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Abstract 
 

This paper extends the embedding energy function𝑭(𝝆) developed by our 

group in earlier works to the compilation of the surface energies for low 

index facets of twelve 𝒃𝒄𝒄 metals in the framework of theembedded atom 

method (EAM). The goal is to use the mathematical techniques for 𝑭(𝝆), 
which have hitherto worked for 𝒇𝒄𝒄 metals, togenerate a consistent database 

for 𝒃𝒄𝒄 metallic elements. The 𝑭(𝝆) parameters are obtained through a fit to 

the experimental mono-vacancy formation energy of each metal and are 

subsequently applied tothe surface energy (𝜞(𝒉𝒌𝒍))  calculation. These 

techniques make basic functions computationally simple and produce results 

with improved accuracy and reliability. The surface energies of the twelve 

metals considered generally do not follow the broken-bond model’s trend 

𝜞(𝟏𝟎𝟎) > 𝛤(𝟏𝟏𝟎)  expected for 𝒃𝒄𝒄  metals while 𝜞(𝟏𝟎𝟎) > 𝜞(𝟏𝟏𝟏) 
contrary to expectation. The accuracy of the calculated surface energy for 

each metal is reasonably good compared to existing theoretical data with 

similar background and experiments. 
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1.0     Introduction 
The surface energy is a vital electronic property of a metallic surface. Its theoretical knowledge is of great importance to 

understanding varieties of surface activities.Thus, it is important that any theoretical model [1-13] used in computer 

simulation of surface properties should, at least, predict accurately the surface relaxation and vacancy formation energy for 

low index surfaces of metallic elements. 

To date, many of the existing atomistic simulation models have not given optimal performance in predicting the surface 

properties of 𝑏𝑐𝑐 metals. Wilson and Riffe [12] partly ascribed the ineffectiveness of some of these models to longer range 

and angular nature of the forces in the less closed packed bcc lattice since these modelsworked better for 𝑓𝑐𝑐 metals.In 

addition and most importantly, lack of desired success on the part of EAM has always been known to be due to the use of 

inconsistent experimental parameters as input on one hand and as yardstick for comparison of theoretical data on the other 

hand. 

The embedded atom method (EAM) initiated by Daw and Baskes [2] is still the most widely applied interatomic potential for 

pure metals and alloys.EAM potential contains a many-body and a pairwise potential interaction terms intended to model the 

effective environment of an embedded atom. A heuristic derivation based on the concept of a local density [2] led to 

𝐸𝑡𝑜𝑡 =∑𝐹𝑖 (∑𝜌𝑗
𝑗≠𝑖

(𝑟𝑖𝑗))

𝑖

+
1

2
∑𝜙𝑖𝑗(𝑟𝑖𝑗)
𝑖,𝑗
𝑗≠𝑖

                                                                (1) 

𝐹(𝜌)is the embedding energy function,  𝜌 is the spherically averaged atomic density and 𝜙  is an electrostatic two-body 

interaction. The host electron-density, assumed to be a linear superposition of contributions from individual atoms, is defined 

through; 
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𝜌 =∑𝜌𝑗(𝑟𝑖𝑗)

𝑗≠𝑖

                                                                                                                      (2) 

Eq.(1), known for computational simplicity, adequately caters for defects and other physical phenomena in solid or liquid 

state of metal. So far, it features three important functions which are 𝐹(𝜌), 𝜌(𝑟)and 𝜙(𝑟). The physical idea of measuring 

the electron density coming from atoms works probably because it is a very good measure of the number of states to be 

delocalized over. 

One of the objectives of this manuscript is to show that the idea of EAM [2] for various crystal structures,founded on strong 

physical argument with few model parameters, produces results which are sometimes better than those offered by different 

modified versions of EAM with complicated 𝐹(𝜌) and too many model parameters. Thus, the motivation for the construction 

of our 𝐹(𝜌)in Matthew-Ojelabi et al [7] was computational simplicity leading to enhanced accuracy. 

The rest of the paper is organized as follows: Section 2 surveys briefly the physical theoretical requirements for the present 

exercise. The calculation procedures are outlined in section 3 while the results of findings are presented in section 4 . Section 

5 concludes the work. 

 

2.0 Theory  
Crystals inherently possess imperfections sometimes called crystalline defects. A defect in which an atom is missing from 

one of the lattice sites is known as a vacancy. Vacancies occur naturally in all crystalline materials at any given temperature 

up to the melting points of the materials. Vacancies are formed during solidification due to vibration of atoms, local 

rearrangement of atoms, plastic deformation and ionic bombardments and so on leading to the formation of the simplest point 

defects. Vacancy is the dominant mechanism behind atomic transport in most elemental crystals and it is of fundamental 

importance in solid and surface science. Vacancies have also been known to play important role for surface morphology [9]. 

Given the importance of vacancies and parameters of energy at low temperature, the calculations of formation energies have 

become the regular subject of theoretical studies. The creation of a vacancy may bemodeled by taking into consideration the 

energy required to break the bonds between an atom inside the crystal and its nearest neighbours. Once that atom is removed 

from the lattice site, it is put back on the surface of the crystal and some energy is retrieved because new bonds are 

established with other atoms on the surface. Yet, there is a net input of energy because there are fewer bonds between surface 

atoms than between atoms in the interior of the crystal. The simulation procedures for vacancy formation energy are outlined 

in this work as follows: 

• Create a perfect crystal.  

• Remove an atom.  

• Relax the system using 𝐹(𝜌).  
• Evaluate the potential energy of the system.  

• Obtain the vacancy formation energy for different metals. 

However, the calculation of the vacancy formation energy𝐸𝑚𝑣  depends on the definition one proposes for it. From this point, 

our definition of the vacancy formation energy shall be based on how much cohesive energy is needed to form a vacancy. If 

the cohesive energy is negative, then certain energy is released when forming the vacancy. The Cohesive energy𝐸𝐶  can be 

defined as the interatomic potential energy per atom at the most stable state of the metal. It should be mentioned in passing 

that the vacancy formation energy is independent of the position of a vacancy. 

We shall assume that the total potential energy, say𝐸𝑖  in the perfect crystal has reached the cohesive level and so does 

energy𝐸𝑣𝑎𝑐  in the deformed structure after relaxation. Therefore,the monovacancy formation energy which is the energy to 

remove an atom and place it on the surface of that metal can be defined as 

𝐸𝑚𝑣 = 𝐸𝐶
𝑉𝐴𝐶𝐴𝑁𝐶𝑌 − 𝐸𝐶

𝑃𝐸𝑅𝐹𝐸𝐶𝑇                                                                                             (3) 
where 

𝐸𝐶
𝑃𝐸𝑅𝐹𝐸𝐶𝑇 =∑𝐸𝑖

𝑁

𝑖

= 𝑁𝐸𝐶(4) 

𝐸𝐶
𝑉𝐴𝐶𝐴𝑁𝐶𝑌 = (𝑁 − 𝑍)𝐸𝐶 + 𝑍𝐸𝑐

𝑅𝐸𝐿𝐴𝑋𝐸𝐷                                                                            (5) 
Here, 𝑁 is the number of atoms in the simulation cell and𝑍 is the coordination number.For𝑏𝑐𝑐 metals,𝑍 = 8such that 

𝐸𝑚𝑣 = (𝑁 − 8)𝐸𝐶 + 8𝐸𝑐
𝑅𝐸𝐿𝐴𝑋𝐸𝐷 − 𝑁𝐸𝐶  

= −8𝐸𝐶 + 8𝐸𝑐
𝑅𝐸𝐿𝐴𝑋𝐸𝐷                                                                                               (6) 

What really happens when a vacancy is formed is more than just removing an atom from the perfect crystal as demonstrated 

above. Rather, it is more or less like a rearrangement of atoms within the crystal, with the number of atoms kept constant as 

demonstrated in  
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𝐸𝑐
𝑅𝐸𝐿𝐴𝑋𝐸𝐷 = (𝑁 − 8) [𝐹 (

8

8
𝜌0) +

1

2
× 8𝜙0] + 8 [𝐹 (

7

8
𝜌0) +

1

2
× 7𝜙0]                  (7) 

Once the vacancy formation energy is understood, one can channel its knowledge towards obtaining the surface energiesvia 

𝐹(𝜌). In all cases, our calculations (of the surface energies) depend strongly upon the experimental vacancy formation energy 

used. 

Concisely, the definition of the cohesive energy as function of𝐹(𝜌) is given as [2,4,5]. 

𝐸𝜂 = 𝐹 (
𝜂

𝑍
𝜌0) +

𝜂

𝑍
Φ                                                                                                             (8) 

where𝜂 is the number of atoms before or after formation of vacancies and 𝑍 is the coordination number. The pair potential 

energy term is 

Φ =
1

2
∑𝜙(𝑟𝑖𝑗)

𝑖,𝑗

                                                                                                                     (9) 

For the perfect crystal, 

Φ =
1

2
× 8𝜙0                                                                                                                             (10) 

Matthew-Ojelabi et al [7, 8] reported an embedding energy function of form 

𝐹(𝜌) = 𝐴𝐸0 (
𝜌

𝜌0
)
𝑞1

− 𝐴𝐸0 (
𝜌

𝜌0
)
𝑞2

ln (
𝜌

𝜌0
)                                                                         (11) 

 

Where𝐴,  𝑞1  and 𝑞2  are the adjustable parameters. The derivation of Eq.(11) was based on a simplified elastic energy 

expansion in Taylor’s series via small displacements and in tandem with the local density 𝜌  leading to a second-order 

ordinary differential equation in 𝐹(𝜌). Eq.(11), though simple, contains the basic physical character of the embedded atom 

method and provides another means of studying the functional dependence of the model using empirical data. It can also take 

care of those metals having negative Cauchy pressure. 

In the current work we report the results of the calculations of the surface energies performed using Eq.(11) for twelve 

monatomic 𝑏𝑐𝑐 metals. The present effort also targets a review of the concept of EAM and to subject Eq.(11) to further 

validity test having successfully applied it to 𝑓𝑐𝑐 metals in earlier endeavours [7, 8]. It should be mentioned here that the 

simplification of the basic terminologies are intended for informative reasons. 

Eq.(11) is the dominant tool for the present calculation where𝐴,  𝑞1 and 𝑞2 are the adjustable parameters, 𝜌0is the equilibrium 

value of the local density.Note thatat𝜌(𝑟0) = 𝜌0 𝑎𝑛𝑑 𝜙(𝑟0) = 𝜙0,𝐹(𝜌0) = 𝐴𝐸0 = 𝐸𝐶 − 𝜙0 and 𝐹(0) = 0 where 𝐸0 = −𝐸𝐶  

is the total or sublimation energy. For nearest-neighbour contribution in 𝑏𝑐𝑐 metals, we must have 

∑𝜌(𝑟𝑖) = 8𝜌0                                                                                                                               (12) 

 

3.0 Calculation Procedures 
The calculations are in stages: 

i. Monovacancy formation energy 

Structural relaxation is a local effect.The energies of monovacancy andplanar-surface formations for metals are dominated by 

the contributions before relaxation. Removing an atom draws neighbouring atoms toward the vacancy. The relaxation is 

significant for the first atoms but small already for the second and third shell of atoms surrounding the vacancy. The 

monovacancy formation energy is readily calculatedfor 𝑏𝑐𝑐 metals usingEqs.(6-8) such that 

𝐸8 = 𝐹 (
8

8
𝜌0) +

8

8
Φ = 𝐹(𝜌0) + Φ = 𝐸𝐶andΦ = (1 + 𝐴)𝐸𝐶                                                (13) 

𝐸7 = 𝐹 (
7

8
𝜌0) +

7

8
Φ                                                                                                                        (14) 

Thus,  

𝐸𝑚𝑣 = −8𝐹(𝜌0) + 8𝐹 (
7

8
𝜌0) − Φ =  8𝐹 (

7

8
𝜌0) + (7𝐴 − 1)𝐸𝐶                                           (15) 

ii. Embedding energy function  

The general expression for the embedding energy function (Eq.(11)) when 𝜌 =
𝜂

𝑍
𝜌0 is  

𝐹 [(
𝑍−𝑛

𝑍
) 𝜌0] =  𝐹 [(1 −

𝑛

𝑍
) 𝜌0] = 𝐴𝐸0 {(1 −

𝑛

𝑍
)
𝑞1
− 𝐴𝐸0 (1 −

𝑛

𝑍
)
𝑞2
ln (1 −

𝑛

𝑍
)}             (16) 
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= 𝐴𝐸0

{
 
 

 
 1 +

𝑛

𝑍
𝑆1 −

𝑛

𝑍
𝑆1𝑞1 +

1

2
(
𝑛

𝑍
)
2

𝑆2𝑞1
2 −

1

6
(
𝑛

𝑍
)
3

𝑆3𝑞1
3 +

1

12
(
𝑛

𝑍
)
4

𝑆4𝑞1
4

−
1

120
(
𝑛

𝑍
)
5

𝑞1
5 − (

𝑛

𝑍
)
2

𝑆1
2𝑞2 +

1

2
(
𝑛

𝑍
)
3

𝑆1𝑆2𝑞2
2 −

1

6
(
𝑛

𝑍
)
4

𝑆1𝑆3𝑞2
3

+
1

12
(
𝑛

𝑍
)
5

𝑆1𝑆4𝑞2
4 −

1

120
(
𝑛

𝑍
)
6

𝑆1𝑞2
5

}
 
 

 
 

    (17) 

where 

𝑆1 = 1 +
1

2
(
𝑛

𝑍
) +

1

3
(
𝑛

𝑍
)
2

+
1

4
(
𝑛

𝑍
)
3

+
1

5
(
𝑛

𝑍
)
4

+ ∙∙∙∙∙                          (18) 

𝑆2 = 1 + (
𝑛

𝑍
) +

11

12
(
𝑛

𝑍
)
2

+
5

6
(
𝑛

12
)
3

+ ∙∙∙∙∙                                        (19) 

𝑆3 = 1 +
3

2
(
𝑛

𝑍
) +

7

4
(
𝑛

𝑍
)
2

+ ∙∙∙∙∙                                                       (20) 

𝑆4 =
1

2
+

𝑛

𝑍
+ ∙∙∙∙∙                                                                             (21) 

We used the following series expansions in Eq.(16) to obtain Eq.(17): 

ln(1 + 𝑥) = 𝑥 −
𝑥2

2
+
𝑥3

3
− ⋯ ∙∙∙∙                                                     (22) 

and (binomial expansion) 

(1 + 𝑥)𝑛 = 1 +
𝑛𝑥

1!
+
𝑛(𝑛 − 1)𝑥2

2!
+ ⋯ ∙∙∙                                            (23) 

Thus, for  𝑍 = 8 we have 

𝐹 (
8

8
𝜌0) = 𝐹(𝜌0) = −A𝐸𝐶       (24) 

𝐹 (
7

8
𝜌0)=𝐹 [(1 −

1

8
) 𝜌0]                                                              (25) 

𝐹 (
6

8
𝜌0)=  𝐹 [(1 −

2

8
)𝜌0]                                                             (26) 

𝐹 (
4

8
𝜌0)=  𝐹 [(1 −

4

8
)𝜌0]                                                              (27) 

The monovacancy formation energy of Eq.(15) can be calculated if 𝑞1, 𝑞2and 𝐴  are known. 

iii. Surface energies 

The surface energies along special directions are: 

Γ100 =
1

𝑎2
(𝐸7 − 𝐸8)  =

2

𝑎2
{𝐹 (

7

8
𝜌0) +

1

8
(7𝐴 − 1)𝐸𝐶}                                   (28) 

Γ110 =
√2

𝑎2
(𝐸6 − 𝐸8) =

√2

𝑎2
{𝐹 (

6

8
𝜌0) +

2

8
(3𝐴 − 1)𝐸𝐶}                                  (29) 

Γ111 =
1

𝑎2√3
(𝐸4 − 𝐸8)  =

1

𝑎2√3
{𝐹 (

4

8
𝜌0) +

4

8
(𝐴 − 1)𝐸𝐶}                           (30) 

iv. Computational analysis 

To test the reliability of Eq.(11)for 𝑏𝑐𝑐  metals we obtained its parameters𝐴, 𝑞1and 𝑞2 through a fit of Eq.(15) to its 

experimental value.𝐴, 𝑞1and 𝑞2were adjusted to match the experimental values ofmonovacancy formation energy 𝐸𝑚𝑣  and 

cohesive energy 𝐸𝐶  for each metal considered.An essential aspect of the technique was the ability of our 𝐹(𝜌), within EAM, 

to reproduce the experimental value of the monovacancy formation energy by a simple and efficient procedure which utilizes 

a Fortran code based on Leipschl.com Force 2.0. Our search code was anchored on a very simple procedure which operated 

1000 numerical grid points with spacing such that ∆𝐴 = ∆𝑞1 = ∆𝑞2 = 10
−6. Thus, values of 𝐴, 𝑞1and 𝑞2 which fitted Eq. 

(15) perfectly were obtained for each metal. The fitted values of 𝐴, 𝑞1, 𝑞2and other essential input parameters taken from 

Kittel [6] and Zhang et al [13] are listed in Table1. The drawback of our algorithm is the existence of several potential 

minimal points. However, we made𝐴 < 1 to avoid a not-physical situation and to ensure reliable and quick search. 

 

4.0 Results and Discussion  
The main results of this work are the surface energies of each metal along the three different orientations. The fitted values of 

𝐴, 𝑞1, 𝑞2 as well as the experimental values of the lattice constant 𝑎 and cohesive energy 𝐸𝐶  were used in Eqs.(28-30) to 

calculate the surface energies. For the surfaces of interest, 𝑛 = 1, 2 and 4 in Eq.(16 or 17). In Table 2, the results are 

compared to the data of first principles’ study of Skriver and Rosengaard [10], modified embedded atom method (MEAM) of 

Baskes [1], the modified analytical embedded atom method (MAEAM) of Zhang et al [13] as well as the experimental 

(polycrystalline) data of deBoer et al [3] where available. Our approach gave a good description of the experimentally 

observed trends. The poorest agreement happens for the (111)  facets for which we should have the lowest electron 

densities.The supposedly lowest-densitysurface was predicted to have lowersurface energy than the closer-packed (100) 
planesurprisingly.  
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Though surface energy is readily compared to experiment, it should be stated that the comparison is, to a certain extent, 

challenging. The available experimental surface energies are fraught with impurities and are usually extrapolated to 0K.To 

date, the experimental data listed by deBoer et al [3] are the most reliable. The plot of the average of the selected calculated 

surface energies is compared to experiment [3] in Fig.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Calculated (average) surface energies of selected metals (solid squares) compared to a fit (solid line) of their 

polycrystalline values [3, 10]. 

 

Table 1: Model parameters of present work and experimental data of some 𝑏𝑐𝑐 metals taken from Kittel [6] and Zhang et al 

[13]. 

𝑀𝑒𝑡𝑎𝑙 𝑎 (Å) 𝐸𝑚𝑣(𝑒𝑉) 𝐸𝐶(𝑒𝑉) 𝐹(𝜌) 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝐴 𝑞1 𝑞2 

𝐿𝑖 3.5093 0.480 1.630 0.49465 5.44465 5.44465 

𝑁𝑎 4.2096 0.340 1.113 0.50604 5.40604 5.20004 

𝐾 5.3210 0.340 0.934 0.52556 5.43156 5.25560 

𝑅𝑏 5.7030 0.341 0.852 0.47866 5.87660 5.30066 

𝐶𝑠 6.1410 0.322 0.804 0.46005 6.36005 5.19017 

𝐹𝑒 2.8664 1.790 4.280 0.46011 6.41010      5.41010   

𝑉 3.0282 2.100 5.310 0.40361 7.30361     5.30361   

𝐶𝑟 2.8846 1.600 4.100 0.42749 6.82748 5.20248 

𝑁𝑏 3.3007 2.750 7.570 0.40001 7.20002    5.20002   

𝑀𝑜 3.1468 3.100 6.820 0.42074 7.32174 5.19500 

𝑊 3.1650 3.950 8.900 0.40801 7.35801 6.20001 

𝑇𝑎 3.3026 2.950 8.100 0.40102 7.10102 5.70102 
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Table 2: Surface energiesof twelve𝑏𝑐𝑐 metals of present work compared withthe data of first principles’ study of Skriver 

and Rosengaard [10], modified embedded atom method (MEAM) of Baskes [1] and the modified analytical embedded atom 

method (MAEAM) of Zhang et al [13] where available as well as the experimental data ofdeBoer et al [3]. 

 

 

Metal 

 

 

Crystal 

Face  
(ℎ𝑘𝑙) 

Surface energies in 𝐽 𝑚2⁄  

EAM 

Present 

Work 

First 

Principles  

Calculations 
(𝑅𝑒𝑓[10]) 

MEAM 
(𝑅𝑒𝑓[1]) 

MAEAM 
(𝑅𝑒𝑓[11]) 

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 
(𝐴𝑣𝑒) 
(𝑅𝑒𝑓[3]) 

𝐿𝑖 
 

(100) 

(110) 

(111) 

0.6519 

0.5583 

0.3030 

0.436 

0.458 

0.431 

0.202 

0.279 

0.2693 

0.2529 

0.3108 

 

0.525 

𝑁𝑎 

 

(100) 

(110) 

(111) 

0.3193 

0.2673 

0.1386 

0.236 

0.307 

0.288 

0.169 

0.202 

0.1330 

0.1247 

0.1535 

 

0.260 

𝐾 (100) 

(110) 

(111) 

0.1767 

0.1076 

0.0700 

0.129 

0.112 

0.116 

0.182 

0.110 

0.125 

0.0833 

0.0781 

0.0961 

 

0.130 

𝑅𝑏 

 

(100) 

(110) 

(111) 

0.1232 

0.1212 

0.0634 

0.107 

0.092 

0.089 

 0.0725 

0.0680 

0.0836 

 

0.110 

𝐶𝑠 
 

(100) 

(110) 

(111) 

0.0947 

0.1054 

0.0558 

0.092 

0.072 

0.070 

 0.0592 

0.0555 

0.0683 

 

0.095 

𝐹𝑒 (100) 

(110) 

(111) 

2.3137 

1.5990 

1.3820 

 

2.660, 3.090 

2.289 

1.566 

1.720 

1.537 

1.429 

1.772 

 

2.480 

𝑉 

 

(100) 

(110) 

(111) 

3.6650 

0.6906 

1.9647 

 

2.020 

2.490 

1.705 

1.805 

1.705 

1.548 

1.959 

 

2.550 

𝐶𝑟 

 

(100) 

(110) 

(111) 

1.9635 

0.7873 

1.6593 

 

3.630 

1.230 

1.032 

1.247 

1.461 

1.315 

1.677 

 

2.300 

𝑁𝑏 (100) 

(110) 

(111) 

2.5092 

0.7956 

2.2836 

 

1.640 

2.788 

1.868 

2.018 

1.995 

1.767 

2.283 

 

2.700 

𝑀𝑜 

 

(100) 

(110) 

(111) 

2.6794 

1.0216 

2.2926 

 

3.180 

2.122 

1.930 

1.861 

2.332 

2.118 

2.679 

 

3.000 

𝑊 (100) 

(110) 

(111) 

3.2981 

1.1260 

3.1046 

 

3.840 

2.646 

2.232 

2.247 

2.882 

2.638 

3.315 

 

3.680 

𝑇𝑎 (100) 

(110) 

(111) 

3.2736 

1.5676 

2.4155 

 

1.790 

3.292 

2.173 

2.305 

1.963 

1.802 

2.259 

 

3.150 
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5.0 Conclusion 
The main contribution of this paper is the extension of the embedding energy function of Eq.(11) to 𝑏𝑐𝑐 metallic 

elements. The extension was anchored on the strong theoretical footing of the embedded atom method (EAM). 

The theoretical procedures were successfully carried out on𝑏𝑐𝑐 alkali and transition metals involving various 

bonding mechanisms, indicating that Eq.(11) could describe the elastic and simple defect properties of the various 

materials just as it has done for their 𝑓𝑐𝑐 counterparts. 

We performed the structural analysis and calculated the surface energies for different planar orientations and 

compared the results to experiments and other theoretical calculations. Our results are in reasonable agreement 

with experiment. 

In contrast to most modified versions of EAM, our EAM type has a consistent analytical𝐹(𝜌) which requires just 

3 fitting parameters and considers first-nearest neighbor interactions only. Extension of Eq.(11) to second-

neighbour interactions for all crystalline structures including ℎ𝑐𝑝 is conceivable. 
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