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Abstract 
 

An observation on the differentiability of the restriction, f | I, implying the 

differentiability of f, is noted, and applied in a proof of the Inverse 

Differentiation Theorem (The IDT). 
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1. LANGUAGE AND NOTATION 

Our language (summed up already in our keywords and phrases) and notation shall be pretty stan- dard as found in Bartle-

Sherbert [1]. We signify by /// the end or absence of a proof. 

Our concern in this paper is Elementary Real Analysis (ERA), and so, our functions are real functions  

 f    : A ℝ,   A  ℝ                      ……(RealFun) 

For ease of reference, and perhaps also fixing notation, we recall some needed results of ERA. 

 

THEOREM 1  Let    A  ℝ, a  A and   f  : A ℝ continuous at a. Then,  

(i)  If  f (a)  0, there exists   0 such that  

f (x)  0 for all x  AN(a). 

(ii)  If  f (a)  0, there exists   0 such that  

f (x)  0 for all x  AN(a). 

(iii)  If  f (a)  0, there exists   0 such that  

f (x)  0 for all x  AN(a). 

         and 

(iv)  If  f (a)  0, there exists   0 and   0 such that  

| f (x)|    for all x  AN(a). /// 

We give some interpretations of the preceding THEOREM 1 for A = I an interval. 

 

INTERP.  2  Let I  be an interval, a  I and  f  : I ℝ. Suppose  

(i)  a is a left/right endpoint of I, 

(ii)  f is continuous at a, 

      and  

(iii) f (a)  0. 

Then, 

()  There exists a subinterval J of I 

such that  

() a is a left/right endpoint of J, 

() f (x)  0 for al x  J. /// 
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INTERP.  3  Let I  be an interval, a  I and  f  : I  ℝ. Suppose  

(i)  a interior to  I, 

(ii)  f  continuous at a, 

and  

(iii) f (a)  0. 

Then, 

()  There exists a subinterval J of I 

such that  

() a is interior to J, 

and 

() f (x)  0 for al x  J. /// 

 

The Interval Theorem 4 Let  I  be an interval and  f  : I   ℝ.  If  f  : I   ℝ is continuous, then, the range f (I) of f, is an 

interval. /// 

Let I be an interval and  f  : I   ℝ. If  f  is increasing/  decreasing it is called a monotone function. Strictly increasing/ 

strictly decreasing  f  is called a strictly monotone function. Clearly, a strictly monotone function is an injective function. 

Let  I be an interval and f  : I   ℝ. If  f  is injective it is also called an invertible function, with the real function  

f – 1 :  f (I)  ℝ,  f(x) ↦x, x  I 

called its inverse.  

We have  

Continuity of the Inverse Theorem 5  Let I  be an interval, a  I and  f  : I   ℝ. 

(i)   If  f  is strictly increasing/strictly decreasing and continuous at a, then its inverse,  f – 1 :  f (I)   ℝ,  f (x)↦ x,  x  I  

is also strictly increasing/strictly decreasing and continuous at  f (a). /// 

    

2  THE OBSERVATION  Let I be an interval and a  I. The real function  f  : I   ℝ is said to be differentiable  at a if 

the limit 
a

ax
f *lim


(x) of the function  

f *a : I – {a}  ℝ, 

x ↦ 
ax

afxf



 )()(
 

exists. The limit 
a

ax
f *lim


(x), then denoted f (a), is called the derivative of  f at a . 

A popular theorem is  

 

THEOREM 1  Let I be an interval, J a subinterval of  I, a  J, and the real  function f  : I   ℝ differentiable at a. Then, 

the restriction,  f | J  :  J   ℝ, x ↦ f (x), x  J, of  f to J is also differentiable at a with derivative ( f | J)  (a) = f (a). /// 

Now to  

 

The Observation 2 Let  I be on interval, J a subinterval of  I,  a  J, and  f   :  I   ℝ. Then,  

(i)  a is a left/right endpoint of   

 I and  J, and  f | J is  

 differentiable at a        

  

(ii)  a is a left/right endpoint of  

        J, but interior to I and            may ⇏  f differentiable at a 

 f | J differentiable at a     

[| For an example, the absolute value function |  |ℝ : ℝ  ℝ, x ↦ |x|,  x  ℝ  with a = 0 |] 

 

(iii)  a interior to both  J and I  

         and  f | J differentiable at a  
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Proof   A moment’s thought. /// 

3 AN APPLICATION  We apply the preceding to give proof of the Inverse Differentiation Theorem  (The IDT). First, we 

state, for ease of reference Caratheodory’s characterization of differentiability.  

 

Caratheodory’s Theorem [1] 1   

Let I be an interval, a  I and f   :  I   ℝ. Then,  f  is differentiable at a if and only if there exists a function  : I    ℝ 

such that  

(i)   f(x) – f (a) = (x)(x – a) for all  x  I, 

and  

(ii)  is continuous at a.  

If this is the case, then (a) = f (a). /// 

 

Next, we state and establish  

The Inverse Differentiation Theorem 2   Let  I be an interval,  f  : I   ℝ strictly monotone and continuous, and  

f – 1 : f (I)  ℝ, f(x) ↦ x, x  I 

the strictly monotone and continuous inverse (1.5) of  f.  Let  a  I. Suppose  

(i)  f is differentiable at a, 

and 

(ii) f (a)   0. 

Then,  

(1)  f – 1 is differentiable at  f (a), and  

( f – 1)  ( f(a)) = 
)(

1

af 
, 

and 

(2) If  y   f (I) and f  is differentiable at f – 1(y) with  f  ( f – 1(y))  0, then  f – 1  is differentiable at y with derivative   

( f – 1)  ( y)  = 
))((

1
1 yff 

, 

Proof  Clearly, (2) is simply a restatement of (1). So, we establish (1). Assume  f  strictly increasing. By Caratheodory’s 

Theo- rem 1, there exists   :  I  ℝ such that  

()  f(x) – f(a) =  (x)(x – a) for all x  I, 

()   is continuous at a, 

and  

() (a) = f (a). 

By the hypothesis (ii),  therefore (a)  0, and so by the INTERP. 1.2 &1.3, there exists a subinterval J of I such that  

()  a  J, and (x)  0, for all x  J. 

Clearly, from () : 

If x  J, then  

f (x) – f (a) = f ( f – 1( f (x))) –  f ( f – 1( f (a))) = ( f – 1( f (x)))[ f – 1( f (x))    

 – f – 1( f (a))]. 

That is, if x  J, then  

        f (x) – f (a) = ( f – 1( f (x)))[ f – 1( f (x))  – f – 1( f (a))]           ……() 

        

     Of course by 1.5, f |J is strictly increasing, continuous and has the inverse (f | J) – 1  with domain the interval (1.4)  f (J)   

f (a). So, in (), we are moving forward and backward between J and f (J); and  f  and f – 1 there are actually f | J  and (f | J) – 

1. 

Now, from (), we have  

( f – 1( f (x)))  0 

for all x  J. 

Therefore, from (), we obtain: 

For x  J, 
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f – 1( f (x))  – f – 1( f (a)) = 
)))(((

1
1 xff 

( f(x) – f(a))                

= 








1

1

f
(f(x))( f(x) – f (a) 

 As noted earlier,  f – 1 [| = (f | J) – 1|] is a continuous function and so, the composition  

o f – 1  :  f (J)  ℝ 

is continuous at  f (a). Hence,   

1

1
f

 is also continuous at f(a))                     ……() 

By (), () and Caratheodory’s Theorem 1, therefore; 

  (f | J) – 1  is differentiable at f(a) with derivative  

 
1)|(

1
Jf

( f (a)) =  
)(

1

a
 

=  
)(

1

af   
That is,  

[| (f | J) – 1|]( f (a)) = 
)(

1

af 
                        ……() 

We know that the functions  

f – 1    : f ( I )  ℝ  

and 

( f | J) – 1  :  f ( J )    ℝ 

are such that  

(1) both are strictly increasing,  

(2)    f (J) is a subinterval of f ( I ), 

(3)   f (a)   f (J)   f ( I ),  

and 

(4) by (), ( f | J) – 1 is differentiable with derivative 
)(

1

af 

.It is clearly, immediate from (1), (2), (3), (4), 1.2, 1.3 and 

The Observation 2.2 that f – 1 is also differentiable at f(a) with derivative 
)(

1

af 
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