On Partial W*-Quantum Dynamical Semigroups

Yusuf Ibrahim

Nigerian Defence Academy, Mathematics Department, Kaduna, Nigeria.

Abstract

A partial w*-quantum dynamical semigroup $\varphi_{\kappa,t}$ defined by composition of completely positive conjugate-bilinear maps is considered. We show that if $\varphi_{\kappa,t}$ satisfies some certain conditions then we can define a contraction semigroups of maps of linear operators P_t associated with $\varphi_{\kappa,t}$.

Keywords: Completely positive maps, partial w*-algebra, dynamical semigroups

1.0 Introduction

A representation theorem for completely positive maps on C *-algebras was first given by Stinespring (1955). An extension of Stinespring's theorem to partial *-algebras has been carried out by a number of authors [1-6] in order to overcome the rigid scheme of the C *-algebraic approach. In this paper we give an equivalent form of the generalization given in Bagarello et al. [2] of the Stinespring theorem. The equivalent form provide for us a suitable setting to define a partial w*-quantum dynamical semigroup $\varphi_{\kappa,t}$ by means of composition of completely positive conjugate-bilinear maps. We show that if partial w*-quantum dynamical semigroup $\varphi_{\kappa,t}$ satisfies some certain conditions then we can define a contraction semigroup

 P_t associated with $\varphi_{\kappa,t}$. The rest of the paper is arranged as follows; Section 2 gives the basic notions of the algebraic setting for partial *-algebra needed in the sequel. In Section 3 we recall some notions of completely positive invariant conjugate-bilinear map and also state an equivalent form of Bagarello et al. generalization. In Section 4, we define partial w*-dynamical semigroups $\varphi_{\kappa,t}$ by means of composition of completely positive maps and state the main result.

2.0 Algebraic Setting

A partial *-algebra is a quadruplet denoted by $(A, \Gamma, *, \cdot)$. This consists of an involutive complex linear space A with involution and a relation $\Gamma \subseteq A \times A$ endowed with a partial multiplication " \cdot " on A. We have the following precise definition;

Definition 1. A partial *-algebra is a complex vector A with involution $x \to x^*$ and subset $\Gamma \subseteq A \times A$ such that

1. $(x, y) \in \Gamma$ implies $(y^*, x^*) \in \Gamma$

2. $(x, y_1), (x, y_2) \in \Gamma$ implies $(x, \lambda y_1 + \mu y_2) \in \Gamma, \forall \lambda, \mu \in \mathbb{C}$.

3. Whenever $(x, y) \in \Gamma$ there exists a product $x \cdot y \in A$ with the usual properties of multiplication: $x \cdot (y + \lambda z) = x \cdot y + \lambda (x \cdot z)$ and $(x \cdot y)^* = y^* \cdot x^*$ for $(x, y), (x, z) \in \Gamma$ and $\lambda \in \mathbb{C}$.

A partial *-algebra is in general *non-associative*. For $x \in A$, we denote the set of all left and right multipliers of x by L(x) and R(x) hence, a partial *-algebra, is said to be *semi-associative* partial *-algebra if and only if for $x, y \in A$ with $y \in R(x)$ implies that $y. z \in R(x)$ and $x \cdot (y \cdot z) = (x \cdot y) \cdot z$, $\forall z \in R(A)$. The study of partial *-algebras is largely dependent on several classes of multipliers introduced as follows: If C is an arbitrary subset of A, then

- (i) $L(C) = \bigcap_{x \in C} L(C)$, the set of universal left multipliers of *C*.
- (ii) $R(C) = \bigcap_{x \in C} R(C)$, the set of universal right multipliers of *C*.
- (iii) $M(C) = L(C) \cap R(C)$, the set of universal multipliers of C.

A concrete realization of partial *-algebras arises as follows: Let *D* be a complex pre-Hilbert Space. Denote by $L^{\dagger}(D, H)$ the set of all closable linear operators *X* with domain D(X) = D and the adjoint X^* with domain $D(X^*) \supset D$, each with range in $H.L^{\dagger}(D, H)$ is a complex linear space with respect to the usual notions of addition and scalar multiplication. This complex

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 7-12

Corresponding author: Yusuf Ibrahim, E-mail: yusufian68@yahoo.com, Tel.: +2347034972567

On Partial W*-Quantum... Ibrahim Trans. of NAMP

linear space becomes a partial *-algebra when equipped with an involution defined for $X \in L^{\dagger}(D, H)$ that is the map $X \to X^{\dagger} = X^* \upharpoonright D$ and a weak partial multiplication

 $X \cdot Y = X^{\dagger *}Y$ defined whenever X is a weak left multiplier of Y that is, if and only $YD \subset D(X^{\dagger *})$ and $X^{\dagger}D \subset D(Y^{*})$ for $(X, Y) \in \Gamma$,

where
$$\Gamma = \left\{ (X, Y) \in \left(L^{\dagger}(D, H) \right)^2 : YD \subset D(X^{\dagger *}), X^{\dagger}D \subset D(Y^*) \right\}.$$

The quadruplet $(L^{\dagger}(D, H), \Gamma, \dagger, \cdot)$ is called a partial *-algebra and is denoted by $L^{\dagger}_{w}(D, H)$. A subalgebra *M* of $L^{\dagger}_{w}(D, H)$ is a partial O*-algebra on *D*. See, Antoine et al. [1].

We have the notion of a state ω on M which is a sequilinear map $\omega: M \times M \to \mathbb{C}$, such that $\omega(e, e) = 1$, where \mathbb{C} is the set of complex numbers and e is the unit element in M. On M, there are various topologies that can be define, in particular we have the strong^{*} τ_{s^*} , the weak τ_w and the σ – weak $\tau_{\sigma w}$ topologies respectively. We have the following

Definition2. Let *M* be an arbitrary $\tau_{\sigma W}$ -closed, unital partial O*-algebra, endowed with a partial multiplication defined for $(X, Y) \in \Gamma$, we have $X \cdot Y = X^{\dagger *}Y$ such that $YD \subset D(X^{\dagger *})$ and $X^{\dagger}D \subset D(Y^{*})$. Now for any $X \in M$, if *M* satisfies the following conditions;

(1) $D = \bigcap_{X \in M} D(X^{\dagger})$

(2) R(M) is τ_{s^*} dense in M

Then *M* will be called a partial w*-algebra.

3.0 Completely Positive Invariant Conjugate-bilinear Map

In this section, we state an equivalent form of the completely positive conjugate-bilinear map which will be used to define the notion of a partial w*-dynamical semigroups. Before we state the result in this section, we have the following definitions from Bagarello's et al. [2]. Let *M* be a partial w*-algebra with unit *e* and *A* a vector space. We denote by S(A) the involutive vector space of all sesquilinear forms φ on $A \times A$ with involution $\varphi(\xi, \eta)^{\dagger} = \overline{\varphi(\eta, \xi)}$, $\xi, \eta \in A$.

Definition 3. A map $\Phi: D(\Phi) \times D(\Phi) \to S(A)$ is said to be conjugate-bilinear if

- (i) $D(\Phi) \subset M$
- (ii) $\Phi(X,Y)^{\dagger} = \Phi(Y,X)$

(iii) $\Phi(X, \alpha Y + \beta Z) = \alpha \Phi(Y, X) + \beta \Phi(Y, Z), \forall X, Y, Z \in D(\Phi), \forall \alpha, \beta \in \mathbb{C}.$

Definition 4. A conjugate-bilinear map $\Phi: D(\Phi) \times D(\Phi) \to S(A)$ is said to quasi-invariant if there exists a subspace B_{Φ} of $D(\Phi)$ such that

- (i) $B_{\Phi} \subset R(M)$
- (ii) $MB_{\Phi} \subset D(\Phi)$
- (iii) $\Phi(aX,Y) = \Phi(X, a^*Y), \forall a \in M, \forall X,Y \in B_{\Phi}$
- (iv) B_{Φ} satisfies the density condition; $X \in D(\Phi)$, $\forall \xi \in A$, there exists a net $\{X_n\} \subset B_{\Phi}$ such that $\lim_{n \to \infty} \Phi(X_n X, X_n X)(\xi, \xi) = 0$
- (v) It is said to be *invariant*, if $\Phi(a^*X, bY) = \Phi(X, (ab)Y), \forall a, b \in M, a \in L(b), \forall X, Y \in B_{\Phi}$.
- A subspace B_{Φ} satisfying the above requirements is called a *core* for B_{Φ} .

Definition 5. A conjugate-bilinear map $\Phi: D(\Phi) \times D(\Phi) \to S(A)$ is said to be positive if $\Phi(X, X) \ge 0$ ($\Phi(X, X)(\xi, \xi) \ge 0$, for every $\xi \in A$) each $X \in D$: The map Φ is said to be completely positive if, for each $n \in \mathbb{N} \sum_{i,j=1}^{n} \Phi(X_i, X_j)(\xi_i, \xi_j) \ge 0$, $\forall \{X_1, \dots, X_n\} \subset D(\Phi), \forall \{\xi_1 \dots, \xi_n\} \subset A$.

We will now give an equivalent form for the completely positive conjugate-bilinear map given in definition 5.

Theorem 1. Let *M* be a partial w*-algebra and *A* a vector space. Let Φ, Θ be a completely positive invariant conjugatebilinear maps with $\Phi \subset \Theta$, then there exists a completely conjugate-bilinear map κ defined on the core *B* of Φ , such that for all $a, b \in M$ and $X_i, X_j \in B$ we have, $\sum_{i,j=1}^n \langle i_{\Phi}(\xi_i), \Theta_{\kappa}(aX_i, bY_j) i_{\Phi}(\eta_j) \rangle_{H_{\Phi}} = \sum_{i,j=1}^n \Phi(aX_i, bY_j) (\xi_i, \eta_j)$, where i_{Φ} is a composite map and $\Theta \upharpoonright_{D(\Phi)} = \Theta_{\kappa}, \xi_i, \eta_j \in A$.

Proof :For a completely positive map Φ with domain $D(\Phi) \subset M$, let $D(\Phi) \otimes A$ denote the algebraic tensor product of $D(\Phi)$ and A. Define a subspace N_{Φ} of $D(\Phi) \otimes A$ with respect to the map Φ as follows, let $\xi = \sum_{i=1}^{n} X_i \otimes \xi_i$ and $\eta = \sum_{j=1}^{n} Y_j \otimes \eta_j \in D(\Phi) \otimes A$ then we have $N_{\Phi} = \{\xi, \eta \in D(\Phi) \otimes A : \langle \xi, \eta \rangle_{\Phi} = 0\}$. With this we define the linear map λ_{Φ} from $D(\Phi) \otimes A$ into $D(\Phi) \otimes A \setminus N_{\Phi}$ by $\lambda_{\Phi}(\xi) = \xi + N_{\Phi}$. We call $\lambda_{\Phi}(\xi)$ the coset of $D(\Phi) \otimes A \setminus N_{\Phi}$ containing ξ and this induces an inner product on $\lambda_{\Phi}(D(\Phi) \otimes A)$ given by $\langle \lambda_{\Phi}(.), \lambda_{\Phi}(.) \rangle$. Let H_{Φ} denotes the completion of

 $\lambda_{\Phi}(D(\Phi) \otimes A)$ with respect to the inner product $\langle \lambda_{\Phi}(.), \lambda_{\Phi}(.) \rangle$. Since the core *B* of Φ satisfies the density condition by definition, we have that $\lambda_{\Phi}(B \otimes A)$ is dense $\lambda_{\Phi}(D(\Phi) \otimes A)$ and hence dense in H_{Φ} . Now define a map π_0 on *M* with $\lambda_{\Phi}(B \otimes A) = D(\pi_0)$ by

$$\pi_0(a)\lambda_{\Phi}(\xi) = \lambda_{\Phi}(a\xi) = \sum_{i=1}^n \lambda_{\Phi}(aX_i \otimes \xi_i)$$

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 7 – 12

On Partial W*-Quantum... Ibrahim Trans. of NAMP

where $a \in R(M)$ and $\xi \in A$. The map is a well defined *-representation. Let π_B denotes its closure, thus λ_{Φ} is a strongly cyclic vector representation of M for π_B . Now define an injective map $i: A \to (B \otimes A)$ by $\sum_{i=1}^{n} i(\xi_i) = \sum_{i=1}^{n} (e \otimes \xi_i)$, for $e \in B$, $\xi_i \in A$. And using the map $\lambda_{\Phi}: (B \otimes A) \to H_{\Phi}$, we define a composite $i_{\Phi}: A \to H_{\Phi}$ $\sum_{i=1}^{n} i_{\Phi}(\xi_i) = \sum_{i=1}^{n} \lambda_{\Phi} \circ i(\xi_i)$. Applying the composite map, we define a conjugate-bilinear map $\kappa: B \times B \to H_{\Phi}$ by

$$\sum_{i,j=1}^{n} \langle i_{\Phi}(\xi_{i}), \quad \kappa(X_{i}, Y_{j}) i_{\Phi}(\eta_{j}) \rangle_{H_{\Phi}} = \langle \sum_{i=1}^{n} \lambda_{\Phi}(X_{i} \otimes \xi_{i}), \sum_{j=1}^{n} \lambda_{\Phi}(Y_{j} \otimes \eta_{j}) \rangle_{H_{\Phi}}$$
$$= \langle \lambda_{\Phi}(\xi), \lambda_{\Phi}(\eta) \rangle_{H_{\Phi}}$$

For $X_i, Y_i \in B$ and $\xi_i, \eta_j \in A$. Let the extension of κ to $D(\Phi)$ be denoted still by κ , then for $a, b \in M$ and $\forall X_i, Y_i \in B$ and $\xi_i, \eta_j \in A$. Let $\xi_a = \sum_{i=1}^n aX_i \otimes \xi_i, \eta_b = \sum_{i=1}^n bY_i \otimes \eta_i$, then we define the map $\kappa: D(\Phi) \times D(\Phi) \to H_{\Phi}$ by

$$\sum_{i,j=1}^{n} \langle i_{\Phi}(\xi_i), \qquad \kappa (aX_i, bY_j) i_{\Phi}(\eta_j) \rangle_{H_{\Phi}} = \langle \lambda_{\Phi}(\xi_a), \lambda_{\Phi}(\eta_b) \rangle_{H_{\Phi}}.$$

Let Θ be a completely positive conjugate-bilinear map with domain $D(\Theta)$ containing $D(\Phi)$ such that its restriction to $D(\Phi)$ is denoted by Θ_{κ} .

That is the map $\Theta_{\kappa}: D(\Phi) \times D(\Phi) \to H_{\Phi}$ given by $\sum_{i,j=1}^{n} \langle i_{\Phi}(\xi_{i}), \Theta_{\kappa}(aX_{i}, bY_{j}) i_{\Phi}(\eta_{j}) \rangle_{H_{\Phi}} = \sum_{i,j=1}^{n} \langle i_{\Phi}(\xi_{i}), \kappa(aX_{i}, bY_{j}) i_{\Phi}(\eta_{j}) \rangle_{H_{\Phi}}.$ Thus we have $\sum_{i,j=1}^{n} \langle i_{\Phi}(\xi_{i}), \Theta_{\kappa}(aX_{i}, bY_{j}) i_{\Phi}(\eta_{j}) \rangle_{H_{\Phi}} = \langle \lambda_{\Phi}(\xi_{a}), \lambda_{\Phi} \rangle$

$$\sum_{i,j=1}^{n} \langle i_{\Phi}(\xi_{i}), \qquad \Theta_{\kappa}(aX_{i}, bY_{j})i_{\Phi}(\eta_{j})\rangle_{H_{\Phi}} = \langle \lambda_{\Phi}(\xi_{a}), \lambda_{\Phi}(\eta_{b})\rangle_{H_{\Phi}}$$
$$= \langle \sum_{i=1}^{n} \lambda_{\Phi}(aX_{i} \otimes \xi_{i}), \sum_{j=1}^{n} \lambda_{\Phi}(bY_{j} \otimes \eta_{j})\rangle_{H_{\Phi}}$$
$$= \sum_{i,j=1}^{n} \langle \pi_{B}(a)\lambda_{\Phi}(X_{i} \otimes \xi_{i}), \qquad \pi_{B}(b)\lambda_{\Phi}(Y_{j} \otimes \eta_{j})\rangle_{H_{\Phi}}$$
$$= \sum_{i,j=1}^{n} \Phi(aX_{i}, bY_{j})(\xi_{i}, \eta_{j})$$

This conclude the proof.

The next lemma considers the ordering of completely positive maps with respect to their cores But before then, we have the following,

Definition 6. Let C be the set of all cores B^i , i = 1, 2, ..., n, for the completely positive map Φ , endowed with the order \subset . This induces an order on a family $\{\kappa_{B^i}\}_{i=1}^n$ of completely positive conjugate-bilinear maps defined on the corresponding cores as follows; $\kappa_{B^1}, \kappa_{B^2}$ be defined on B^1, B^2 respectively, then $\kappa_{B^1} \subset \kappa_{B^2}$ iff $B^1 \subset B^2$ and we denote this by

 $\kappa_{B^1} \leq \kappa_{B^2}$. Let $B^{\mathcal{L}}$ denote the largest of the cores in \mathcal{C} for the completely positive map Φ , then we have $\kappa_B \leq \kappa_{B^{\mathcal{L}}} \forall B \in \mathcal{C}$.

Notation : We write $\kappa_{B^{\mathcal{L}}}$ as κ and κ_{B} as κ' . Then we have the following

Theorem 2. The map Θ_{κ} is maximal for any family $\{\kappa_{Bi}\}_{i=1}^{n}$ of completely positive conjugate-bilinear defined on the set of cores in C.

Proof: Let $B \in C$ be an arbitrary core such that $B \subset B^{\mathcal{L}}$, then from definition we have $\kappa' \subset \kappa$. Let $a, b \in M$, $X_i, Y_i \in B$ and $i_{\Phi}(\xi_i), i_{\Phi}(\eta_j) \in H_{\Phi}$ with $\xi_i, \eta_j \in A$ then we have

$$\begin{split} \sum_{i,j=1}^{n} \langle i_{\Phi}(\xi_{i}), \ \Theta_{\kappa'}(aX_{i}, bY_{j}) i_{\Phi}(\eta_{j}) \rangle_{H_{\Phi}} &= \sum_{i,j=1}^{n} \langle i_{\Phi}(\xi_{i}), \ \kappa'(aX_{i}, bY_{j}) i_{\Phi}(\eta_{j}) \rangle_{H_{\Phi}}. \\ &= \sum_{i,j=1}^{n} \langle \pi_{B}(a) \lambda_{\Phi}(X_{i} \otimes \xi_{i}), \qquad \pi_{B}(b) \lambda_{\Phi}(Y_{j} \otimes \eta_{j}) \rangle_{H_{\Phi}} \\ &\leq \sum_{i,j=1}^{n} \langle \pi_{B^{\mathcal{L}}}(a) \lambda_{\Phi}(X_{i} \otimes \xi_{i}), \qquad \pi_{B^{\mathcal{L}}}(b) \lambda_{\Phi}(Y_{j} \otimes \eta_{j}) \rangle_{H_{\Phi}} \\ &= \sum_{i,j=1}^{n} \langle i_{\Phi}(\xi_{i}), \qquad \kappa(aX_{i}, bY_{j}) i_{\Phi}(\eta_{j}) \rangle_{H_{\Phi}} \end{split}$$

 $= \sum_{i,j=1}^{n} \langle i_{\Phi}(\xi_{i}), \Theta_{\kappa}(aX_{i}, bY_{j}) i_{\Phi}(\eta_{j}) \rangle_{H_{\Phi}}.$ Hence $\Theta_{\kappa'} \leq \Theta_{\kappa}$ and since $B \in C$ is an arbitrary core implies that Θ_{κ} is maximal.

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 7-12

4.0 Partial w*-Dynamical Semigroups

In this section we let Θ_{κ} take values in a partial w*- algebra *M*. We defined a dynamical semigroup of linear mappings $\varphi_{\kappa,t}$ and show that under some certain conditions on $\varphi_{\kappa,t}$ we can define a contraction semigroups of maps of linear operators P_t associated with $\varphi_{\kappa,t}$. We have the following

Definition 7. For $\in \mathbb{R}_+$, with $0 \le t < \infty$. Let *M* be a partial w^{*}- algebra on *D* and let

 $\Theta_{\kappa}: D(\Phi) \times D(\Phi) \to M$ be a completely positive conjugate-bilinear map that is associated with a one parameter completely positive conjugate-bilinear map $t \ni \mathbb{R}_+ \to V_t(X,Y) \in D(\Phi)$ with $X,Y \in M$. By being associated, we mean that their composition is well defined and closed. Then for any $X,Y \in M$ we define a completely positive conjugate-bilinear map $\Theta_{\kappa}^t: M \times M \to M$ by

$$\Theta_{\kappa}^{t}(X,Y) = \Theta_{\kappa}(e,V_{t}(X,Y)) = \Theta_{\kappa} \circ V_{t}(X,Y)$$

Remark: If $V_0 = e$, we have $\Theta_{\kappa}^0 = \Theta_{\kappa} \circ V_0 = \Theta_{\kappa} \circ e = \Theta_{\kappa}$ and if write $V_t \circ V_s = V_{t+s}$, then $\Theta_{\kappa}^{t+s}(X,Y) = \Theta_{\kappa}^t \circ \Theta_{\kappa} \circ V_s(X,Y) = \Theta_{\kappa}^t \circ V_t(e,V_s(X,Y))$

$$= \Theta_{\kappa}^{t} \circ V_{t} \circ V_{s}(X,Y) = \Theta_{\kappa}^{t} \circ V_{t+s}(X,Y)$$

 $\forall X, Y \in M \text{ and } 0 \le t < \infty, 0 \le s < \infty.$

We have an adapted version of a definition of a partial w*-quantum dynamical semigroup from(Ekhaguere , 1993) .

Definition 8. A family $\{\varphi_{\kappa,t}\}_{t\in\mathbb{R}_+}$ of completely positive conjugate-bilinear maps on $M \times M$

- (a) $\varphi_{\kappa,0} = \Theta_{\kappa}$
- (b) $\varphi_{\kappa,t} \circ \varphi_{\kappa,s} = \varphi_{\kappa,t+s}$, for arbitrary $t, s \ge 0$
- (c) $\varphi_{\kappa,t}$ is σ -weakly continuous on $M \times M$ with respect to the σ -weakly topology $\tau_{\sigma w}$ is called a partial w*-quantum dynamical semigroup.

Theorem 3. A family $\{\varphi_{\kappa,t}\}_{t\in\mathbb{R}_+}$ of completely positive conjugate-bilinear maps on $M \times M$ of the form $\langle \xi, \varphi_{\kappa,t}(X,Y)\eta \rangle = \langle \xi, \Theta_{\kappa} \circ V_t(X,Y)\eta \rangle$ (1)

is a partial w*-quantum dynamical semigroup for $X, Y \in M$ and $\xi, \eta \in D$.

Proof: We show that definition 8 is satisfied

 $\langle \xi, \varphi_{\kappa,0}(X,Y)\eta \rangle = \langle \xi, \Theta_{\kappa} \circ V_0(X,Y)\eta \rangle = \langle \xi, \Theta_{\kappa}^0(X,Y)\eta \rangle = \langle \xi, \Theta_{\kappa}(X,Y)\eta \rangle$ and for the second property, that is $\varphi_{\kappa,t} \circ \varphi_{\kappa,t+s}$, we have the following

 $\langle \xi , \varphi_{\kappa,t+s}(X,Y)\eta \rangle = \langle \xi , \Theta_{\kappa} \circ V_{t+s}(X,Y)\eta \rangle = \langle \xi , \Theta_{\kappa}^{t+s}(X,Y)\eta \rangle$

 $= \langle \xi , \Theta_{\kappa}^{t}(e, \Theta_{\kappa}^{s}(X, Y)\eta) \rangle = \langle \xi , \Theta_{\kappa} \circ V_{t}(e, \Theta_{\kappa} \circ V_{s}(X, Y)\eta) \rangle$

 $= \langle \xi, \Theta_{\kappa} \circ V_{t} \circ \Theta_{\kappa} \circ V_{s}(X, Y)\eta \rangle = \langle \xi, \varphi_{\kappa,t} \circ \varphi_{\kappa,s}(X, Y)\eta \rangle$

It is obvious that completely positive maps are σ -weakly continuous, thus the third property in the definition is satisfied, hence is a partial w^{*}- quantum dynamical semigroup.

Definition 9. The \dagger - invariant subspace $(M \times M)^{\dagger}$ of $M \times M$ is given by $(M \times M)^{\dagger} = ((X, Y) \in D(\Phi) \times D(\Phi)) = 0$ ((X, Y))

 $(M \times M)^{\dagger} = \left\{ (X, Y) \in D(\Phi) \times D(\Phi) \colon \Theta_{\kappa}^{\dagger}(X, Y) = \Theta_{\kappa}(X, Y) \right\}.$

In what follows ω is a *GNS- representable state* with a self adjoint *-representation π_{ω} , see Antoine et al. [1].

Theorem 4. For a *GNS- representable state* ω on $M \times M$, if $\{\varphi_{\kappa,t}\}_{t \in \mathbb{R}_+}$ is a partial w*-quantum dynamical semigroup on $M \times M$ satisfying the following conditions

(1) $\pi_{\omega}(\varphi_{\kappa,t}^{\dagger}) \in L(\pi_{\omega}(\varphi_{\kappa,t}))$ (2) $(\varphi_{\kappa,t} \circ \Theta_{\kappa}^{\dagger}(X,Y)) \cdot (\varphi_{\kappa,t} \circ \Theta_{\kappa}(X,Y)) \leq \varphi_{\kappa,t}(\Theta_{\kappa}^{\dagger}(X,Y),\Theta_{\kappa}(X,Y))$ (3) $\varphi_{\kappa,t} \circ \omega = \omega$

then the linear map P_t defined by $P_t \pi_\omega (\Theta_\kappa(X,Y)) \lambda_{\xi_0} = \pi_\omega (\varphi_{\kappa,t}(X,Y)) \lambda_{\xi_0}$ (2)

is a semigroup of contractions on the pre-Hilbert space into its completions for any

 $(X, Y) \in (M \times M)^{\dagger}$, where λ_{ξ_0} is a strongly cyclic vector representation of M for π_{ω} .

Proof: Now for a *GNS- representable statew* we have the triple $(\pi_{\omega}, H_{\omega}, \lambda_{\xi_0})$. We will show that the linear map P_t defined in equation (2) is a contraction semigroup of linear maps on a pre-Hilbert space into its completion, where λ_{ξ_0} is a strongly cyclic vector representation of *M* for π_{ω} . Thus we have

$$P_0\pi_{\omega}\big(\Theta_{\kappa}(X,Y)\big)\lambda_{\xi_0}=\pi_{\omega}\big(\varphi_{\kappa,0}(X,Y)\big)\lambda_{\xi_0}=\pi_{\omega}\big(\Theta_{\kappa}(X,Y)\big)\lambda_{\xi_0}$$

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 7-12

And

$$P_t P_s \pi_{\omega} (\Theta_{\kappa}(X,Y)) \lambda_{\xi_0} = P_t \pi_{\omega} (\varphi_{\kappa,s}(X,Y)) \lambda_{\xi_0}$$
$$= \pi_{\omega} (\varphi_{\kappa,t}(e,\varphi_{\kappa,s}(X,Y))) \lambda_{\xi_0}$$

$$= \pi_{\omega} \left(\varphi_{\kappa,t+s}(X,Y) \right) \lambda_{\xi_0} = P_{t+s} \pi_{\omega} \big(\Theta_{\kappa}(X,Y) \big) \lambda_{\xi_0}$$

Hence, it is a semigroup. To show that it is a contraction, we have the following $\|p_{\pi}(\Theta(Y|Y))\|^2$

$$\begin{aligned} \left\|P_{t}\pi_{\omega}(\Theta_{\kappa}(X,Y))\lambda_{\xi_{0}}\right\|_{H_{\omega}} \\ &= \left\langle\pi_{\omega}\left(\varphi_{\kappa,t}(X,Y)\right)\lambda_{\xi_{0}},\pi_{\omega}\left(\varphi_{\kappa,t}(X,Y)\right)\lambda_{\xi_{0}}\right\rangle_{H_{\omega}} \\ &= \left\langle\lambda_{\xi_{0}},\pi_{\omega}\left(\varphi_{\kappa,t}^{\dagger}(X,Y)\right)\cdot\pi_{\omega}\left(\varphi_{\kappa,t}(X,Y)\right)\lambda_{\xi_{0}}\right\rangle_{H_{\omega}} \\ &= \left\langle\lambda_{\xi_{0}},\pi_{\omega}\left(\left(\Theta_{\kappa}^{t}\right)^{\dagger}(X,Y)\right)\cdot\pi_{\omega}\left(\Theta_{\kappa}^{t}(X,Y)\right)\lambda_{\xi_{0}}\right\rangle_{H_{\omega}} \\ &= \left\langle\lambda_{\xi_{0}},\pi_{\omega}\left(\left(\Theta_{\kappa}^{t}\right)^{\dagger}\circ\Theta_{\kappa}^{\dagger}(X,Y)\right)\cdot\pi_{\omega}\left(\Theta_{\kappa}^{t}\circ\Theta_{\kappa}(X,Y)\right)\lambda_{\xi_{0}}\right\rangle_{H_{\omega}} \end{aligned}$$

since $(X, Y) \in (M \times M)^{\dagger}$, we have

$$\begin{split} &= \langle \lambda_{\xi_0}, \pi_{\omega} \left((\Theta_{\kappa}^t)^{\dagger} \circ \Theta_{\kappa}(X,Y) \right) \cdot \pi_{\omega} (\Theta_{\kappa}^t \circ \Theta_{\kappa}(X,Y)) \lambda_{\xi_0} \rangle_{H_{\omega}} \\ &= \langle \lambda_{\xi_0}, \pi_{\omega} ((\Theta_{\kappa}^t)^{\dagger}(e, \Theta_{\kappa}(X,Y))) \cdot \pi_{\omega} (\Theta_{\kappa}^t(e, \Theta_{\kappa}(X,Y))) \lambda_{\xi_0} \rangle_{H_{\omega}} \\ &= \langle \lambda_{\xi_0}, \pi_{\omega} (\varphi_{\kappa,t}^{\dagger}(e, \Theta_{\kappa}(X,Y))) \cdot \pi_{\omega} (\varphi_{\kappa,t}(e, \Theta_{\kappa}(X,Y))) \lambda_{\xi_0} \rangle_{H_{\omega}} \\ &= \langle \lambda_{\xi_0}, \pi_{\omega} (\varphi_{\kappa,t}^{\dagger}(e, \Theta_{\kappa}(X,Y))) \cdot (\varphi_{\kappa,t} \circ \Theta_{\kappa}(X,Y)) \lambda_{\xi_0} \rangle_{H_{\omega}} \\ &= \langle \lambda_{\xi_0}, \pi_{\omega} (\varphi_{\kappa,t}^{\dagger} \circ \Theta_{\kappa}(X,Y)) \cdot (\varphi_{\kappa,t} \circ \Theta_{\kappa}(X,Y)) \lambda_{\xi_0} \rangle_{H_{\omega}} \\ &= \langle \lambda_{\xi_0}, \pi_{\omega} (\varphi_{\kappa,t} \circ \Theta_{\kappa}^{\dagger}(X,Y)) \cdot (\varphi_{\kappa,t} \circ \Theta_{\kappa}(X,Y)) \lambda_{\xi_0} \rangle_{H_{\omega}} \\ &\leq \langle \lambda_{\xi_0}, \pi_{\omega} (\varphi_{\kappa,t} (\Theta_{\kappa}(X,Y), \Theta_{\kappa}(X,Y)) \lambda_{\xi_0} \rangle_{H_{\omega}} \\ &= \langle \lambda_{\xi_0}, \pi_{\omega} (\varphi_{\kappa,t} (\Theta_{\kappa}(X,Y), \Theta_{\kappa}(X,Y)) \lambda_{\xi_0} \rangle_{H_{\omega}} \\ &= \omega (e, \varphi_{\kappa,t} (\Theta_{\kappa}(X,Y), \Theta_{\kappa}(X,Y)) \\ &= \omega (\Theta_{\kappa}(X,Y), \Theta_{\kappa}(X,Y)) = \left\| \pi_{\omega} (\Theta_{\kappa}(X,Y) \lambda_{\xi_0} \right\|_{H_{\omega}}^2 \end{split}$$

Since $\omega \circ \varphi_{\kappa,t} = \omega$, this shows that the semigroup is a contraction semigroup. This concludes the proof.

5.0 References

- [1] J.P. Antoine, A. Inoue, C. Trapani, "Partial *- algebras and Their Operator Realizations, Kluwer, Dordrecht,(2002).
- [2] F. Bargarello, A. Inoue, and C. Trapani, Completely positive invariant conjugate-bilinear maps on partial *-algebras,Zeit. Anal. Anwen. 26, 313, (2007)
- [3] G.O.S. Ekhaguere and P.O. Odiobala, Completely positive conjugate-bilinear maps on partial *algebras, J. Math. Phys. 32, 2951-2958, (1991).
- [4] G.O.S. Ekhaguere, A Noncommutative mean ergodic theorem for partial W*-dynamical semigroups, Int. J. for theor. Phys. Vol. 32, (7), (1993).
- [5] G.O.S. Ekhaguere, Representation of Completely positive maps between partial *-algebras, Int. J. for theor. Phys. Vol. 35, (8), (1996).

[6] W.F Stinespring, Positive functions on C*-algebras. Proc. Amer. Math. Society, vol.6, 211-216, (1955).