𝑛(𝒓) is the bare ionic (pseudo) potential acting on the electrons. The quantities n(r) and E require a sum over an 

infinite number of k. For metals, at T = 0, this corresponds to an integral over all wave-vectors contained within the Fermi 

surface which can lead to self-consistency field (scf) convergence problem. However, this can be resolved through 

“smearing”.  

Using the GGA pseudopotential C.pbe-rrkjus.UPF with the other parameters as specified in the introduction, the equilibrium 

lattice constant of 2.461Åwas obtained as shown in Fig. 1. This pseudopotential is our preferred choice since it reproduces 

the experimental data more closely [11]. As graphene is neither an insulator nor a metal, Methfessel and Paxton smearing [9] 

was used with a very small (0.007 Ry) degauss value. The result of the calculation is shown in Fig. 2. Obviously the HOB 

has been exaggerated at its crossing at K. If we follow the trend of the curve (the broken line), it is obvious that the branch is 

most likely to cross K at a much lower frequency.  

Consequently, we increase the degauss value to 0.2 Ry and retain all the other parameters as in the previous calculation to see 

whether it can have anyeffect on the HOB and its crossing at K. The result of the calculation is shown in Fig. 3. The branch is 

almost at at K and the crossing (phonon frequency) of this branch at Γ is also affected. 

 

3.0 Results and Discussion 
Fig. 1 shows the result of the optimisation of the energy with respect to 𝑎0. The optimised lattice constant 𝑎0 ≃  𝑎𝑡ℎ. , the 

theoretical value. The solid line is the calculated values while the dashed-line is the smoothed data. The minimum of the 

energy obviously is 2.461Å or 4.6525 Bohr. 

 
Figure 1: Minimization of the energy with respect to the equilibrium latticeconstant 𝒂𝟎. The solid line is the calculated 

values while the dotted-line is the smoothed data. The minimum of the energy obviously is 2.461 Å. 

The phonon dispersion of graphene is shown in Fig. 2. The open circles and the triangles are the INS and IXS data of 

references [12, 13] respectively while the solid lines are current work. The inset shows the crossing of the HOB at K and the 

trend line that had been included to show the amount by which the branch has been affected by Kohn anomaly. The crossing 

of the HOB at K is ≃1315 cm-1. However, the trend line shows that this branch is likely to cross at ≃1215 cm-1. Since the 

calculation result is not in any way near this value, suggests that DFT is inadequate for predicting the crossing of the HOB at 

K. 

The result of the calculation done with a degauss value of 0.2 Ry is shown in Fig 3. Obviously, the HOB is almost at and 

crosses K at ≃1362 cm-1. This is not surprising as a high value of degauss is usually employed for metallic materials. 
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Figure 2: Phonon dispersion of graphene. The open circles and the triangles are the INS and IXS data of Refs. [12, 13] 

respectively while the solid lines are current work. The inset shows the crossing of the HOB at K and the trend line, shown 

here as dotted,  that had been included to show the amount which the branch has been affected by Kohn anomaly. 

 
Figure 3: Phonon dispersion of graphene obtained following an increase in the value of the degauss to 0.2 Ry. The HOB is 

almost flat this time. The open circles and the triangles retain their definitions as in Fig. 2. 

 

4.0 Conclusion 
We have looked at the effects the value of the Gaussian spreading used for the Brillouin-zone integration have on the phonon 

dispersion of graphene using the exchange-correlation interaction and the way that this value affects the crossing of the HOB 

at the high-symmetry point K. Methfessel-Paxton smearing was employed and various values of degauss was applied. It is 

found that if a high 

value of degauss is applied, the crossing of the HOB at K is higher than that observed for a much lower value. 

In addition, the HOB is completely at in the neighbourhood of K contrary to the observation for very small values of the 

smearing parameter. This is however due to the fact that graphene is a semi-metal. So that a very high value of degauss is 

tantamount to treating graphene as a metal and a non- 

finite value is taking it to be a non-metal. Having said that, our result did not give the correct crossing of the HOB at K (see 

for example reference [14]) as our calculation did not take into cognizance the long range electron-electron correlation 

effects. 
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