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Abstract 

 

In this paper, the flexural characteristics of Hollow-Cored Reinforced Concrete Beams 

point loaded at mid-span were investigated analytically and numerically. Finite 

element numerical approach was used to examine the hollow cored beams using 

isoparametric geometric transformation of their coordinates to discretize the Hollow-

Cored Beam section numerically. A 9-noded Lagrangian quadratic element for the 

rectangular section and an 8-noded Serendipity cubic element for the circular-hollow 

section were used to create shape functions at each node. Double integration of the 

equations relating the shape functions and the Jacobian determinant with respect to 

the reference coordinates was used to compute the moment of inertia numerically. 

Numerical solutions to the governing matrix equations linking deflection and ultimate 

load were also obtained. The analytical and numerical results were found to be in 

agreement with the literature. The paper concluded that using finite element numerical 

approach the moment of inertia and the ultimate failure loads of the hollow-cored 

beams increases with an increase in diameter of the hollow core beam while the 

deflection increased as the diameter of the hollow core increased up to 30mm, beyond 

which the deflection dropped. 
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1.0 Introduction 
A hollow core beam is a horizontal structural member having a void running through its longitudinal axis and is designed to 

carry load principally in the flexure direction. As a result, in order to ensure their structural integrity, their structural behavior 

must be investigated. Hollow cores provide greater flexural strength and stiffness than solid members [1]. All analysis 

methods, according to [2] can be divided into three categories: experimental, analytical, and numerical methods. Because 

specialized equipment, testing facilities, and other resources are required, experimental approaches are the most dependable, 

but they are also the most expensive. Analytical methods are also reliable, but they are time consuming and inconvenient for 

high levels of accuracy. The finite element numerical method is a numerical procedure that can be used to solve a variety of 

engineering problems by replacing any structure with a finite number of elements connected at a finite number of nodal points 

[3]. Numerical approaches are easy and do not require any laboratory setup, despite the fact that they yield only approximate 

results [1]. Investigated the influence of altering effective flange width and hollow core position in the compression zone of 

a plain concrete beam with a point load at midspan on the hollow concrete's optimal cored section of a hollow concrete beam. 

While maintaining a constant cross-sectional area and varying the section dimensions randomly in steps of 10mm from 

150mm to 190mm flange width, equations were derived using the double integration method to determine the moment of 

inertia of the sections and corresponding deflections as the load increased up to failure. The acquired results were compared 

to experimental results that had been linearized. The results showed that as the flange width rose, the deflection with failure 

loads of the beam samples increased. The flexural behavior of a rectangular reinforced concrete hollow beam with a 

polypropylene plastic sheet filling was investigated by [4]. Because concrete is weak in tension and strong in compression, 

steel is used in the tension zone to take tensile loads. As a result, the tension zone's strength is ignored in comparison to the 

compression zones. As a result, no concrete should be used in the tension zone. However, between the compression and 

tension zones, this concrete works as a strain or stress transfer medium. However, because concrete below or around the  
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neutral axis is underutilized, any light-weight or waste material can be used to replace it. The findings of the beam tests 

revealed that as the percentage of replacement increases, the flexural strength of the beam drops, and the deflection of the 

beam reduces in comparison to the control beam [5]. Experiments and numerical simulations were used to investigate the 

influence of a non-uniform reinforcement ratio along the length of the beam on flexural behavior. Four reinforced concrete 

beams with varying reinforcing ratios were used in the experiment. In the constant moment zone, however, three of the four 

beams had the same reinforcement ratio (0.012). During the test, the cracking load, load carrying capacity, and deflection 

were all measured. In order to model the experimental behavior, nonlinear finite element software was used. After that, a 

parametric investigation was carried out. It was discovered that the tension stiffening of reinforced concrete beams is 

determined by the concrete area in the tension zone, rather than the reinforcement ratio. The behavior of reinforced concrete 

beams was predicted precisely using Finite Element Analysis (FEA). A parametric study was developed by [6] based on a 

real-scale model experimental program in order to assess the vibration performance of prestressed hollow-core slab system 

on spans larger than those on which tests were conducted, as well as the interaction between the concrete poured in different 

stages. Abaqus 6.11 finite element software was used to perform the experimental measurements and conduct the 

investigation. The simulations were carried out by expanding the slab's span in order to observe the fundamental frequency 

variation. In addition, numerous types of concrete topping thickness were used in the simulations. 

2.0 Methodology 

Using a finite element method, the flexural characteristics of hollow cored rectangular plain concrete beams point loaded at 

mid-span are investigated. Finite element, finite difference, stiffness, energy, and double integration are some of the beam 

analysis approaches [1]. The finite element approach was chosen for this project because it is well-suited to the task and 

allows for the discretization of the sectional properties of the beam section via isoparametric geometric transformations of 

their coordinates. A 9-noded Lagrangian quadratic element and an 8-noded Serendipity cubic element were given shape 

functions at each node. The moment of inertia about the cross section's centroidal axis, which runs parallel to the neutral axis, 

was investigated using double integration and equations linking shape functions, discretized nodal point coordinates, and the 

Jacobian matrix's determinant. The deflection of the hollow cored Beam sections was calculated analytically and numerically 

after they were loaded at mid-span with a load increment of 1KN intervals. The ultimate load data was adopted from the work 

of [7] who applied the parallel axis theorem to calculate the moment of inertia of the rectangular and circular-hollow core 

beam section about the centroidal axis of the cross section which the neutral axis runs along. Three types of Beam sections 

were investigated as shown in Table 4.1. 
 

3.0 Background Theory 

The moment of inertia of each component area around the centroidal axis of the cross section, which the neutral axis runs, 

was calculated using the parallel axis theorem. The discretized beam section's moment of inertia was calculated numerically 

by geometric transformation of the hollow cored beam section. The simple geometry of the reference element (ɳ, ξ,) is 

transferred to the geometry of the real element (y, z) via a transformation that defines the coordinates of each point in the real 

domain in terms of the coordinates of the corresponding point in the reference domain [8]. The double integration method 

for deflection of beams was used to derive the equation for the deflection at mid span which is the point for maximum bending 

for the simply supported beam point loaded at mid span by developing beam stiffness matrix and load-displacement matrix 

[7]. 
 

3.1 Numerical Load-deflection equation 

 From the y, z coordinates of the nodes of the rectangular section, the Jacobian matrix is given by: [9] 

J = [

𝜕𝑁1

𝜕𝜉

𝜕𝑁2

𝜕𝜉

𝜕𝑁3

𝜕𝜉

𝜕𝑁4

𝜕𝜉

𝜕𝑁5

𝜕𝜉

𝜕𝑁6

𝜕𝜉

𝜕𝑁7

𝜕𝜉

𝜕𝑁8

𝜕𝜉

𝜕𝑁9

𝜕𝜉

𝜕𝑁1

𝜕ɳ

𝜕𝑁2

𝜕ɳ

𝜕𝑁3

𝜕ɳ

𝜕𝑁4

𝜕ɳ

𝜕𝑁5

𝜕ɳ

𝜕𝑁6

𝜕ɳ

𝜕𝑁7

𝜕ɳ

𝜕𝑁8

𝜕ɳ

𝜕𝑁9

𝜕ɳ

]  

[
 
 
 
 
 
 
 
 
𝑦1 𝑧1

𝑦2 𝑧2

𝑦3 𝑧3

𝑦4 𝑧4

𝑦5 𝑧5

𝑦6 𝑧6

𝑦7 𝑧7

𝑦8 𝑧8

𝑦9 𝑧9]
 
 
 
 
 
 
 
 

  (1) 

 

The Jacobian determinant becomes 

|J| = J11 J22 − J12 J21       (2) 

The determinant |J| can be expressed in terms of the shape function derivatives and the element nodal coordinate vectors as  

| J | = 
∂N 

∂η
y

∂N 

∂ζ
z - 

∂N

∂η
z
∂N

∂ζ
y       (3) 
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The geometrical transformation for the nine-node lagrangian element is defined in terms of the shape function below: [10] 

For ξ = -1, 0, or + 1 and ɳ = -1, 0, or + 1, 

Where 

ɳ and  𝜉  are the axis of the reference domain, and 

The local node numbers 1, 2, and 3 on this axis correspond to locations 𝜉 = -1, 0, and +1 

N1  =  
ɳξ(1−ξ)(1−ɳ)

4
 , N2  =   

ɳξ(1+ξ)(1−ɳ)

4
 ,  N3  =   

ɳξ(1+ξ)(1+ɳ)

4
 

N4 =   
−ɳξ(1−ξ)(1+ɳ)

4
 , N5 = 

−ɳ(1−ɳ)(1−ξ)(1+ξ) 

2
 ,  N6 =    

ξ(1−ɳ)(1+ɳ)(1+ξ) 

2
 

N7 =   
ɳ(1+ɳ)(1−ξ)(1+ξ) 

2
 ,  N8 =  

−ξ(1−ɳ)(1+ɳ)(1−ξ) 

2
 ,  N9 =    (1- ξ)2(1- ɳ)2  (4) 

∂N1

∂η
 = 

ξ(1−2ɳ)(1−ξ) 

4
 ,  

∂N2

∂η
 = 

−(1−2ɳ)(1−ξ) 

2
 , 

∂N3

∂η
 = 

− ξ(1−2ɳ)(1+ξ) 

4
 

∂N4

∂η
 = 4ɳξ(1- ξ) ,  

∂N5

∂η
 = - 8ɳ(1- ξ2) , 

∂N6

∂η
 = - 4ɳξ(1+ ξ) 

∂N7

∂η
 = -  ξ(1+2ɳ)(1-ξ ) , 

∂N8

∂η
 = 2(1+2ɳ)(1-ξ2 ) ,  

∂N9

∂η
 = ξ(1+2ɳ)(1+ξ )   (5) 

Similarly,  
∂N1

∂ξ
 = 

ɳ(1−ɳ)(1−2ξ) 

4
 , 

∂N2

∂ξ
 = ɳξ(1 − ɳ) ,  

∂N3

∂ξ
 =  

−ɳ(1−ɳ)(1+2ξ) 

4
 

∂N4

∂ξ
 = 

−(1−ɳ2)(1−2ξ)

2
 , 

∂N5

∂ξ
 = −2ξ(1 − ɳ2) , 

∂N6

∂ξ
 = 

(1−ɳ2)(1+2ξ)

2
 

∂N7

∂𝜉
 =

−ɳ(1+ɳ)(1−2𝜉) 

4
 , 

∂N8

∂𝜉
 =−ɳ𝜉(1 + ɳ) , 

∂N9

∂𝜉
 = 

ɳ(1+ɳ)(1+2𝜉) 

4
   (6) 

 

The geometrical transformation for the 8-noded quadratic Cubic Serendipity element is defined in terms of the shape function below: 

[10]. 

For ξ = -1, 0, or + 1 and ɳ = -1, 0, or + 1, 

N1 =   
−(1−𝜉)(1−ɳ)(1+𝜉+ɳ) 

4
 , N2 =   

−(1+𝜉)(1−ɳ)(1−𝜉+ɳ) 

4
 , N3 =   

−(1+𝜉)(1+ɳ)(1−𝜉−ɳ) 

4
 

N4 =   
−(1−𝜉)(1+ɳ)(1+𝜉−ɳ) 

4
 , N5 =   

(1−𝜉2)(1−ɳ) 

2
 , N6 =   

(1+𝜉)(1−ɳ2) 

2
 

N7 =   
(1−𝜉2)(1+ɳ) 

2
 , N8 =   

(1−𝜉)(1−ɳ2) 

2
 ,      (7) 

∂N1

∂ɳ
 =   

−(−𝜉+𝜉2−2ɳ+2ɳ𝜉) 

4
 , 

∂N2

∂ɳ
 =   

−(𝜉−𝜉2−2ɳ−2ɳ𝜉) 

4
 , 

∂N3

∂ɳ
 =   

−(−𝜉−𝜉2−2ɳ−2ɳ𝜉) 

4
 

∂N4

∂ɳ
 =   

−(𝜉−𝜉2−2ɳ+2ɳ𝜉) 

4
 , 

∂N5

∂ɳ
 =   

(−1+𝜉2) 

2
 , 

∂N6

∂ɳ
 =   

(1−ɳ2) 

2
 ,  

∂N7

∂ɳ
 =   

(1−𝜉2) 

2
 ,  

∂N8

∂ɳ
 = −ɳ(−1 + 𝜉)      (8)  

∂N1

∂𝜉
 =   

−(−2𝜉+2𝜉ɳ+ɳ2) 

4
 , 

∂N2

∂𝜉
 =   

−(ɳ−2𝜉+2𝜉ɳ−ɳ2) 

4
 , 

∂N3

∂𝜉
 =    

−(−2𝜉−2𝜉ɳ−ɳ2−ɳ) 

4
 

∂N4

∂𝜉
 = 

−(ɳ−2𝜉−2𝜉ɳ+ɳ2) 

4
 , 

∂N5

∂𝜉
 =   (−1 + ɳ) ,  

∂N6

∂𝜉
 =   

(1−ɳ2) 

2
 

∂N7

∂𝜉
 =  −𝜉(1 + ɳ) ,  

∂N8

∂𝜉
 =  

(−1+ɳ2) 

2
      (9) 

 

The moment of inertia of the transformed rectangular section and the transformed circular section is given by the following 

equations respectively according to [11] 

IR = ∑ ∫ ∫ (𝑁𝑧𝑒)
21

−1

1

−1

2

𝑒=1
|𝐽𝑒|dɳ d𝜉          (10) 

IC = ∑ ∫ ∫ (𝑁𝑦𝑒)
21

−1

1

−1

2

𝑒=1
|𝐽𝑒|dɳ d𝜉          (11) 

Where  

N = Shape function 

ye = y coordinate of the nodal point of the physical domain 

ze = z coordinate of the nodal point of the physical domain 

|𝐽𝑒|= the determinant of the Jacobian matrix  
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Equations (10) and (11) after some substitution, simplifications and rearrangements leads to 

𝐼𝑅 = ∑ ∫ ∫

(

 
 
 
 
 
 

[𝑁1   𝑁2    𝑁3    𝑁4   𝑁5     𝑁6   𝑁7    𝑁8    𝑁9   ] 

[
 
 
 
 
 
 
 
 
𝑧1

𝑧2

𝑧3

𝑧4

𝑧5

𝑧6

𝑧7

𝑧8

𝑧9]
 
 
 
 
 
 
 
 

  

)

 
 
 
 
 
 

2

1

−1

1

−1

2

𝑒=1

𝐽11 𝐽22 − 𝐽12 𝐽21 dη d𝜉      (12) 

𝐼𝐶 = ∑ ∫ ∫

(

 
 
 
 
 

[𝑁1   𝑁2   𝑁3  𝑁4  𝑁5  𝑁6  𝑁7  𝑁8] 

[
 
 
 
 
 
 
 
𝑦1

𝑦2

𝑦3

𝑦4

𝑦5

𝑦6

𝑦7

𝑦8]
 
 
 
 
 
 
 

  

)

 
 
 
 
 

2

1

−1

1

−1

2

𝑒=1

𝐽11 𝐽22 − 𝐽12 𝐽21 dη d𝜉        (13) 

 𝐼𝑅 =
𝑏𝑑3

12
  

 𝐼𝐶 =
𝜋𝑅4

3.9275
 

The force–displacement or stiffness characteristics of a beam element is mathematically expressed as [12] 

[k] {δ} e = {P} e                         (14) 

        

Where  

[k] = beam element stiffness matrix 

{δ} e = nodal displacement vector 

{P} e = nodal force vector 

 

[13] Derived the beam stiffness matrix based on Euler-Bernoulli’s beam theory considering beam deformations only as 

 [k] = 
EI

𝐿3  [

12 6𝐿 −12 6𝐿
6𝐿 4𝐿2 −6𝐿 2𝐿2

−12 −6𝐿 12 −6𝐿
6𝐿 2𝐿2 −6𝐿 4𝐿2

]                    (15) 

 

Where L = the span of the beam 

Equation (14) can be rewritten as 

{δ} e = {P} e   [k]-1                    (16) 

 

Equations (16) after some substitution, simplifications and rearrangements leads to 

{𝛿}𝑒 = {P}𝑒  (
E(𝐼𝑅−𝐼𝐶 )

𝐿3   [

12 6𝐿 −12 6𝐿
6𝐿 4𝐿2 −6𝐿 2𝐿2

−12 −6𝐿 12 −6𝐿
6𝐿 2𝐿2 −6𝐿 4𝐿2

])

−1

                            (17) 

 

3.2 Analytical Load-deflection equation 

The following formulas for a singly reinforced uniform rectangular section under pure bending have been obtained 

theoretically. When a constant bending moment (zero shearing force) acts on a length of a beam, pure bending occurs [14]. 

For the solid rectangular section, the moment of inertia is given by  

𝐼𝑅𝑇 =
𝑏𝑑3

12
               (18)          

Where 

b = width of the section 

d=depth of the section 
 

For the circular-hollow section, the moment of inertia is given by  

𝐼𝐶𝑇 =
𝜋𝑅4

4
                       (19) 
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Where 

R = Radius of the central hollow core. 

For the circular-hollow rectangular sections, the moment of inertia is given by  

I = 
𝑏𝑑3

12
 - 

𝜋𝑅4

4
               (20) 

Theoretically, the deflections of the beams have been calculated using the empirical formula 

𝛿 = 
𝑃𝐿3

48𝐸𝐼
                    (21) 

Equation (21) by substitution of known values leads to 

δ =
𝑃𝐿3

48𝐸(
  bh3

12
−

ΠR4

4
)
                       (22) 

 

4.0 Results and Discussions 

The results are presented in figure 4.1, figure 4.2, figure 4.3, figure 4.4, figure 4.5, and figure 4.6. A plot of the failure load 

against hollow core diameter shown in figure 4.1 and figure 4.2, reveal that the ultimate load increased as the diameter of the 

hollow core increased up to 75mm, beyond which the ultimate load dropped for Type 2 Beam. A plot of the deflection against 

hollow core diameter shown in figure 4.3 and figure 4.4, reveal that the deflection increased as the diameter of the hollow 

core increased up to 30mm, beyond which the deflection dropped for all Beam type. A plot of the moment of inertia against 

the hollow core diameter shown in figure 4.5 and figure 4.6 reveal that the moment of inertia increased as the diameter of the 

hollow core increased. A very good agreement between numerical and analytical results is obtained. The flexural behavior 

of the hollow-cored beams for the numerical and analytical approach agreed with that of the flexural behavior investigated 

by [8] who experimentally and analytically investigated the flexural characteristics of Reinforced Hollow-Cored concrete 

beams point loaded at mid-span using the Moment of Inertia theory.  
 

Table 4.1: Cross section of the Beam types [7] 

  Type 1 Beam Type 2 Beam Type 3 Beam   

Diameter of 

Hole 

Width, b 

(mm) 

Depth, d 

(mm) 

Width, b 

(mm) 

Depth, d 

(mm) 

Width, b 

(mm) 

Depth, d 

(mm) 

Length, L 

(mm) 

0 150 150 150 150 150 150 750 

30 150 155 155 150 152 152 750 

60 150 169 169 150 159 159 750 

75 150 179 179 150 164 164 750 

108 150 211 211 150 178 178 750 
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5.0 Conclusion 

The following conclusions have been made from the study; the moment of inertia of rectangular concrete beam is increased 

by the introduction of a longitudinal HC for constant width and varied depths, varied width and constant depth, and varied 

width and varied depth. As the hole diameter increased beyond 30mm, the deflection reduced. Type 1 Beam performed best. 

Therefore the flexural performance of a Rectangular beam is improved by the introduction of a longitudinal circular hollow 

core with constant width and varied depth. 
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