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Abstract 

Age replacement policy is optimal among all reasonable replacement policies. 

The optimal replacement time of a series configuration is shorter when 

compared to other configurations. As the series system is having the shortest 

optimal replacement time among other multi-component system, this paper 

looks for reasonable ways to extend the optimal replacement time of a multi-

component systems. The paper considered six series configuration, such that 

the system is subjected to two types of failures, which are type I and II failures. 

This paper constructed age replacement model based on standard age 

replacement policy (SARP) for a series system. Furthermore, some two 

additional age replacement model are also constructed under some proposed 

policies, which are policy A and policy B. Finally, a numerical example is given 

for simple illustration of the models constructed under SARP, policy A and 

policy B.  
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1. Introduction 

The importance of reliability has been increasing greatly with the innovation of recent technology. The theory has been 

actually applied to industrial, electronics, computer, information and communication engineering. Many researchers have 

investigated statistically and stochastically complex phenomena of some real systems, so as to improve their reliability. Most 

systems deteriorate and subsequently fail due to age and usage. Such failures have negative effect on revenue, production of 

defective items and causes delay in customer services. To reduce the incidences of system failures, management of 

organizations is always interested with implementing an appropriate preventive replacement policy for normal system 

operation. For these reasons, many researchers developed several optimal replacement policies for reducing unnecessary high 

operating costs.  

In [1], a discounted replacement model for a unit subjected to two types of failures (type I and type II failures) was presented, 

such that, if the failure is of type 1, the system is minimally repaired, while type II is an unrepairable failure. Furthermore, 

for a system subjected to two types of failures, [2] considered a system which suffers one of two types of failures, such that 

the system is replaced at a planned time T, at a random working time, or at the first type-II failure, whichever occurs first. In 

[3], an optimal replacement policy for degenerative system under two types of failures was discussed. In [4], an improved 

algorithm for obtaining optimal repair/replacement policy for a system with general repairs was introduced. In [5], some 

properties of the standard age replacement model was explored and discussed. In [6], optimal replacement policy for a 

repairable system with multiple vacation and imperfect coverage was studied. In [7], a discrete replacement cost model is 

constructed for a unit, because sometimes a unit cannot be replaced at exact optimum replacement time. In [8], a replacement 

cost model for a system with vital and non-vital parts is constructed. In [9], integrated bivariate replacement model with 

warranty was studied. In [10], an age replacement model involving minimal repair was developed, such that, the cost of  
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minimal repair and the cost of unplanned replacement depends on time. In [11], a cold standby repairable system with two 

different components and one repairman who can take multiple vacations was presented. In [12], two parallel units in which 

both units operate simultaneously was considered, such that, the system is subjected to two types of failures. In [13], the 

replacement cost model of [1] was modified by introducing random working time Y. In [14], a replacement schedule for non-

repairable safety-related systems with multiple components was studied. In [15], continuous scheduled and discrete scheduled 

replacement times was compared.  

This research paper come up with some replacement cost models for a series system under SARP, policy A and policy B. 

The aim of this paper is to investigate which among the three replacement policies is better for a series system. The scope of 

this research covers the age replacement model with minimal repair. This paper is organized in five sections. The present 

section described the introductory part. Section 2 contained the notations, description of the system, methodology and the 

proposed replacement cost models. Section 3 presents the proposed replacement model. Section 3 presents a numerical 

example and the results obtained. Section 4 contains the discussion of the results obtained. Finally, section 5 presents the 

conclusion. 

2. Formulation of the Proposed Replacement Cost Models 

This section presents a proposed replacement cost model for a series system under standard age replacement policy (SARP) 

based on some assumptions. Furthermore, this section also presents another two replacement cost models under some 

proposed replacement policies, which are policy A and policy B. 

 

2.1  Some Basic Notations 

1. 𝑟𝑖(𝑡): Type I failure rate of component 𝐴𝑖, for 𝑖 = 1,2,3,4,5,6 . 

2. 𝑟𝑖
∗(𝑡): Type II failure rate of component 𝐴𝑖 , for 𝑖 = 1,2,3,4,5,6 . 

3. 𝑅𝑖
∗(𝑡): Reliability function of type II failure for component 𝐴𝑖, for 𝑖 = 1,2,3,45,6. 

4. 𝑆𝐴𝑅𝑃: Standard age replacement policy 

5. 𝑅𝑆
∗(𝑡): Reliability function of type II failure of the system  

6. 𝐶𝑆(𝑇): Expected cost rate of the system under SARP. 

7. 𝐶𝐴(𝑇): Expected cost rate of the system under policy A. 

8. 𝐶𝐵(𝑇): Expected cost rate of the system under policy B. 

9. 𝑇∗: Optimal replacement time of the system under SARP. 

10. 𝑇𝐴
∗: Optimal replacement time of the system under policy A. 

11. 𝑇𝐵
∗: Optimal replacement time of the system under policy B. 

12. 𝐶𝑖𝑟: Cost of unplanned replacement of failed 𝐴𝑖  due to type II failure, for 𝑖 = 1, 2, 3, 4, 5, 6. 
13. 𝐶𝑖𝑚: Cost of minimal repair of failed 𝐴𝑖 due to type II failure, for 𝑖 = 1, 2, 3, 4, 5, 6. 
14. 𝐶𝑠𝑝: Cost of planned replacement of the system at planned replacement time T. 

15. 𝐶𝑠𝑟: Cost of un-planned replacement of the system due to type II failure. 

2.2 System Description  

Consider six components 𝐴1, 𝐴2, 𝐴3,  𝐴4, 𝐴5 and 𝐴6, arranged in series configuration to form a system, such that all the six 

components are subjected to two independent failures, which are type I and type II failures. Type I failure is a degraded 

failure mode, which occurs due to time and usage. While type II failure is an unrepairable failure, for which a unit fails 

suddenly and completely. Since the two failures (type I and II) are independent, therefore the failure rates for both type I and 

II failures are also independent. As mentioned above that each component is subjected to type I and II failures (which are 

independent), then the system is also subjected to type I and II failures. Therefore, if any of the four components fails due to 

type I failure, then the system fails due to type I failure, while if any of the four components fails due to type II failure, then 

the system fails due to type II failure. In this regard, if system fails due to type I failure, the system is minimally repaired and 

allow the system to continue operating from where it stopped. While if the system fails due to type II failure (non- repairable 

failure), the whole system is replace completely with new one. Figure 1 below is the diagram of the system. 

 

 

 
Figure 1. Structure of the series system 
 

2.3  Assumptions of the System Under SARP 

1. If the system fails due to type I failure, then the system is minimally repaired. 

2. If the system fails due to type II failure, then the system is completely replaced with new one.  

3. The replacement and repair time of the failed system is negligible. 
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4.  

5. Both the two failures for the six components arrives according to a non-homogeneous Poisson process. 

6. Rate of type II failure follows the order: 𝑟1
∗(𝑡) > 𝑟3

∗(𝑡) > 𝑟5
∗(𝑡) > 𝑟2

∗(𝑡) > 𝑟4
∗(𝑡) > 𝑟6

∗(𝑡). 

7. Rate of type I failure follows the order: 𝑟1(𝑡) > 𝑟3(𝑡) > 𝑟5(𝑡) > 𝑟2(𝑡) > 𝑟4(𝑡) > 𝑟6(𝑡). 
8. The system is replaced at a planned time 𝑇(𝑇 > 0) after its installation or at type II failure, whichever arrives first.  

9. The cost of planned replacement of the system is less than the cost of un-planned replacement. 

10. All costs are positive numbers. 
 

2.4      Replacement Cost Model of the System Under SARP:  

Under SARP, the probability that system will be replaced at time 𝑇 before type II failure occurs is 

            𝑅∗(𝑇) = 𝑅1
∗(𝑇)𝑅2

∗(𝑇)𝑅3
∗(𝑇)𝑅4

∗(𝑇)𝑅5
∗(𝑇)𝑅6

∗(𝑇).                                  (1) 

The cost rate for system based on SARP is 

𝐶(𝑇) =     
𝐶𝑠𝑟(1−𝑅∗(𝑇))+𝐶𝑠𝑝𝑅∗(𝑇)+∫ 𝐾(𝑡)𝑅∗(𝑡)𝑑𝑡

𝑇
0

∫ 𝑅𝑠
∗(𝑡)𝑑𝑡

𝑇
0

,                                     (2) 

where 

 𝐾(𝑡) = 𝐶1𝑚𝑟1(𝑡) + 𝐶2𝑚𝑟2(𝑡) + 𝐶3𝑚𝑟3(𝑡) + 𝐶4𝑚𝑟4(𝑡) + 𝐶5𝑚𝑟5(𝑡) + 𝐶6𝑚𝑟6(𝑡).  (3) 

 

2.5 Replacement Cost Model of the System Under Policy A:  

Policy A: under policy A, the system is replace completely with new one when any of the components 𝐴1, 𝐴3 or 𝐴5 fails due 

to type II failure. But when any of the components 𝐴2, 𝐴4 or 𝐴6 fails due to type II failure, the failed component is replace 

completely with new one and allow the system to continue operating from where it stopped. One should not forget that when 

any among the six components fails due to type I failure, the failed component (due to type I failure) undergo only minimal 

repair and allow the system to continue operating from where it stopped .  

Under policy A, the probability that the system will be replaced at time T before type II failure occurs is 

𝑅𝐴
∗(𝑇) = 𝑅1

∗(𝑇)𝑅3
∗(𝑇)𝑅5

∗(𝑇).                                                 (4) 

The cost rate for system under policy A is  

 

𝐶𝐴(𝑇) =
    𝐶𝑠𝑟(1−𝑅𝐴

∗ (𝑇))+𝐶𝑠𝑝𝑅𝐴
∗ (𝑇)+∫ 𝐾𝐴(𝑡)𝑅𝐴

∗ (𝑡)𝑑𝑡
𝑇

0

∫ 𝑅𝐴
∗ (𝑡)𝑑𝑡

𝑇
0

 ,                                   (5) 

where 

𝐾𝐴(𝑡) = 𝐶2𝑟𝑟2
∗(𝑡) + 𝐶4𝑟𝑟4

∗(𝑡) + 𝐶6𝑟𝑟6
∗(𝑡) + 𝐶2𝑚𝑟2(𝑡) + 𝐶4𝑚𝑟4(𝑡) + 𝐶6𝑚𝑟6(𝑡) + 𝐶1𝑚𝑟1(𝑡) 

               +𝐶3𝑚𝑟3(𝑡) + 𝐶5𝑚𝑟5(𝑡).                                                                             (6) 

 

2.6 Replacement Cost Model of the System Under Policy B:  

Policy B: under policy B, the system is replace completely with new one when any of the components 𝐴2, 𝐴4 or 𝐴6 fails due 

to type II failure. But when any of the components 𝐴1, 𝐴3 or 𝐴5 fails due to type II failure, the failed component is replace 

completely with new one and allow the system to continue operating from where it stopped. One should not forget that when 

any among the six components fails due to type I failure, the failed component (due to type I failure) undergo only minimal 

repair and allow the system to continue operating from where it stopped .  

Under policy B, the probability that the system will be replaced at time T before type II failure occurs is: 

𝑅𝐵
∗ (𝑇) = 𝑅2

∗(𝑇)𝑅4
∗(𝑇)𝑅6

∗(𝑇).                                           (7) 

The cost rate for system under policy B is  

𝐶𝐵(𝑇) =
    𝐶𝑠𝑟(1−𝑅𝐵

∗ (𝑇))+𝐶𝑠𝑝𝑅𝐵
∗ (𝑇)+∫ 𝐾𝐵(𝑡)𝑅𝐵

∗ (𝑡)𝑑𝑡
𝑇

0

∫ 𝑅𝐵
∗ (𝑡)𝑑𝑡

𝑇
0

 ,                              (8)  

where 

𝐾𝐵(𝑡) = 𝐶1𝑟𝑟1
∗(𝑡) + 𝐶3𝑟𝑟3

∗(𝑡) + 𝐶5𝑟𝑟5
∗(𝑡) + 𝐶1𝑚𝑟1(𝑡) + 𝐶3𝑚𝑟3(𝑡) + 𝐶5𝑚𝑟5(𝑡) 

+𝐶2𝑚𝑟2(𝑡) + 𝐶4𝑚𝑟4(𝑡) + 𝐶6𝑚𝑟6(𝑡).                                              (9) 

 

3. Numerical Example 

Let the failure time of type I failure for the six components follows Weibull distribution: 

 

𝑟𝑖(𝑡) = 𝜆𝑖 ∝𝑖 𝑡∝𝑖−1, for 𝑖 = 1, 2, 3, 4, 5, 6,                                               (10) 

where ∝𝑖> 1 and  𝑡 ≥ 0 

Also, let the failure time of type II failure for the six components follows Weibull distribution: 

𝑟𝑖
∗(𝑡) = 𝜆𝑖

∗ ∝𝑖
∗ 𝑡∝𝑖

∗−1, for 𝑖 = 1, 2, 3, 4, 5, 6,                                          (11) 
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1.  

where ∝𝑖> 1and  𝑡 ≥ 0. 

Let the set of parameters and cost of repair/replacement be used throughout this particular example: 

1. ∝1= 4, ∝2= 2, ∝3= 3, ∝4= 3, ∝5= 4 and  ∝6= 2. 

2. 𝜆1 = 0.03, 𝜆2 = 0.03, 𝜆3 = 0.03, 𝜆4 = 0.001 , 𝜆5 = 0.001 and  𝜆6 = 0.001 . 
3. ∝1

∗= 4, ∝2
∗ = 3.5, ∝3

∗ = 4, ∝4
∗ = 3.5, ∝5

∗ = 4, and ∝6
∗ = 3.5 . 

4.  𝜆1
∗ = 0.00033,𝜆2

∗ = 0.00025 , 𝜆3
∗ = 0.00030, 𝜆4

∗ = 0.00023, 𝜆5
∗ = 0.00025  and       𝜆6

∗ = 0.0002 . 
5.  𝐶𝑠𝑟 = 72 and 𝐶𝑠𝑝 = 48. 

6.   𝐶𝑖𝑟 = 12  and  𝐶𝑖𝑚 = 0.3,  for 𝑖 = 1, 2 , 3, 4, 5, 6 . 
 

By substituting the parameters of type I and type II failures in equations (10) and (11), the following equations below are 

obtained as follows: 

𝑟1(𝑡) = 0.12𝑡3.                                                        (12) 

𝑟2(𝑡) = 0.06𝑡.                                                          (13) 

𝑟3(𝑡) = 0.09𝑡2.                                                        (14) 

𝑟4(𝑡) = 0.003𝑡2.                                                      (15) 

𝑟5(𝑡) = 0.004𝑡3.                                                      (16) 

𝑟6(𝑡) = 0.002𝑡.                                                        (17) 

𝑟1
∗(𝑡) = 0.00132𝑡3.                                                  (18) 

𝑟2
∗(𝑡) = 0.000875𝑡2.5.                                              (19) 

𝑟3
∗(𝑡) = 0.00012𝑡3.                                                   (20) 

𝑟4
∗(𝑡) = 0.000805𝑡2.5.                                               (21) 

𝑟5
∗(𝑡) = 0.001𝑡3.                                                        (22) 

𝑟6
∗(𝑡) = 0.0007𝑡2.5.                                                    (23) 

 

Table 1 below is obtain by substituting the assumed cost of replacement/repair and rates of type I and type II failures 

(equations (12) to (23) ) in the replacement cost rates of the system under SARP, policy A and policy B. Table 2 is obtained 

as the cost of the un-planned replacement (𝐶𝑠𝑟)  increases, and table 3 is obtained as the cost of the planned replacement (𝐶𝑠𝑝)  

decreases. 
 

Table 1. Results obtained from evaluating the replacement cost rates of system under on SARP, policy A and policy B. 

T 𝑪(𝑻) 𝑪𝑨(𝑻) 𝑪𝑩(𝑻) 

1 240.40 240.61 240.63 

2 122.70 122.56 122.23 

3 88.45 87.12 85.13 

4 78.94 75.39 69.44 

5 82.43 75.94 63.13 

6 91.21 83.13 61.96 

7 94.65 87.12 63.62 

8 96.84 89.14 66.21 

9 98.93 91.71 67.86 

10 100.99 95.99 69.20 
 

Table 2. The optimal replacement times of system under SARP, policy A and policy B as 𝐶𝑠𝑟 increases.  

          𝐶𝑠𝑟  𝑇∗ 𝑇𝐴
∗ 𝑇𝐵

∗ 

72 4 4 6 

90 4 4 5 

110 4 4 5 

130 3 4 5 

150 3 3 5 

170 3 3 4 

Table 3. The optimal replacement times of system under SARP, policy A and policy as 𝐶𝑠𝑝 decreases.  

𝐶𝑠𝑝 𝑇∗ 𝑇𝐴
∗ 𝑇𝐵

∗ 

48 4 4 6 

40 4 4 5 

30 4 4 5 

20 3 3 4 

10 3 3 4 
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1.  

 

 

Figure 2: The plot of 𝐶(𝑇), 𝐶𝐴(𝑇) and 𝐶𝐵(𝑇) against planned replacement time T. 
 

Observations from the results obtained above: 

1. From table 1, observe that, the optimal replacement time of the system under SARP, is 𝑇∗ = 4, which corresponded 

to 𝐶(𝑇∗) = 78.94 . 

2. From table 1, observe that, the optimal replacement time of the system under policy A, is 𝑇∗ = 4, which 

corresponded to 𝐶𝐴(𝑇∗) = 75.39 . 

3. From table 1, observe that, the optimal replacement time of the system under policy B, is 𝑇∗ = 6, which 

corresponded to 𝐶𝐵(𝑇∗) = 61.96 . 

4. From table 2, observe that, as 𝐶𝑠𝑟 increases, the optimal replacement time of the system  under SARP, policy A and 

policy B sometimes decreases. 

5. From table 2, observe that, as 𝐶𝑠𝑝 decreases, the optimal replacement time of the system  under SARP, policy A and 

policy B sometimes decreases. 

6. From figure 2, observe that, 𝐶𝐵(𝑇) is lower than 𝐶(𝑇) and 𝐶𝐴(𝑇). 
 

4. Discussion of  the results  

From the results obtained, it is observed that, preventive maintenance of the system under policy B have some advantages 

over SARP and policy B due to the following reasons: 

1. The optimal replacement time of the series system obtained under policy B, have higher optimal replacement time 

than that of SARP and policy A. Thus, this will reduce the chances of early replacement of operating systems at 

early stage. 

2. The cost of maintenance of the series system under policy B, is lower than that of SARP and policy A. 
 

5.  Conclusion  

This paper considered a series system with six components, such that the system is subjected to two types of failures, which 

are Type I and Type II failures. We constructed three replacement cost models under SARM, policy A and policy B for the 

series system. A numerical example is given, and the results obtained, showed that, policy B, have some advantages over 

SARM and policy A. Thus, the results can be beneficial to industrial plant managers, in selecting the best maintenance policies 

for maintaining their plants. 
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