A NOTE ON THE CONTINUOUS DUAL OF THE WEBB TOPOLOGY

Sunday Oluyemi

Odo-Koto, Aiyedaade, Ilorin South LGA, Kwara State, NIGERIA.

Abstract
 For a separated locally convex space $\left(V_{K}, \tau\right)$, the continuous dual of the Webb topology τ^{+}is the sequential dual of τ.

Keywords: The Webb topology, continuous dual, sequential dual, sequential neighbourhood of zero.
Subject Classification General Topology(GT), Topological Vector Spa- ces

1 LANGUAGE AND NOTATION

Our language and notation shall be standard as found in [1],[2], [3] and [4]. By \mathbb{N} we denote the natural numbers $1,2, \ldots \ldots$, and by $\mathbb{R}=$ $(\mathbb{R},+, \cdot, 0,1) / \mathfrak{C}=(\mathbb{C},+, \cdot, 0,1)$ the field of the real numbers/ complex numbers. The absolute value/ modulus $||/| |$ puts on \mathbb{R} / \mathbb{C} a metric $d_{| |} / d_{\|}$। whose topology is denoted $\tau_{\mathbb{R}} / \tau_{\mathbb{C}}$ and called the usual topology of $\mathbb{R} / \mathfrak{C}$ in this paper. So, $\left(\mathbb{R}, \tau_{\mathbb{R}}\right) /(\mathbb{C}$, $\tau \mathbb{E})$ is a topological space. By K we mean \mathbb{R} or \mathfrak{C}, and so $\tau \mathrm{K}=\tau \mathbb{R} / \tau \mathcal{E}$, and $((\mathrm{K},+, \cdot, 0,1))$, $\tau \kappa)=(\mathrm{K}, \tau \mathrm{\kappa})$ is a topological space.
Our vector space, $(V,+, \theta)_{\mathrm{K}}=V_{\mathrm{K}}$ is an additive Abelian group with scalar multiplication by K , and, an additive identity θ called its zero. A field is a vector space over itself, and so $K=(K,+, \cdot, 0,1)$ is a vector space over itself, of course, with 0 as its zero. So, the notation K_{K} is unambiguous, just as calling a linear map $f: V_{\mathrm{K}} \rightarrow \mathrm{K}$ from a vector space V_{K} into its field of scalars K , a linear functional, is in order. We assume familiarity with the elements of General Topology (GI) and Topological Vector Spaces (TVS). The reader is advised to read [1] before reading this paper. We signify by /// the end or absence of a proof.
Let (X, τ) be a topological space and $x_{0} \in X$. We denote by $\mathcal{N} x_{0}(\tau)$ the filter of neighbourhoods of x_{0}, also called the neighbourhood system of x_{0} (\equiv the collection of all the neighbourhoods of x_{0}).
FACT $1(\mathbf{G T})$ Let $\left(X_{1}, \tau_{1}\right)$ and $\left(X_{2}, \tau_{2}\right)$, be topological spaces and $f:\left(X_{1}, \tau_{1}\right) \rightarrow\left(X_{2}, \tau_{2}\right)$ a map. Then, if f is continuous it is sequentially continuous. ///
A map $f: V_{k} \rightarrow \mathrm{~K}$ of a vector space V_{K} into its field of scalars K is called a functional. Since $\mathrm{K}=\mathrm{K}_{\mathrm{k}}$ is also a vector space, if f is linear, it is called a linear functional.

FACT $2\left(\mathrm{~K}_{\kappa}, \tau \kappa\right)=\left(\mathrm{K}, \tau_{\kappa}\right)$ is a topological vector space. ///
Let $\left(V_{\kappa}, \tau\right)$ be a topological vector space. A continuous linear functional on $\left(V_{\kappa}, \tau\right)$ is a linear functional $f:\left(V_{\mathrm{K}}, \tau\right) \rightarrow\left(\mathrm{K}, \tau_{\mathrm{K}}\right)$ that is continuous. Similarly, a sequentially continuous linear functional on $\left(V_{K}, \tau\right)$ is a linear functional $f:\left(V_{K}, \tau\right) \rightarrow(\mathrm{K}, \tau \kappa)$ that is sequentially continuous. We shall denote by $\left(V_{\mathrm{K}}, \tau\right)^{\prime}$ the collection of all continuous linear functionals on $\left(V_{\mathrm{K}}, \tau\right)$, and call this collection the continuous dual of $\left(V_{\kappa}, \tau\right)$. Similarly, the collection $\left(V_{\kappa}, \tau\right)^{+}$, of all sequentially contin- uous linear functional on $\left(V_{\kappa}, \tau\right)$ is called the sequential dual of $\left(V_{K}, \tau\right)$.
Let (V_{K}, τ) be a separated (Hausdorff) locally convex space. The Webb topology, $\tau^{+}[1]$, associated with τ, is the finest locally convex topology on V_{K} having the same convergent sequences, with same limits, as τ. We call $\left(V_{K}, \tau\right)$ a Webb space if $\tau=\tau^{+}$.
Let $\left((V,+, \theta)_{\kappa}, \tau\right)=\left(V_{\kappa}, \tau\right)$ be a topological vector space, and $\left(x_{n}\right)_{n \in(\mathbb{N}, \leq)}$ a sequence in V_{K}. If $\left(x_{n}\right)_{n \in \mathbb{N}, \leq)} \tau$-converges to θ, we call it a null sequence. If $\varnothing \neq U \subseteq V_{K}$ and there exists $N \in \mathbb{N}$, such that $x_{n} \in U$ for all $n \geq N$, we say that $\left(x_{n}\right)_{n \in(\mathbb{N}, s)}$ is eventually in U. Let $\varnothing \neq W \subseteq$ $V_{\mathrm{K}} . W$ is called a sequential neighbourhood of zero [1] if it is balanced, convex absorbing and every null sequence is eventually in it.

FACT 3 [1] Let $\left((V,+, \theta)_{\kappa}, \tau\right)=\left(V_{K}, \tau\right)$ be a separated locally convex space. The sequential neighbourhoods of zero constitute a τ^{+}-local base of neighbourhoods of θ. ///
FACT 4 (TVS) Let $((V,+, \theta) \kappa, \tau)=\left(V_{K}, \tau\right)$ be a topological vector space, $U \in \mathcal{N}_{\theta}(\tau), \lambda \in \mathrm{K}, \lambda \neq 0$. Then, also, $\lambda U \in \mathcal{N}_{\theta}(\tau)$. ///
Definition 5 We remind the reader of the following definitions for use in the next section. Let V_{K} be a vector space and $\varnothing \neq A \subseteq V_{\mathrm{K}}$.

Corresponding Author: Sunday O., Email: soluyemi19@yahoo.com, Tel: +2348160865176
Journal of the Nigerian Association of Mathematical Physics Volume 62, (Oct. - Dec., 2021 Issue), 35 -36
(i) A is said to be absorbing if for every $x \in V_{\mathrm{K}}$ there exists $\varepsilon=\varepsilon(x)>0$ such that $\lambda x \in A$ for all $\lambda \in K,|\lambda| \leq \varepsilon$.
(ii) A is said to be balanced if $\lambda A \subseteq A$ for all $\lambda \in \mathrm{K},|\lambda| \leq 1$.
(iii) A is said to be convex if $\lambda A+\mu A \subseteq A$ for $\lambda, \mu \geq 0, \lambda+\mu=1$.

2 THE CONTINUOUS DUAL OF τ^{+}Let $\left(V_{\mathrm{K}}, \tau\right)$ be a separated locally convex space. We here describe $\left(V_{\mathrm{K}}, \tau^{+}\right)^{\prime}$.
Notation 1 Let V_{K} be a vector space and $p: V_{\mathrm{K}} \rightarrow \mathbb{R}$ a seminorm on V_{K}. Define
$p(\leq 1) \equiv\left\{x \in V_{\mathrm{K}}: p(x) \leq 1\right\}$.
FACT 2 (TVS) Let $\left((V,+, \theta)_{\kappa}, \tau\right)=\left(V_{\mathrm{K}}, \tau\right)$ be a topological vector space and $p:\left(V_{\mathrm{K}}, \tau\right) \rightarrow \mathbb{R}$ a seminorm.
Then,
p is continuous
\Leftrightarrow
$p(\leq 1) \in \mathcal{N}_{\theta}(\tau)$. ///
Notation 3 Let $\left((V,+, \theta)_{\kappa}, \tau\right)=\left(V_{K}, \tau\right)$ be a topological vector space and $f:\left(V_{K}, \tau\right) \rightarrow\left(K, \tau_{\kappa}\right)$ a linear functional on $\left(V_{\mathrm{K}}, \tau\right)$. Define $|f|(\leq 1) \equiv f^{-1}\left(\overline{B_{d| |}(0,1)}\right)$
where $\overline{B_{d| |}(0,1)}$ is the closed unit Ball of radius 1 cenrted on 0 . Note $\operatorname{In} \mathbb{R}, \overline{B_{d| |}(0,1)}=[-1,1]$.
THEOREM 4 Let $\left((V,+, \theta)_{\kappa}, \tau\right)=\left(V_{\mathrm{K}}, \tau\right)$ be a topological vector space and $f:\left(V_{\mathrm{K}}, \tau\right) \rightarrow\left(\left(\mathrm{K}_{\mathrm{K}},+, 0\right), \tau_{\mathrm{K}}\right)$ a linear functional. Then, f is continuous if and only if $\quad|f|(\leq 1) \in \mathcal{N}_{\theta}(\tau)$.
Proof The implication \Rightarrow is immediate, since $\overline{B_{d| |}(0,1)}$ is a $\tau \kappa$-neighbourhood of 0 , and so, f is continuous implies
$|f|(\leq 1)=f^{-1}\left(\overline{B_{d| |}(0,1)}\right) \in \mathcal{N}_{\theta}(\tau)$.
For the implication \Leftarrow first note that a τ_{κ}-local base of neighbourhoods of 0 is
$\left\{\varepsilon \overline{B_{d| |}(0,1)}: \varepsilon>0\right\}$
and that
$f^{-1}\left(\varepsilon \overline{B_{d| |}(0,1)}\right)=\varepsilon f^{-1}\left(\overline{B_{d| |}(0,1)}\right)=\varepsilon|f|(\leq 1)$.
By hypothesis, $|f|(\leq 1)) \in \mathcal{N}_{\theta}(\tau)$, and so by $1.4, \varepsilon|f|(\leq 1) \in \mathcal{N}_{\theta}(\tau)$. Hence, we have
$f^{-1}\left(\varepsilon \overline{B_{d| |}(0,1)}\right) \in \mathcal{N}_{\theta}(\tau)$ for every $\varepsilon>0$.
And from this follows that f is continuous. ///
Our advertised note on the continuous dual was stated and proved by John Webb in [4]. We here restate it and give the simple proof in detail with the help of the preceding THEOREM 4.[| The continuous dual of a vector topology uniquely determines it |].
The Note Let $\left((V,+, \theta)_{\kappa}, \tau\right)=\left(V_{K}, \tau\right)$ be a separated locally convex space. Then
$\left(V_{K}, \tau^{+}\right)^{\prime}=\left(V_{K}, \tau\right)^{+}$
Proof Let $f \in\left(V_{K}, \tau^{+}\right)^{\prime}$. By 1.1, therefore, $f \in\left(V_{\mathrm{K}}, \tau^{+}\right)^{+}$. Since τ^{+}and τ have same convergent sequences, it therefore follows that $f \in\left(V_{K}\right.$, $\tau)^{+}$. Thus, we have shown that
$\left(V_{K}, \tau^{+}\right)^{\prime} \subseteq\left(V_{K}, \tau\right)^{+}$
Hypothesis $f \in\left(V_{\mathrm{K}}, \tau\right)^{+}$.
CLAIM $f \in\left(V_{\mathrm{K}}, \tau^{+}\right)^{\prime}$.
Proof of CLAIM One checks almost trivially that $|f|(\leq 1)$ is a τ-seque- ntial neighbourhood of zero. And so by $1.3,|f|(\leq 1) \in \mathcal{N}_{\theta}\left(\tau^{+}\right)$. By
THEOREM 4, therefore, $f \in\left(V_{\mathrm{K}}, \tau^{+}\right)^{\prime}$. Thus, we have shown that
$\left(V_{K}, \tau\right)^{+} \subseteq\left(V_{K}, \tau^{+}\right)^{\prime}$
Clearly, (Δ^{1}) and (Δ^{2}) give (*). ///
COROLLARY 6 If $\left(V_{\mathrm{K}}, \tau\right)$ is a Webb space, then
$\left(V_{\mathrm{K}}, \tau\right)^{\prime}=\left(V_{\mathrm{K}}, \tau\right)^{+}$. $/ / /$

REFERENCES

[1] Sunday Oluyemi, The Webb topology, To appear, Journal of NAMP.
[2] John Horvath, Topological Vector Spaces and Distribution I, Addison Wesley 1966.
[3] Albert Wilansky, Modern Methods in Topological Vector Spaces, McGrawHill, 1978.
[4] John H. Webb, Sequential convergence in locally convex spaces, Proceedings Cambridge Philo Soc., 641 (1968) 341 - 364.

