On Partial W*-Quantum Dynamical Semigroups

Yusuf Ibrahim

Nigerian Defence Academy, Mathematics Department, Kaduna, Nigeria.

Abstract

A partial w^{*}-quantum dynamical semigroup $\varphi_{\kappa, t}$ defined by composition of completely positive conjugate-bilinear maps is considered. We show that if $\varphi_{\kappa, t}$ satisfies some certain conditions then we can define a contraction semigroups of maps of linear operators P_{t} associated with $\varphi_{\kappa, t}$.

Keywords: Completely positive maps, partial w*-algebra, dynamical semigroups

1.0 Introduction

A representation theorem for completely positive maps on C *-algebras was first given by Stinespring (1955). An extension of Stinespring's theorem to partial *-algebras has been carried out by a number of authors [1-6] in order to overcome the rigid scheme of the $C *$-algebraic approach. In this paper we give an equivalent form of the generalization given in Bagarello et al. [2] of the Stinespring theorem. The equivalent form provide for us a suitable setting to define a partial w^{*}-quantum dynamical semigroup $\varphi_{\kappa, t}$ by means of composition of completely positive conjugate-bilinear maps. We show that if partial w^{*}-quantum dynamical semigroup $\varphi_{\kappa, t}$ satisfies some certain conditions then we can define a contraction semigroup
P_{t} associated with $\varphi_{\kappa, t}$. The rest of the paper is arranged as follows; Section 2 gives the basic notions of the algebraic setting for partial $*$-algebra needed in the sequel. In Section 3 we recall some notions of completely positive invariant conjugate-bilinear map and also state an equivalent form of Bagarello et al. generalization. In Section 4, we define partial w*dynamical semigroups $\varphi_{\kappa, t}$ by means of composition of completely positive maps and state the main result.

2.0 Algebraic Setting

A partial $*$-algebra is a quadruplet denoted by $(A, \Gamma, *, \cdot)$. This consists of an involutive complex linear space A with involution and a relation $\Gamma \subseteq A \times A$ endowed with a partial multiplication ". " on A. We have the following precise definition;
Definition 1. A partial ${ }^{*}$-algebra is a complex vector A with involution $x \rightarrow x^{*}$ and subset $\Gamma \subseteq A \times A$ such that

1. $(x, y) \in \Gamma$ implies $\left(y^{*}, x^{*}\right) \in \Gamma$
2. $\left(x, y_{1}\right),\left(x, y_{2}\right) \in \Gamma$ implies $\left(x, \lambda y_{1}+\mu y_{2}\right) \in \Gamma, \forall \lambda, \mu \in \mathbb{C}$.
3. Whenever $(x, y) \in \Gamma$ there exists a product $x \cdot y \in A$ with the usual properties of multiplication: $x \cdot(y+\lambda z)=x$. $y+\lambda(x \cdot z)$ and $(x \cdot y)^{*}=y^{*} \cdot x^{*}$ for $(x, y),(x, z) \in \Gamma$ and $\lambda \in \mathbb{C}$.
A partial *-algebra is in general non-associative. For $x \in A$, we denote the set of all left and right multipliers of x by $L(x)$ and
 implies that $y . z \in R(x)$ and $x \cdot(y \cdot z)=(x \cdot y) \cdot z, \forall z \in R(A)$. The study of partial *-algebras is largely dependent on several classes of multipliers introduced as follows: If C is an arbitrary subset of A, then
(i) $\quad L(C)=\bigcap_{x \in C} L(C)$, the set of universal left multipliers of C.
(ii) $\quad R(C)=\bigcap_{x \in C} R(C)$, the set of universal right multipliers of C.
(iii) $\quad M(C)=L(C) \cap R(C)$, the set of universal multipliers of C.

A concrete realization of partial $*$-algebras arises as follows: Let D be a complex pre-Hilbert Space. Denote by $L^{\dagger}(D, H)$ the set of all closable linear operators X with domain $D(X)=D$ and the adjoint X^{*} with domain $D\left(X^{*}\right) \supset D$, each with range in $H . L^{\dagger}(D, H)$ is a complex linear space with respect to the usual notions of addition and scalar multiplication. This complex

Corresponding author: Yusuf Ibrahim, E-mail: yusufian68@yahoo.com, Tel.: +2347034972567
linear space becomes a partial $*$-algebra when equipped with an involution defined for $X \in L^{\dagger}(D, H)$ that is the map $X \rightarrow$ $X^{\dagger}=X^{*} \upharpoonright D$ and a weak partial multiplication
$X \cdot Y=X^{\dagger *} Y$ defined whenever X is a weak left multiplier of Y that is, if and only $Y D \subset D\left(X^{+*}\right)$ and $X^{\dagger} D \subset D\left(Y^{*}\right)$ for $(X, Y) \in \Gamma$,
where $\Gamma=\left\{(X, Y) \in\left(L^{\dagger}(D, H)\right)^{2}: Y D \subset D\left(X^{\dagger *}\right), X^{\dagger} D \subset D\left(Y^{*}\right)\right\}$.
The quadruplet $\left(L^{\dagger}(D, H), \Gamma, \dagger, \cdot\right)$ is called a partial *-algebra and is denoted by $L_{w}^{\dagger}(D, H)$. A subalgebra M of $L_{w}^{\dagger}(D, H)$ is a partial O^{*}-algebra on D. See, Antoine et al. [1].
We have the notion of a state ω on M which is a sequilinear map $\omega: M \times M \rightarrow \mathbb{C}$, such that $\omega(e, e)=1$, where \mathbb{C} is the set of complex numbers and e is the unit element in M. On M, there are various topologies that can be define, in particular we have the strong* $\tau_{s^{*}}$, the weak τ_{w} and the $\sigma-$ weak $_{\sigma w}$ topologies respectively. We have the following
Definition2.Let M be an arbitrary $\tau_{\sigma w}$-closed, unital partial O^{*}-algebra, endowed with a partial multiplication defined for $(X, Y) \in \Gamma$, we have $X \cdot Y=X^{\dagger *} Y$ such that $Y D \subset D\left(X^{+*}\right)$ and $X^{\dagger} D \subset D\left(Y^{*}\right)$. Now for any $X \in M$, if M satisfies the following conditions;
(1) $D=\bigcap_{X \in M} D\left(X^{\dagger}\right)$
(2) $R(M)$ is $\tau_{s^{*}}$ dense in M

Then M will be called a partial w^{*}-algebra.

3.0 Completely Positive Invariant Conjugate-bilinear Map

In this section, we state an equivalent form of the completely positive conjugate-bilinear map which will be used to define the notion of a partial w^{*}-dynamical semigroups. Before we state the result in this section, we have the following definitions from Bagarello's et al. [2]. Let M be a partial w^{*}-algebra with unit e and A a vector space .We denote by $S(A)$ the involutive vector space of all sesquilinear forms φ on $A \times A$ with involution $\varphi(\xi, \eta)^{\dagger}=\overline{\varphi(\eta, \xi)}, \xi, \eta \in A$.
Definition 3. A map $\Phi: D(\Phi) \times D(\Phi) \rightarrow S(A)$ is said to be conjugate- bilinear if
(i) $\quad D(\Phi) \subset M$
(ii) $\quad \Phi(X, Y)^{\dagger}=\Phi(Y, X)$
(iii) $\quad \Phi(X, \alpha Y+\beta Z)=\alpha \Phi(Y, X)+\beta \Phi(Y, Z), \forall X, Y, Z \in D(\Phi), \forall \alpha, \beta \in \mathbb{C}$.

Definition 4. A conjugate-bilinear map $\Phi: D(\Phi) \times D(\Phi) \rightarrow S(A)$ is said to quasi-invariant if there exists a subspace B_{Φ} of $D(\Phi)$ such that
(i) $\quad B_{\Phi} \subset R(M)$
(ii) $\quad M B_{\Phi} \subset D(\Phi)$
(iii) $\quad \Phi(\mathrm{a} X, Y)=\Phi\left(X, a^{*} Y\right),, \forall a \in M, \forall X, Y \in B_{\Phi}$
(iv) $\quad B_{\Phi}$ satisfies the density condition; $X \in D(\Phi), \forall \xi \in A$, there exists a net $\left\{X_{n}\right\} \subset B_{\Phi}$ such that $\lim _{n \rightarrow \infty} \Phi\left(X_{n}-\right.$ $\left.X, X_{n}-X\right)(\xi, \xi)=0$
(v) It is said to be invariant, if $\Phi\left(a^{*} X, b Y\right)=\Phi(X,(a b) Y), \forall a, b \in M, a \in L(b), \forall X, Y \in B_{\Phi}$.

A subspace B_{Φ} satisfying the above requirements is called a corefor B_{Φ}.
Definition 5. A conjugate-bilinear map $\Phi: D(\Phi) \times D(\Phi) \rightarrow S(A)$ is said to be positive if $\Phi(X, X) \geq 0(\Phi(X, X)(\xi, \xi) \geq$ 0 , for every $\xi \in A$) each $X \in D$: The map Φ is said to be completely positive if, for each $n \in \mathbb{N} \sum_{i, j=1}^{n} \Phi\left(X_{i}, X_{j}\right)\left(\xi_{i}, \xi_{j}\right) \geq 0$ $, \forall\left\{X_{1}, \ldots X_{n}\right\} \subset D(\Phi), \quad \forall\left\{\xi_{1} \ldots \xi_{n}\right\} \subset A$.
We will now give an equivalent form for the completely positive conjugate-bilinear map given in definition 5 .
Theorem 1. Let M be a partial w^{*}-algebra and A a vector space. Let Φ, Θ be a completely positive invariant conjugatebilinear maps with $\Phi \subset \Theta$, then there exists a completely conjugate-bilinear map κ defined on the core B of Φ, such that for all $a, b \in M$ and $X_{i}, X_{j} \in B$ we have, $\sum_{i, j=1}^{n}\left\langle i_{\Phi}\left(\xi_{i}\right), \Theta_{\kappa}\left(a X_{i}, b Y_{j}\right) i_{\Phi}\left(\eta_{j}\right)\right\rangle_{H_{\Phi}}=\sum_{i, j=1}^{n} \Phi\left(a X_{i}, b Y_{j}\right)\left(\xi_{i}, \eta_{j}\right)$,
where i_{Φ} is a composite map and $\Theta r_{D(\Phi)}=\Theta_{\kappa}, \xi_{i}, \eta_{j} \in A$.
Proof :For a completely positive map Φ with domain $D(\Phi) \subset M$, let $D(\Phi) \otimes A$ denote the algebraic tensor product of $D(\Phi)$ and A. Define a subspace N_{Φ} of $D(\Phi) \otimes A$ with respect to the map Φ as follows, let $\xi=\sum_{i=1}^{n} X_{i} \otimes \xi_{i}$ and $\eta=$ $\sum_{j=1}^{n} Y_{j} \otimes \eta_{j} \in D(\Phi) \otimes A$ then we have $N_{\Phi}=\left\{\xi, \eta \in D(\Phi) \otimes A:\langle\xi, \eta\rangle_{\Phi}=0\right\}$. With this we define the linear map λ_{Φ} from $D(\Phi) \otimes A$ into $D(\Phi) \otimes A \backslash N_{\Phi}$ by $\lambda_{\Phi}(\xi)=\xi+N_{\Phi}$. We call $\lambda_{\Phi}(\xi)$ the coset of $D(\Phi) \otimes A \backslash N_{\Phi}$ containing ξ and this induces an inner product on $\lambda_{\Phi}(D(\Phi) \otimes A)$ given by $\left\langle\lambda_{\Phi}(),. \lambda_{\Phi}().\right\rangle$. Let H_{Φ} denotes the completion of
$\lambda_{\Phi}(D(\Phi) \otimes A)$ with respect to the inner product $\left\langle\lambda_{\Phi}(),. \lambda_{\Phi}().\right\rangle$. Since the core B of Φ satisfies the density condition by definition, we have that $\lambda_{\Phi}(B \otimes A)$ is dense $\lambda_{\Phi}(D(\Phi) \otimes A)$ and hence dense in H_{Φ}. Now define a map π_{0} on M with $\lambda_{\Phi}(B \otimes A)=D\left(\pi_{0}\right)$ by

$$
\pi_{0}(a) \lambda_{\Phi}(\xi)=\lambda_{\Phi}(a \xi)=\sum_{i=1}^{n} \lambda_{\Phi}\left(a X_{i} \otimes \xi_{i}\right)
$$

Transactions of the Nigerian Association of Mathematical Physics Volume 1, (November, 2015), 7 - 12
where $a \in R(M)$ and $\xi \in A$. The map is a well defined *-representation. Let π_{B} denotes its closure, thus λ_{Φ} is a strongly cyclic vector representation of M for π_{B}. Now define an injective map $i: A \rightarrow(B \otimes A)$ by $\sum_{i=1}^{n} i\left(\xi_{i}\right)=\sum_{i=1}^{n}\left(e \otimes \xi_{i}\right)$, for $e \in B, \xi_{i} \in A$. And using the map $\lambda_{\Phi}:(B \otimes A) \rightarrow H_{\Phi}$, we define a composite $i_{\Phi}: A \rightarrow H_{\Phi}$ $\sum_{i=1}^{n} i_{\Phi}\left(\xi_{i}\right)=\sum_{i=1}^{n} \lambda_{\Phi} \circ i\left(\xi_{i}\right)$.Applying the composite map, we define a conjugate-bilinear map κ : $B \times B \rightarrow H_{\Phi}$ by

$$
\begin{gathered}
\sum_{i, j=1}^{n}\left\langle i_{\Phi}\left(\xi_{i}\right), \quad \kappa\left(X_{i}, Y_{j}\right) i_{\Phi}\left(\eta_{j}\right)\right\rangle_{H_{\Phi}}=\left\langle\sum_{i=1}^{n} \lambda_{\Phi}\left(X_{i} \otimes \xi_{i}\right), \sum_{j=1}^{n} \lambda_{\Phi}\left(Y_{j} \otimes \eta_{j}\right)\right\rangle_{H_{\Phi}} \\
=\left\langle\lambda_{\Phi}(\xi), \lambda_{\Phi}(\eta)\right\rangle_{H_{\Phi}}
\end{gathered}
$$

For $X_{i}, Y_{i} \in B$ and $\xi_{i}, \eta_{j} \in A$. Let the extension of κ to $D(\Phi)$ be denoted still by κ, then for $a, b \in M$ and $\forall X_{i}, Y_{i} \in B$ and $\xi_{i}, \eta_{j} \in A . \operatorname{Let} \xi_{a}=\sum_{i=1}^{n} a X_{i} \otimes \xi_{i}, \eta_{b}=\sum_{i=1}^{n} b Y_{i} \otimes \eta_{i}$, then we define the map $\kappa: D(\Phi) \times D(\Phi) \rightarrow H_{\Phi}$ by

$$
\sum_{i, j=1}^{n}\left\langle i_{\Phi}\left(\xi_{i}\right), \quad \kappa\left(a X_{i}, b Y_{j}\right) i_{\Phi}\left(\eta_{j}\right)\right\rangle_{H_{\Phi}}=\left\langle\lambda_{\Phi}\left(\xi_{a}\right), \lambda_{\Phi}\left(\eta_{b}\right)\right\rangle_{H_{\Phi}}
$$

Let Θ be a completely positive conjugate-bilinear map with domain $D(\Theta)$ containing $D(\Phi)$ such that its restriction to $D(\Phi)$ is denoted by Θ_{κ}.
That is the map $\Theta_{\kappa}: D(\Phi) \times D(\Phi) \rightarrow H_{\Phi}$ given by
$\sum_{i, j=1}^{n}\left\langle i_{\Phi}\left(\xi_{i}\right), \Theta_{\kappa}\left(a X_{i}, b Y_{j}\right) i_{\Phi}\left(\eta_{j}\right)\right\rangle_{H_{\Phi}}=\sum_{i, j=1}^{n}\left\langle i_{\Phi}\left(\xi_{i}\right), \kappa\left(a X_{i}, b Y_{j}\right) i_{\Phi}\left(\eta_{j}\right)\right\rangle_{H_{\Phi}}$.
Thus we have

$$
\begin{gathered}
\sum_{i, j=1}^{n}\left\langle i_{\Phi}\left(\xi_{i}\right), \quad \Theta_{\kappa}\left(a X_{i}, b Y_{j}\right) i_{\Phi}\left(\eta_{j}\right)\right\rangle_{H_{\Phi}}=\left\langle\lambda_{\Phi}\left(\xi_{a}\right), \lambda_{\Phi}\left(\eta_{b}\right)\right\rangle_{H_{\Phi}} \\
=\left\langle\sum_{i=1}^{n} \lambda_{\Phi}\left(a X_{i} \otimes \xi_{i}\right), \sum_{j=1}^{n} \lambda_{\Phi}\left(b Y_{j} \otimes \eta_{j}\right)\right\rangle_{H_{\Phi}} \\
=\sum_{i, j=1}^{n}\left\langle\pi_{B}(a) \lambda_{\Phi}\left(X_{i} \otimes \xi_{i}\right), \quad \pi_{B}(b) \lambda_{\Phi}\left(Y_{j} \otimes \eta_{j}\right)\right\rangle_{H_{\Phi}} \\
=\sum_{i, j=1}^{n} \Phi\left(a X_{i}, b Y_{j}\right)\left(\xi_{i}, \eta_{j}\right)
\end{gathered}
$$

This conclude the proof.
The next lemma considers the ordering of completely positive maps with respect to their cores But before then, we have the following,
Definition 6 . Let \mathcal{C} be the set of all cores $B^{i}, i=1,2, \ldots, n$, for the completely positive map Φ, endowed with the order \subset . This induces an order on a family $\left\{\kappa_{B^{i}}\right\}_{i=1}^{n}$ of completely positive conjugate-bilinear maps defined on the corresponding cores as follows; $\kappa_{B^{1}}, \kappa_{B^{2}}$ be defined on B^{1}, B^{2} respectively, then $\kappa_{B^{1}} \subset \kappa_{B^{2}}$ iff $B^{1} \subset B^{2}$ and we denote this by
$\kappa_{B^{1}} \leqslant \kappa_{B^{2}}$. Let $B^{\mathcal{L}}$ denote the largest of the cores in \mathcal{C} for the completely positive map Φ, then we have $\kappa_{B} \leqslant \kappa_{B} \mathcal{L} \forall B \in$ \mathcal{C}.
Notation : We write $\kappa_{B} \mathcal{L}$ as κ and κ_{B} as κ^{\prime}. Then we have the following
Theorem 2.The map Θ_{κ} is maximal for any family $\left\{\kappa_{B^{i}}\right\}_{i=1}^{n}$ of completely positive conjugate-bilinear defined on the set of cores in \mathcal{C}.
Proof: Let $B \in \mathcal{C}$ be an arbitrary core such that $B \subset B^{\mathcal{L}}$, then from definition we have $\kappa^{\prime} \subset \kappa$. Let $a, b \in M, X_{i}, Y_{i} \in B$ and $i_{\Phi}\left(\xi_{i}\right), i_{\Phi}\left(\eta_{j}\right) \in H_{\Phi}$ with $\xi_{i}, \eta_{j} \in A$ then we have

$$
\begin{aligned}
\sum_{i, j=1}^{n}\left\langle i_{\Phi}\left(\xi_{i}\right), \Theta_{\kappa^{\prime}}\left(a X_{i}, b Y_{j}\right) i_{\Phi}\left(\eta_{j}\right)\right\rangle_{H_{\Phi}} & =\sum_{i, j=1}^{n}\left\langle i_{\Phi}\left(\xi_{i}\right), \kappa^{\prime}\left(a X_{i}, b Y_{j}\right) i_{\Phi}\left(\eta_{j}\right)\right\rangle_{H_{\Phi}} \\
= & \sum_{i, j=1}^{n}\left\langle\pi_{B}(a) \lambda_{\Phi}\left(X_{i} \otimes \xi_{i}\right), \quad \pi_{B}(b) \lambda_{\Phi}\left(Y_{j} \otimes \eta_{j}\right)\right\rangle_{H_{\Phi}} \\
\leq & \sum_{i, j=1}^{n}\left\langle\pi_{B^{\kappa}}(a) \lambda_{\Phi}\left(X_{i} \otimes \xi_{i}\right), \quad \pi_{B}(b) \lambda_{\Phi}\left(Y_{j} \otimes \eta_{j}\right)\right\rangle_{H_{\Phi}} \\
& =\sum_{i, j=1}^{n}\left\langle i_{\Phi}\left(\xi_{i}\right), \quad \kappa\left(a X_{i}, b Y_{j}\right) i_{\Phi}\left(\eta_{j}\right)\right\rangle_{H_{\Phi}}
\end{aligned}
$$

$=\sum_{i, j=1}^{n}\left\langle i_{\Phi}\left(\xi_{i}\right), \Theta_{\kappa}\left(a X_{i}, b Y_{j}\right) i_{\Phi}\left(\eta_{j}\right)\right\rangle_{H_{\Phi}}$.
Hence $\Theta_{\kappa^{\prime}} \leq \Theta_{\kappa}$ and since $B \in \mathcal{C}$ is an arbitrary core implies that Θ_{κ} is maximal.

4.0 Partial w*-Dynamical Semigroups

In this section we let Θ_{κ} take values in a partial w*- algebra M. We defined a dynamical semigroup of linear mappings $\varphi_{\kappa, t}$ and show that under some certain conditions on $\varphi_{\kappa, t}$ we can define a contraction semigroups of maps of linear operators P_{t} associated with $\varphi_{\kappa, t}$. We have the following
Definition 7. For $\in \mathbb{R}_{+}$, with $0 \leq t<\infty$. Let Mbe a partial w*- algebra on D and let
$\Theta_{\kappa}: D(\Phi) \times D(\Phi) \rightarrow M$ be a completely positive conjugate-bilinear map that is associated with a one parameter completely positive conjugate-bilinear map $t \ni \mathbb{R}_{+} \rightarrow V_{t}(X, Y) \in D(\Phi)$ with $X, Y \in M$. By being associated, we mean that their composition is well defined and closed. Then for any $X, Y \in M$ we define a completely positive conjugate-bilinear map $\Theta_{K}^{t}: M \times M \rightarrow M$ by

$$
\Theta_{\kappa}^{t}(X, Y)=\Theta_{\kappa}\left(e, V_{t}(X, Y)\right)=\Theta_{\kappa} \circ V_{t}(X, Y)
$$

Remark: If $V_{0}=e$, we have $\Theta_{\kappa}^{0}=\Theta_{\kappa} \circ V_{0}=\Theta_{\kappa} \circ e=\Theta_{\kappa}$ and if write $V_{t} \circ V_{s}=V_{t+s}$, then $\Theta_{\kappa}^{t+s}(X, Y)=\Theta_{\kappa}^{t} \circ \Theta_{\kappa} \circ$ $V_{s}(X, Y)=\Theta_{\kappa}^{t} \circ V_{t}\left(e, V_{s}(X, Y)\right)$

$$
=\Theta_{\kappa}^{t} \circ V_{t} \circ V_{s}(X, Y)=\Theta_{\kappa}^{t} \circ V_{t+s}(X, Y)
$$

$\forall X, Y \in M$ and $0 \leq t<\infty, 0 \leq s<\infty$.
We have an adapted version of a definition of a partial w*-quantum dynamical semigroup from(Ekhaguere, 1993).
Definition 8.A family $\left\{\varphi_{\kappa, t}\right\}_{t \in \mathbb{R}_{+}}$of completely positive conjugate-bilinear maps on $M \times M$
(a) $\varphi_{\kappa, 0}=\Theta_{\kappa}$
(b) $\varphi_{\kappa, t} \circ \varphi_{\kappa, s}=\varphi_{\kappa, t+s}$, for arbitrary $t, s \geq 0$
(c) $\varphi_{\kappa, t}$ is σ-weakly continuous on $M \times M$ with respect to the σ-weakly topology $\tau_{\sigma w}$ is called a partial w^{*}-quantum dynamical semigroup.
Theorem 3. A family $\left\{\varphi_{\kappa, t}\right\}_{t \in \mathbb{R}_{+}}$of completely positive conjugate-bilinear maps on $M \times M$ of the form $\left\langle\xi, \varphi_{\kappa, t}(X, Y) \eta\right\rangle=$ $\left\langle\xi, \Theta_{\kappa} \circ V_{t}(X, Y) \eta\right\rangle$
is a partial ${ }^{*}$-quantum dynamical semigroup for $X, Y \in M$ and $\xi, \eta \in \mathrm{D}$.
Proof: We show that definition 8 is satisfied
$\left\langle\xi, \varphi_{\kappa, 0}(X, Y) \eta\right\rangle=\left\langle\xi, \Theta_{\kappa} \circ V_{0}(X, Y) \eta\right\rangle=\left\langle\xi, \Theta_{\kappa}^{0}(X, Y) \eta\right\rangle=\left\langle\xi, \Theta_{\kappa}(X, Y) \eta\right\rangle$ and for the second property, that is $\varphi_{\kappa, t} \circ$ $\varphi_{\kappa, s}=\varphi_{\kappa, t+s,}$ we have the following
$\left\langle\xi, \varphi_{\kappa, t+s}(X, Y) \eta\right\rangle=\left\langle\xi, \Theta_{\kappa} \circ V_{t+s}(X, Y) \eta\right\rangle=\left\langle\xi, \Theta_{\kappa}^{t+s}(X, Y) \eta\right\rangle$
$=\left\langle\xi, \Theta_{\kappa}^{t}\left(e, \Theta_{\kappa}^{s}(X, Y) \eta\right\rangle=\left\langle\xi, \Theta_{\kappa} \circ V_{t}\left(e, \Theta_{\kappa} \circ V_{s}(X, Y) \eta\right\rangle\right.\right.$

$$
=\left\langle\xi, \Theta_{\kappa} \circ V_{t} \circ \Theta_{\kappa} \circ V_{s}(X, Y) \eta\right\rangle=\left\langle\xi, \varphi_{\kappa, t} \circ \varphi_{\kappa, S}(X, Y) \eta\right\rangle
$$

It is obvious that completely positive maps are σ-weakly continuous, thus the third property in the definition is satisfied, hence is a partial w^{*} - quantum dynamical semigroup.
Definition 9. The \dagger - invariant subspace $(M \times M)^{\dagger}$ of $M \times M$ is given by
$(M \times M)^{\dagger}=\left\{(X, Y) \in D(\Phi) \times D(\Phi): \Theta_{\kappa}^{\dagger}(\mathrm{X}, \mathrm{Y})=\Theta_{\kappa}(X, Y)\right\}$.

In what follows ω is a $G N S$ - representable state with a self adjoint *-representation π_{ω}, see
Antoine et al. [1].
Theorem 4.For a $G N S$ - representable statew on $M \times M$, if $\left\{\varphi_{\kappa, t}\right\}_{t \in \mathbb{R}_{+}}$is a partial w^{*}-quantum dynamical semigroup on $M \times M$ satisfying the following conditions
(1) $\pi_{\omega}\left(\varphi_{\kappa, t}^{\dagger}\right) \in L\left(\pi_{\omega}\left(\varphi_{\kappa, t}\right)\right)$
(2) $\left(\varphi_{\kappa, t} \circ \Theta_{\kappa}^{\dagger}(X, Y)\right) \cdot\left(\varphi_{\kappa, t} \circ \Theta_{\kappa}(X, Y)\right) \leq \varphi_{\kappa, t}\left(\Theta_{\kappa}^{\dagger}(X, Y), \Theta_{\kappa}(X, Y)\right)$
(3) $\varphi_{\kappa, t} \circ \omega=\omega$
then the linear map P_{t} defined by $P_{t} \pi_{\omega}\left(\Theta_{\kappa}(X, Y)\right) \lambda_{\xi_{0}}=\pi_{\omega}\left(\varphi_{\kappa, t}(X, Y)\right) \lambda \xi_{0}$
is a semigroup of contractions on the pre-Hilbert space into its completions for any $(X, Y) \in(M \times M)^{\dagger}$, where $\lambda_{\xi_{0}}$ is a strongly cyclic vector representation of M for π_{ω}.
Proof: Now for a GNS- representable state ω we have thetriple $\left(\pi_{\omega}, H_{\omega}, \lambda_{\xi_{0}}\right)$. We will show that the linear map P_{t} defined in equation (2) is a contraction semigroup of linear maps on a pre-Hilbert space into its completion, where $\lambda_{\xi_{0}}$ is a strongly cyclic vector representation of M for π_{ω}. Thus we have

$$
P_{0} \pi_{\omega}\left(\Theta_{\kappa}(X, Y)\right) \lambda_{\xi_{0}}=\pi_{\omega}\left(\varphi_{\kappa, 0}(X, Y)\right) \lambda \xi_{\xi_{0}}=\pi_{\omega}\left(\Theta_{\kappa}(X, Y)\right) \lambda_{\xi_{0}}
$$

And

$$
\begin{gathered}
P_{t} P_{s} \pi_{\omega}\left(\Theta_{\kappa}(X, Y)\right) \lambda_{\xi_{0}}=P_{t} \pi_{\omega}\left(\varphi_{\kappa, S}(X, Y)\right) \lambda_{\xi_{0}} \\
=\pi_{\omega}\left(\varphi_{\kappa, t}\left(e, \varphi_{\kappa, S}(X, Y)\right)\right) \lambda_{\xi_{0}} \\
=\pi_{\omega}\left(\varphi_{\kappa, t+s}(X, Y)\right) \lambda_{\xi_{0}}=P_{t+s} \pi_{\omega}\left(\Theta_{\kappa}(X, Y)\right) \lambda_{\xi_{0}}
\end{gathered}
$$

Hence, it is a semigroup. To show that it is a contraction, we have the following

$$
\begin{gathered}
\left\|P_{t} \pi_{\omega}\left(\Theta_{\kappa}(X, Y)\right) \lambda_{\xi_{0}}\right\|_{H_{\omega}}^{2} \\
=\left\langle\pi_{\omega}\left(\varphi_{\kappa, t}(X, Y)\right) \lambda_{\xi_{0}}, \pi_{\omega}\left(\varphi_{\kappa, t}(X, Y)\right) \lambda_{\xi_{0}}\right\rangle_{H_{\omega}} \\
=\left\langle\lambda_{\xi_{0}}, \pi_{\omega}\left(\varphi_{\kappa, t}^{\dagger}(X, Y)\right) \cdot \pi_{\omega}\left(\varphi_{\kappa, t}(X, Y)\right) \lambda_{\xi_{0}}\right\rangle_{H_{\omega}} \\
=\left\langle\lambda_{\xi_{0}}, \pi_{\omega}\left(\left(\Theta_{\kappa}^{t}\right)^{\dagger}(X, Y)\right) \cdot \pi_{\omega}\left(\Theta_{\kappa}^{t}(X, Y)\right) \lambda_{\xi_{0}}\right\rangle_{H_{\omega}} \\
=\left\langle\lambda_{\xi_{0}}, \pi_{\omega}\left(\left(\Theta_{\kappa}^{t}\right)^{\dagger} \circ \Theta_{\kappa}^{\dagger}(X, Y)\right) \cdot \pi_{\omega}\left(\Theta_{\kappa}^{t} \circ \Theta_{\kappa}(X, Y)\right) \lambda_{\xi_{0}}\right\rangle_{H_{\omega}}
\end{gathered}
$$

since $(X, Y) \in(M \times M)^{\dagger}$, we have

$$
\begin{gathered}
=\left\langle\lambda_{\xi_{0}}, \pi_{\omega}\left(\left(\Theta_{\kappa}^{t}\right)^{\dagger} \circ \Theta_{\kappa}(X, Y)\right) \cdot \pi_{\omega}\left(\Theta_{\kappa}^{t} \circ \Theta_{\kappa}(X, Y)\right) \lambda_{\xi_{0}}\right\rangle_{H_{\omega}} \\
=\left\langle\lambda_{\xi_{0}}, \pi_{\omega}\left(\left(\Theta_{\kappa}^{t}\right)^{\dagger}\left(e, \Theta_{\kappa}(X, Y)\right)\right) \cdot \pi_{\omega}\left(\Theta_{\kappa}^{t}\left(e, \Theta_{\kappa}(X, Y)\right)\right) \lambda_{\xi_{0}}\right\rangle_{H_{\omega}} \\
=\left\langle\lambda_{\xi_{0}}, \pi_{\omega}\left(\varphi_{\kappa, t}^{\dagger}\left(e, \Theta_{\kappa}(X, Y)\right)\right) \cdot \pi_{\omega}\left(\varphi_{\kappa, t}\left(e, \Theta_{\kappa}(X, Y)\right)\right) \lambda_{\xi_{0}}\right\rangle_{H_{\omega}} \\
=\left\langle\lambda_{\xi_{0}}, \pi_{\omega}\left(\varphi_{\kappa, t}^{\dagger}\left(e, \Theta_{\kappa}(X, Y)\right)\right) \cdot\left(\varphi_{\kappa, t}\left(e, \Theta_{\kappa}(X, Y)\right)\right) \lambda_{\xi_{0}}\right\rangle_{H_{\omega}} \\
=\left\langle\lambda_{\xi_{0}}, \pi_{\omega}\left(\varphi_{\kappa, t}^{\dagger} \circ \Theta_{\kappa}(X, Y)\right) \cdot\left(\varphi_{\kappa, t} \circ \Theta_{\kappa}(X, Y)\right) \lambda_{\xi_{0}}\right\rangle_{H_{\omega}} \\
=\left\langle\lambda_{\xi_{0}}, \pi_{\omega}\left(\varphi_{\kappa, t} \circ \Theta_{\kappa}^{\dagger}(X, Y)\right) \cdot\left(\varphi_{\kappa, t} \circ \Theta_{\kappa}(X, Y)\right) \lambda_{\xi_{0}}\right\rangle_{H_{\omega}} \\
\leq\left\langle\lambda_{\xi_{0}}, \pi_{\omega}\left(\varphi_{\kappa, t}\left(\Theta_{\kappa}^{\dagger}(X, Y), \Theta_{\kappa}(X, Y)\right) \lambda_{\xi_{0}}\right\rangle_{H_{\omega}}\right. \\
=\left\langle\lambda_{\xi_{0}}, \pi_{\omega}\left(\varphi_{\kappa, t}\left(\Theta_{\kappa}(X, Y), \Theta_{\kappa}(X, Y)\right) \lambda_{\xi_{0}}\right\rangle_{H_{\omega}}\right. \\
=\omega\left(e, \varphi_{\kappa, t}\left(\Theta_{\kappa}(X, Y), \Theta_{\kappa}(X, Y)\right)\right. \\
\quad=\omega \circ \varphi_{\kappa, t}\left(\Theta_{\kappa}(X, Y), \Theta_{\kappa}(X, Y)\right) \\
=\omega\left(\Theta_{\kappa}(X, Y), \Theta_{\kappa}(X, Y)\right)=\left\|\pi_{\omega}\left(\Theta_{\kappa}(X, Y)\right) \lambda_{\xi_{0}}\right\|_{H_{\omega}}^{2}
\end{gathered}
$$

Since $\omega \circ \varphi_{\kappa, t}=\omega$, this shows that the semigroup is a contraction semigroup. This concludes the proof.

5.0 References

[1] J.P. Antoine, A. Inoue, C. Trapani, "Partial *- algebras and Their Operator Realizations, Kluwer, Dordrecht,(2002).
[2] F. Bargarello, A. Inoue, and C. Trapani, Completely positive invariant conjugate-bilinear maps on partial *-algebras,Zeit. Anal. Anwen. 26, 313, (2007)
[3] G.O.S. Ekhaguere and P.O. Odiobala, Completely positive conjugate-bilinear maps on partial *algebras, J. Math. Phys. 32, 2951-2958, (1991).
[4] G.O.S. Ekhaguere, A Noncommutative mean ergodic theorem for partial W*-dynamical semigroups, Int. J. for theor. Phys. Vol. 32, (7), (1993).
[5] G.O.S. Ekhaguere, Representation of Completely positive maps between partial *-algebras, Int. J. for theor. Phys. Vol. 35, (8), (1996).

On Partial W*-Quantum... Ibrahim Trans. of NAMP

[6] W.F Stinespring, Positive functions on C^{*}-algebras. Proc. Amer. Math. Society, vol.6, 211-216, (1955).

