Journal of the Nigerian Association of Mathematical Physics Volume 62, (October – Dec., 2021 Issue), pp29 – 34 © J. of NAMP

THE WEBB TOPOLOGY

Sunday Oluyemi

Odo-Koto, Aiyedaade, Ilorin South LGA, Kwara State, NIGERIA.

Abstract

(i) We show that a seminorm on a topological vector space is sequentially continuous if and only if it is sequentially continuous at the zero of the space.

(ii) We associate with a separated locally convex space ($V_{\mathcal{K}}, \tau$) a topology, τ^+ , which we call its Webb topology, (John H.Webb [4]) and give a sequential description of the seminorm generators of τ^+ ,.

Keywords: seminorm, sequentially continuous.

1. LANGUAGE AND NOTATION

Our language and notation shall be pretty standard as found, for example in the great classics [1] and [2].

 $\mathbb{N} = \{1, 2, \dots\}$ - the natural numbers,

 $\mathbb{R} = (\mathbb{R}, +, \cdot, 0, 1)$ – the real numbers,

 $\mathfrak{C} = (\mathfrak{C}, +, \cdot, 0, 1)$ – the complex numbers,

 $\mathbf{K} = (\mathbf{K}, +, \cdot, 0, 1) - = \mathbb{R} \text{ or } \mathfrak{C}.$

We assume familiarity with elements of *General Topology*(**GT**) and with the elements of *Topological Vector Spaces* (**TVS**) from which we freely use needed results. We signify by /// the end or absence of a proof.

Our vector space $(V, +, \theta)_{K} = V_{K}$ with zero θ shall have K as its field of scalars.

Let $X \neq \emptyset$. We write $(x_i)_{i \in (I, \leq)}$ for a *net in X based on the directed set* (I, \leq) , and so a *sequence in X* shall be written $(x_n)_{n \in (\mathbb{N}, \leq)}$.

Let (X, τ) be a topological space and $x_0 \in X$. By $Nx_0(\tau)$ we denote the collection of all the neighbourhoods of x_0 , called the *neighbourhood system of* x_0 , or , the *filter of neighbourhoods of* x_0 . By a *local base* of *neighbourhood* at x_0 is meant a subfamily $\mathcal{B}x_0(\tau)$ of $Nx_0(\tau)$ such that for every $V \in Nx_0(\tau)$ there exists $U \in \mathcal{B}x_0(\tau)$ such that $U \subseteq V$. A net $(x_i)_{i \in (I, \leq)}$ in (X, τ) , *converges* to x_0 if it is eventually in every $V \in Nx_0(\tau)$. And we write

 $x_i \xrightarrow{\tau} x_0.$

Let $((V, +, \theta))_{K}$, τ) = (V_{K}, τ) be a topological vector space. A net in (V_{K}, τ) converging to θ shall be called a *null net*.

FACT 1(TVS) Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ be a topological vector space, $a \in V_K$ and $(x_i)_{i \in (I, \leq)}$ a net in (V_K, τ) . Then,

(i) $x_i \xrightarrow{\tau} a \Rightarrow x_i - a \xrightarrow{\tau} \theta$

(ii)
$$x_i \xrightarrow{\tau} \theta \Rightarrow x_i + a \xrightarrow{\tau} a$$

(ii) $x_i \xrightarrow{\tau} a \Leftrightarrow x_i - a \xrightarrow{\tau} \theta. ///$

FACT 2 (TVS) Let V_K be a vector space, and $p: V_K \to \mathbb{R}$ a seminorm. Then, for $x, y \in V_K$, $|p(x) - p(y)| \le p(x - y)$. /// Let (X, τ) and (X', τ') be topological spaces and $x_0 \in X$. A map (function) $f: (X, \tau) \to (X', \tau')$ is said to be *continuous*

Corresponding Author: Sunday O., Email: soluyemi19@yahoo.com, Tel: +2348160865176

Sunday

J. of NAMP

 $((\tau, \tau')$ -continuous) at x_0 if for every $V \in N_{f(x_0)}(\tau')$ we have $f^{-1}(V) \in N_{x_0}(\tau)$. And f is said to be continuous $((\tau, \tau'))$ -continuous) if it is continuous at all $x \in X$.

FACT 3 (GT) Let (X, τ) and (X', τ') be topological spaces and $x_0 \in X$. The map $f : (X, \tau) \to (X', \tau')$ is continuous at x_0 if and only if for every net $(x_i)_{i \in (I, \leq)}$ in (X, τ) converging to x_0 , the net $(f(x_i)_{i \in (I, \leq)})$ in (X', τ') converges to $f(x_0)$. ///

FACT 4 (TVS) Let $((V, +, \theta)_{K}, \tau) = (V_{K}, \tau)$ and $((V', +, \theta')_{K}, \tau') = (V_{K'}, \tau')$ be topological vector spaces. A linear map f: $(V_{K}, \tau) \rightarrow (V_{K'}, \tau')$ is continuous if and only if it is continuous at θ . ///

FACT 5 (**TVS**) Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ be a topological vector space and $p : (V_K, \tau) \to \mathbb{R}$ a seminorm. Then, p is continuous if and only if p is continuous at θ . ///

Let (X, τ) and (X', τ') be topological spaces and $x_0 \in X$. A map $f : (X, \tau) \to (X', \tau')$ is said to be *sequentially continuous* at x_0 if for every sequence $(x_n)_{n \in (\mathbb{N}, \leq)}$ in (X, τ) converging to x_0 , the sequence $(f(x_n))_{n \in (\mathbb{N}, \leq)}$ in X', τ' converges to $f(x_0)$. The map f is simply called *sequentially continuous* if it is sequentially continuous at every $x \in X$. Immediate from FACT 3, therefore, is

FACT 6 (GT) Continuity implies sequential continuity Let (X, τ) and (X', τ') be topological spaces and $x_0 \in X$. and $f : (X, \tau) \rightarrow$

 (X', τ') a map. Then,

(i) *f* is continuous at x_0 implies it is sequentially continuous at x_0 ,

and

(ii) f is continuous implies it is sequentially continuous. ///

If $p : V_{K} \to \mathbb{R}$ is a seminorm on a vector space V_{K} , it induces a pseudometric

 $dp: V_{\mathrm{K}} \times V_{\mathrm{K}} \to \mathbb{R}$

 $(v, w) \mapsto p(v - w)$

on V_K. The pseudometric topology, τ_{dp} of dp, is called the topology of the seminorm p. We here simplify write τ_p for τ_{dp} .

FACT 7 (TVS) [3] τ_p is a vector topology, and so, (V_K, τ_p) is a topological vector space. ///

Example 8 Consider the real field $\mathbb{R} = (\mathbb{R}, +, \cdot, 0, 1)$, and the vector space $\mathbb{R}_{\mathbb{R}}$. The absolute value function

 $|\,|\colon \mathbb{R} \to \mathbb{R}$

 $x \mapsto |x|$

is a seminorm (indeed, a norm) on $\mathbb{R}_{\mathbb{R}}$. The topology $\tau_{||}$ is called \mathbb{R} 's *usual topology*. And we here denote it $\tau_{\mathbb{R}}$.

Observation 9 It is important to note, in what follows, that *sequential convergence in* $(\mathbb{R}_{\mathbb{R}}, \tau_{\mathbb{R}})$ is nothing other than the sequential conver- gence in \mathbb{R} of Elementary Real Analysis — $x_n \to x$ as $n \to \infty$ iff when ever given $\varepsilon > 0$, there exists a positive integer *N* such that $|x_n - x| < \varepsilon$ for all $n \ge N$.

FACT 10 (TVS) Let $p: V_{K} \to \mathbb{R}$ be a seminorm on the vector space V_{K} . Let $(x_{i})_{i \in (I, \leq)}$ be a net in V_{K} and $x \in V_{K}$. Then, $x_{i} \xrightarrow{\tau_{p}} x \Leftrightarrow p(x_{i} - x) \xrightarrow{\tau_{R}} 0$. ///

COROLLARY 11 Let $(x_n)_{n \in (\mathbb{N}, \leq)}$ be a sequence in \mathbb{R} and $x \in \mathbb{R}$. Then,

 $x_n \xrightarrow{\tau_{\mathbf{R}}} x \Leftrightarrow |x_n - x| \to 0 \text{ as } n \to \infty$.///

FACT 12 (GT) Let $X \neq \emptyset$ and τ_1 , τ_2 topologies on *X*. If

(i) $\tau_1 \le \tau_2$ and (ii) τ_1 is separated, then, τ_2 is also separated. ///

FACT 13 (TVS) Let V_{K} , be a vector space, and $\emptyset \neq A \subseteq V_{K}$. Then, A is absolutely convex if and only if $\lambda A + \mu A \subseteq A$ for $\lambda, \mu \in K, |\lambda| + |\mu| \le 1$.

The Webb Topology...

Sunday

.....(*)

In particular, if A is absolutely convex, then

$$\frac{1}{2}A + \frac{1}{2}A \subseteq A. ///$$

Definition 14 Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ be a separated locally convex space. Call, an absolutely convex absorbing $U \subseteq V_K$ in which every τ -null sequence eventually lies, a *sequential neighbourhood of zero*.

FACT 15 (TVS) Let $(V, +, \theta)_{K} = V_{K}$ be a vector space, and \mathcal{B} a filterbase in V_{K} of absolutely convex absorbing sets such that for every $V \in \mathcal{B}$ there exists $U \in \mathcal{B}$ such that $U + U \subseteq V$. Then, there exists a unique topology, τ , on V_{K} , making (V_{K}, τ) a locally convex space, and for which \mathcal{B} is a local base of balanced convex neighbourhood of θ . ///

FACT 16 (TVS) Let $(V, +, \theta)_{K} = V_{K}$ be a vector space, and suppose τ_{1} and τ_{2} are vector topologies on V_{K} . Then, $N_{\theta}(\tau_{1}) \subseteq N_{\theta}(\tau_{2}) \Rightarrow \tau_{1} \leq \tau_{2}$. ///

Let $X \neq \emptyset$, and suppose Φ is a collection of topologies on X. Let ζ be a topology on X such that

$$\zeta \ge \tau \text{ for all } \tau \in \Phi \qquad \qquad \dots \dots (\Delta)$$

There exists a coarsest among such ζ of (Δ); this coarsest is called the *supremum* of Φ and denoted $\lor \Phi$.

FACT 17(GT) Let $X \neq \emptyset$, Φ a collection of topologies on $X, x \in X$, and $(x_i)_{i \in (l, \leq)}$ a net in X. Then,

 $x_i \xrightarrow{V\Phi} x$ if and only if $x_i \xrightarrow{\tau} x$ for each $\tau \in \Phi$. ///

FACT 18 (TVS) Let V_{K} be a vector space, and Φ a collection of topologies on V_{K} .

(i) If Φ comprises vector topologies, then $\lor \Phi$ is a vector topology on $V_{\rm K}$.

(ii) If Φ comprises locally convex topologies, then $\lor \Phi$ is a locally convex topology. ///

Notation 19 Let $(V, +, \theta)_{K} = V_{K}$ be a vector space, and *p* a seminorm on V_{K} . Define

 $p(\leq 1) \equiv \{ \mathbf{v} \in V_{\mathrm{K}} : p(\mathbf{v}) \leq 1 \}.$

FACT 20 (TVS) Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ be a topological vector space, and $p : (V_K, \tau) \rightarrow (\mathbb{R}, \tau_{\mathbb{R}})$ a seminorm on V_K . Then, *p* is continuous if and only if $p(\leq 1) \in N_{\theta}(\tau)$. ///

Let V_{K} , be a vector space, and p a seminorm on V_{K} . In the paragraph preceding FACT 7, we denoted by τ_{p} the (psseudometric) topology of p. Let P be a collection of seminorms on V_{K} . We shall here denote by τ_{P} the supremum $\vee \{\tau_{p} : p \in P\}$.

FACT 21 (TVS) Let (V_K, τ) be a locally convex space. Then,

(i) There exists a collection *P* of seminorms on V_K such that $\tau = \tau_P$, and

(ii) In (i), *P* can be taken to be the collection of all τ -continous seminorms. ///

Language 22 The (i) of the above FACT 21 is usually phrased by saying that, a locally convex topology can be generated by a collection of seminorms. The (ii) is usually phrased thus: A locally convex topology τ can be generated by the collection P of all τ -continuous seminorms.

2 SEMINORM, SEQUENTIAL CONTINUITY Here we stare and establish the (i) of the *Abstract*. In what follow, in (Δ^1) . 0 is the zero of the reals $(\mathbb{R}, +, \cdot, 0, 1)$

THEOREM 1 Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ be a topological vector space, and $p : (V_K, \tau) \to (\mathbb{R}, \tau_{\mathbb{R}})$ a seminorm on (V_K, τ) . Then, *p* is sequentially continuous if and only if it is sequentially continuous at θ .

Proof The implication \Rightarrow is immediate from definition. For the implication \Leftarrow , we have the

Hypothesis p is sequentially continuous at θ .

We want to show that *p* is everywhere sequentially continuous. So:

Suppose $x_0 \in V_K$ and $(x_n)_{n \in (\mathbb{N}, \leq)}$ is a sequence in (V_K, τ) converging to x_0

That is,
$$x_n \xrightarrow{\tau} x_0$$
, and so by 1.1,

 $x_n - x_0 \xrightarrow{\tau} \theta.$

By the *Hypothesis*, therefore,

 $p(x_n - x_0) \xrightarrow{t_R} p(\theta) = 0$ (Δ^1) Journal of the Nigerian Association of Mathematical Physics Volume 62, (Oct. – Dec., 2021 Issue), 29–34

The Webb Topology...

Sunday

By 1.2, $|p(x_n) - p(x_0)| \le p(x_n - x_0)$ (Δ^2) Clearly, by 1.9, (Δ^1) and (Δ^2) give $p(x_n) \xrightarrow{t_R} p(x_0)$ (Δ^3) Clearly, (*) and (Δ^3) show that *p* is sequentially continuous at x_0 . ///

Note 2 The preceding THEOREM 1 is an analogue of the popular.

THEOREM Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ and $(V_{K'}, \tau')$ be topolo- gical vector spaces, and $f: (V_K, \tau) \rightarrow (V_{K'}, \tau')$ a linear map.

Then, *f* is (τ, τ') -continuous if and only if it is (τ, τ') -continuous at θ .///

Note 3 An application of THEOREM 1 appears in the proof of the forward implication \Rightarrow , of THEOREM 3.5.

3 THE WEBB TOPOLOGY Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ be a separated locally convex space, and \mathcal{B} the collection of all the sequential neighbourhoods of zero (1.14). One sees easily that \mathcal{B} is a filterbase in V_K , and that if $V \in \mathcal{B}$ there exists $U \in \mathcal{B}$ such that $U + U \subseteq V$. By 1.15, there exists a unique topology, τ^+ , making (V_K, τ^+) a locally convex space, and for which \mathcal{B} is a local base of neighbourhoods of θ .

Before stating our first theorem, we trivially note that

FACT 1 Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ be a separated locally convex space. Then,

(i) an absolutely convex $U \in N_{\theta}(\tau)$ is a sequential neighbourhood of zero, and

(ii) ($V_{\rm K}, \tau$) has a local base of neighbourhoods of θ with members sequential neighbourhoods of zero. ///

THEOREM 2 Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ be a separated locally convex space. Then, $\tau \le \tau^+$, and so τ^+ is also separated. **Proof** Denote by \mathcal{B} the τ -sequential neighbourhoods of zero. By FACT 1(ii), (V_K, τ) has a local base of neighbourhoods, $\mathcal{R}_{\theta}(\tau) \subseteq \mathcal{B} \subseteq N_{\theta}(\tau^+)$. Hence, $\mathcal{R}_{\theta}(\tau) \subseteq N_{\theta}(\tau^+)$, and since $N_{\theta}(\tau^+)$ is a filter, it follows that $N_{\theta}(\tau) \subseteq N_{\theta}(\tau^+)$.

By 1.16, therefore, $\tau \leq \tau^+$. That τ^+ is also separated is by 1.12. ///

THEOREM 3 Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ be a separated locally convex space. Then,

(i) τ and τ^{+} have same convergent sequences,

(ii) τ^+ is the finest locally convex topology on $V_{\rm K}$ having same convergent sequences with same limits, as τ .

Proof (i): That a τ^+ -convergent sequence is τ^- -convergent is immediate since $\tau \le \tau^+$. Now suppose the sequence $(x_n)_{n \in (\mathbb{N}, \le)}$ in V_K τ -converges to $x \in V_K$. That is,

 $x_n \xrightarrow{\tau} x$ (ρ^1) By 1.1., therefore, (ρ^1) gives $x_n - x \xrightarrow{\tau} \theta$ (ρ^2) By the definition of a sequential neighbourhood of zero it follows from (ρ^2) that τ^+

 $x_n - x \xrightarrow{\tau^+} \theta \qquad \dots (\rho^3)$ Clearly, 1.1 and (ρ^3) again give $x_n \xrightarrow{\tau^+} x$

The Webb Topology...

Sunday

J. of NAMP

(ii): I Let Φ be the collection of all the separated locally convex topologies on V_K having same convergent sequences, with same limits, as τ . Then, by now familiar arguments,

(i) $\lor \Phi$ is separated and locally convex,

(ii) $\lor \Phi$ has same convergent sequences, with same limits, as τ .

II Immediate from **I** is that

 $\tau^{\scriptscriptstyle +}\,\leq\,{\scriptstyle \lor}\Phi$

III Let $\mathcal{B}_{\theta}(\vee \Phi)$ be a local base of neighbourhoods of θ of $\vee \Phi$, and suppose

 $x_n \xrightarrow{\tau} \theta \qquad \dots (\Sigma)$ By I(ii), also,

 $x_n \rightarrow \theta \text{ in } \vee \Phi.$

Hence, if $U \in \mathcal{B}_{\theta}(\nabla \Phi)$, then, the sequence $(x_n)_{n \in (\mathbb{N}, \leq)}$ is eventually in U. By (Σ) , therefore, U is a τ -sequential neighbourhood of θ . Hence, we have shown that $\mathcal{B}_{\theta}(\nabla \Phi) \subseteq \mathcal{N}_{\theta}(\tau^+)$, from which follows that

 $N_{\theta}(\vee \Phi) \ \subseteq N_{\theta}(\tau^{\scriptscriptstyle +}) \qquad \qquad \dots . (\nabla)$

From (∇) and by now familiar arguments, follows that

 $\lor \Phi \leq \tau^{\scriptscriptstyle +} \qquad \qquad \ldots . (\nabla \nabla)$

IV Clearly, **II** and the preceding $(\nabla \nabla)$ give that τ^+ is the finest separated locally convex topology on V_K having same convergent sequences, with same limits, as τ . ///

Definition 4 We shall call a separated locally convex space (V_K , τ) a Webb space if $\tau = \tau^+$.

The Webb topology τ^+ . of a separated locally convex space (V_K , τ) has been extensively studied by John H. Webb in [4] and by Albert Wilansky in [2], and also by R.F. Snipes in [5] who calls what we here call a Webb space a *C*-sequential space.

THEOREM 5 Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ be a separated locally convex space, and Φ the collection of all separated locally convex topologies on V_K having same convergent sequences with same limits as τ . Then, $\tau^+ = \sqrt{\Phi}$.

Proof See the proof of THEOREM 3(II) above. ///

THEOREM 6 Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ be a separated locally convex space, and *p* a seminorm on V_K . Then, *p* is τ^+ -continuous if and only if it is τ -sequentially continuous.

Proof \Rightarrow : *Hypothesis* p is τ^+ -continuous.

By 1.6, therefore, p is τ^+ -sequentially continuous. Hence,

$$x_n \xrightarrow{\tau^+} \theta \Rightarrow p(x_n) \xrightarrow{\tau_R} p(\theta) \qquad \dots (\rho^5)$$

But by THEOREM 3(i)
$$\tau^+ \qquad \tau^+$$

 $x_n \xrightarrow{r} \theta \Rightarrow x_n \xrightarrow{r} \theta$, from which follows by (ρ^5) that

$$x_n \xrightarrow{\iota} \theta \Rightarrow p(x_n) \xrightarrow{\iota_R} p(\theta) = 0.$$

And so, p is τ -sequentially continuous at θ . By 2.1, therefore, p is τ -seq- uentially continuous.

 \Leftarrow : *Hypothesis p* is τ-sequentially continuous.

We want to show that *p* is τ^+ -continuous. Since by definition, the τ -sequential neighbourhoods of zero constitute a τ^+ -local base of neighbourhods of θ , it suffices by 1.20 to show that $p(\leq 1)$ is a τ -seq- uential neighbourhood of zero. So, suppose

$$x_n \xrightarrow{\tau} \theta$$
(ρ^6)
By *Hypothesis*, it follows from (ρ^6) that
 $p(x_n) \xrightarrow{\tau_R} p(\theta) = 0$

The	Webb	Topo	logv

Sunday

and so eventually $(x_n)_{n \in (\mathbb{N}, \leq)}$ shall lie in $p(\leq 1)$. One checks easily that $p(\leq 1)$ is absolutely convex and absorbing. /// A corollary of THEOREM 6 and 1.21(ii) is

THEOREM 7 Let (V_K, τ) be a separated locally convex space. Then, $\tau^+ = \lor \{\tau_p : p \text{ is a seminorm on } V_K, p \text{ is } \tau\text{-sequentially continuous}\}$. ///

A corollary of THEOREM 6 and THEOREM 7 is

THEOREM 8 A separated locally convex space is a Webb space if and only if the sequentially continuous seminorms are the continuous seminorms.///

Remark 9 We furnish elsewhere an application of THEOREM 8.

REFERENCES

- [1] John Horvath, *Topological Vector Spaces and Distributions I*, Addison-Wesley 1966.
- [2] Albert Wilansky, *Modern Methods in Topological Vector Spaces*, McGrawHill, 1976.
- [3] Sunday Oluyemi, *The pseudometric topology of a seminorm is a vector topology*, Journal of NAMP, Volume 12, (July, September, 2020 Issue) pp. 1- 10.
- [4] John H. Webb, *Sequential convergence in locally convex spaces*, Proceedings Cambridge Philo. Soc. 64(1968), 341 364.
- [5] R. F. Snipes, *C-sequential and S-bornological spaces*. Math. Ann. 209(1973), 273 283.