# ON SERIES DEFINITIONS OF THE EXPONENTIAL, COSINE AND SINE FUNCTIONS 

## Sunday Oluyemi

Odo-Koto, Aiyedaade, Ilorin South LGA, Kwara State, NIGERIA.


#### Abstract

There are many methods, in the literature, of defining the exponential, cosine and sine functions. One method is employing series to define them. We here furnish a clear, simple and unflustered proof of convergence of these series.


Keywords: Convergence Ratio Test, Alternating Series Test, the nth Term Test.

## 1. LANGUAGE AND NOTATION

Our language and notation shall be pretty standard, as found, for example in [1, 2, 3]. From a real sequence
$\left(a_{1}, a_{2}, \ldots \ldots\right) \quad . \ldots .$. (RealSeq)
we obtain a real series
$a_{1}+a_{2}+\ldots \ldots \ldots \ldots . . \quad$........... (RealSer)
We may, following [2], denote (RealSeq) by $\left(a_{n}\right)_{n=1}^{\infty}$. Note : Round brackets ( ). We denote (Real Ser) by $\sum_{n=1, \infty} a_{n}$ Hence, we shall often write
$\left(a_{n}\right)_{n=1}^{\infty}=\left(a_{1}, a_{2}, \ldots \ldots\right)$
and

$$
\sum_{n=1, \infty} a_{n}=a_{1}+a_{2}+
$$

$\qquad$
The notation $\mathbb{N}$ stands for the positive integers, while $\mathbb{R}$ denotes the real numbers. We signify by /// the end or absence of a proof.
In what follows by a sequence /series we mean a real sequence /a real series.
As advertised in the abstract, this paper promises a clear simple unclustered proof of convergence of the series employed in the definitions of the exponential, the cosine and the sine functions
Checking the correctness of proofs is a delicate matter

- Professor John Horvath of Maryland at College Park, U.S.A in a private communication.

If a student of Analysis defines Elementary Real Analysis as the study of the elementary functions, it is very unlikely that he/she shall be charged with heresy. And so, this author makes bold to say that unclustered proofs of convergence of the series defining the elementary functions cannot be overemphasized. The contribution of this paper is its offer of clarity of idea in the teaching of Elementary Real Analysis.
Next, we assemble, for ease of reference, some elementary tests for convergence, or otherwise, of a series.

## 2 CONVERGENCE TESTS

The nth Term Test 1 The series $a_{1}+a_{2}+$ $\qquad$ converges only if the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is null. ///

Corresponding Author: Sunday O., Email: soluyemi19@yahoo.com, Tel: +2348160865176
Journal of the Nigerian Association of Mathematical Physics Volume 62, (Oct. - Dec., 2021 Issue), 19 -24

The Ratio Test 2 Let

$$
\begin{equation*}
\sum_{n=1, \infty} a_{n} \tag{Ser}
\end{equation*}
$$

be a series of strictly positive terms. If $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=r<1$, then (Ser) converges. ///
Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of non-negative terms, that is $a_{n} \geq 0$ for all $n$. The series

$$
\sum_{n=1, \infty}(-1)^{n+1} a_{n}=a_{1}+\left(-a_{2}\right)+a_{3}+\left(-a_{4}\right)+
$$

$\qquad$
usually written
$a_{1}-a_{2}+a_{3}-a_{4}+$ $\qquad$
and the series
$\sum_{n=1, \infty}(-1)^{n} a_{n}=\left(-a_{1}\right)+a_{2}+\left(-a_{3}\right)+a_{4}+\left(-a_{5}\right)$ $\qquad$
usually written
$-a_{1}+a_{2}-a_{3}+a_{4}-a_{5}$ $\qquad$
are each called an alternating series. We have

Alternating Series Test 13 Suppose the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is such that
(i) $a_{n} \geq 0$ for all $n$,
(ii) $\left(a_{n}\right)_{n=1}^{\infty}$ is a decreasing sequence, and
(iii) $\left(a_{n}\right)_{n=1}^{\infty}$ is null.

Then, the series $\sum_{n=1, \infty}(-1)^{n+1} a_{n}$ converges. ///
We note
FACT 4 Suppose $\alpha \in \mathbb{R}$ and that the series $\sum_{n=1, \infty} a_{n}=a_{1}+a_{2}+$ $\qquad$ converges with sum $S$. Then
(i) The series $\sum_{n=1, \infty} \alpha a_{n}=\alpha a_{1}+\alpha a_{1}+\alpha a_{3}+$ $\qquad$ converges with sum $\alpha S$, and
(ii) The series $\alpha+\sum_{n=1, \infty} a_{n}=\alpha+a_{1}+a_{2}+a_{3}+\ldots \ldots \ldots$ converges with sum $\alpha+S$. ///

A sequence
$\left(a_{n}\right)_{n=1}^{\infty}=\left(a_{1}, a_{2}, \ldots \ldots\right)$
is called a decreasing sequence and said to decrease provided $a_{n+1} \leq a_{n}$ for all $n$. We shall say that (Seq) eventually decreases if there exists $N \in \mathbb{N}$ such that $a_{n+1} \leq a_{n}$ for all $n \geq N$. With this language we formulate a version of the Alternating Series Test.
Alternating Series Test 25 Suppose the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is such that
(i) $a_{n} \geq 0$ for all $n$,
(ii) $\left(a_{n}\right)_{n=1}^{\infty}$ eventually decreases and
(iii) $\left(a_{n}\right)_{n=1}^{\infty}$ is null.

Conclusion The alternating series $\sum_{n=1, \infty}(-1)^{n+1} a_{n}$ converges. ///
With FACT 4(i), we have from the above
The Alternating Series Test 36 Suppose the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is such that
(i) $a_{n} \geq 0$ for all $n$,

Journal of the Nigerian Association of Mathematical Physics Volume 62, (Oct. - Dec., 2021 Issue), 19 - 24
(ii) $\left(a_{n}\right)_{n=1}^{\infty}$ eventually decreases
and
(iii) $\left(a_{n}\right)_{n=1}^{\infty}$ is null.

Conclusion The alternating series $\sum_{n=1, \infty}(-1)^{n} a_{n}$ converges. ///
We now proceed to the task of this paper of furnishing clear, unclustered proofs of convergence of the series defining the elementary functions - the exponential, the cosine and the sine.

3 THE EXPONENTIAL SERIES The series
$\sum_{n=0, \infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots ., x \in \mathbb{R}$,
is called the exponential series. We examine (ExpSer) for convergence.
Case $\boldsymbol{x}=\mathbf{0}$ Clearly, if $x=0($ ExpSer $)$ trivially converges.
Case $\boldsymbol{x}>\mathbf{0}$ For $x>0$,
$\frac{x^{n+1} /(n+1)!}{x^{n} / n!}=\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}=\frac{x}{n+1}$.
And so, clearly,
$\lim _{n \rightarrow \infty} \frac{x^{n+1} /(n+1)!}{x^{n} / n!}=\lim _{n \rightarrow \infty} \frac{x}{n+1}=0$.
For $x>0$, the terms of (ExpSer) are non-negative and
$\lim _{n \rightarrow \infty} \frac{x^{n+1} /(n+1)!}{x^{n} / n!}=0<1$.
By the Ratio Test 2(2.2), therefore (ExpSer) converges. And this con- cludes the proof of the Case $x>0$.
Still suppose $x>0$. By The nth Term Test(2.1), and the preceding,
(i) the sequence $\left(\frac{x^{n}}{n!}\right)_{n=1}^{\infty}$ is null,
(ii) $\frac{x^{n}}{n!} \geq 0$ for all $n$,
and
(iii) $\frac{x^{n+1} /(n+1)!}{x^{n} / n!}=\frac{x}{n+1}$ is eventually less than 1 .

By the Alternating Series Test 2(2.5), the series

$$
\sum_{n=1, \infty}(-1)^{n+1} \frac{x^{n}}{n!}=\frac{x}{1!}-\frac{x^{2}}{2!}+\frac{x^{3}}{3!}-\frac{x^{4}}{4!}+
$$

$\qquad$
converges. We record this as
FACT 1 For $x>0$, the alternating series

$$
\sum_{n=1, \infty}(-1)^{n+1} \frac{x^{n}}{n!}=\frac{x}{1!}-\frac{x^{2}}{2!}+\frac{x^{3}}{3!}-\frac{x^{4}}{4!}+\ldots \ldots \ldots . \quad \ldots(\text { AltExpSer, } x>0)
$$

converges. ///
We now move to
Case $\boldsymbol{x}<\mathbf{0}$ Now suppose $y<0$, and so, $-y>0$. By FACT 1 above, therefore, the series
$\sum_{n=1, \infty}(-1)^{n+1} \frac{(-y)^{n}}{n!}$
Journal of the Nigerian Association of Mathematical Physics Volume 62, (Oct. - Dec., 2021 Issue), 19 -24
converges. That is, the series
$\sum_{n=1, \infty}(-1)^{n+1} \frac{((-1) y)^{n}}{n!}$
converges. That is, the series

$$
\sum_{n=1, \infty}(-1)^{n+1} \frac{(-1)^{n} y^{n}}{n!}
$$

converges. That is, the series

$$
\sum_{n=1, \infty}(-1)^{n+1+n} \frac{y^{n}}{n!}
$$

converges. That is, the series

$$
\sum_{n=1, \infty}(-1) \frac{y^{n}}{n!}
$$

By 2.4(i), it follows from this that
$\sum_{n=1, \infty}(-1) \frac{y^{n}}{n!}=\frac{y}{1!}+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\ldots$ $\qquad$
converges. By 2.4(ii), therefore,
$1+\frac{y}{1!}+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+$ $\qquad$
converges. By hypothesis, $y<0$, and we have thus concluded the proof of the Case $\boldsymbol{x}<\mathbf{0}$.
So, we have
THEOREM 2 The exponential series
$\sum_{n=0, \infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots \ldots$
Converges for all $x$. ///
4 THE COSINE SERIES Consider the series

$$
\begin{equation*}
\sum_{n=1, \infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}- \tag{Sercos}
\end{equation*}
$$

$\qquad$
Clearly, for $x=0$, (Ser cos) converges. Suppose $x \neq 0$. Clearly then
(i) $\frac{x^{2 n}}{(2 n)!} \geq 0$ for all $n$,
(ii) the sequence $\left(\frac{x^{2 n}}{(2 n)!}\right)_{n=1}^{\infty}$ eventually decreases, since
$\frac{x^{2(n+1)} /[2(n+1]!}{x^{2 n} /(2 n)!}=\frac{x^{2}}{(2 n+1)(2 n+2)}$
is eventually les than 1
and
(iii) the sequence $\left(\frac{x^{2 n}}{(2 n)!}\right)_{n=1}^{\infty}$ is null. For, it is a subsequence of $\left(\frac{x^{n}}{n!}\right)_{n=1}^{\infty}$ which is null by The nth Term Test(2.1) and 3.2.

Therefore, by 2.6, (Ser cos) converges, for $x \neq 0$. Hence by 2.4 (ii), the cosine series $1+(\operatorname{Ser} \cos )$ converges for all $x$. That is,
$\sum_{n=1, \infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\ldots \ldots \ldots$
converges. We record this as
THEOREM 1 The cosine series
$\sum_{n=0, \infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\ldots \ldots \ldots$
converges for all $x$. ///
5 THE SINE SERIES We show that the sine series
$\sum_{n=1, \infty}(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}=\frac{x}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+$
converges for all $x$.
Case $\boldsymbol{x}=\mathbf{0}$ If $x=0$, (Sin Ser) clearly converges.
Case $\boldsymbol{x}>0$ Let $x>0$. Then, by now familiar arguments, the sequence
$\left(\frac{x^{2 n-1}}{(2 n-1)!}\right)_{n=1}^{\infty}$
....... (Seq Sin)
(i) is a sequence of non-negative term,
(ii) eventually decreases,
and
(iii) is null.

Hence, by 2.6, the series $\sum_{n=1, \infty}(-1)^{n} \frac{x^{2 n-1}}{(2 n-1)!}$ converges. And so, by 2.4(i),
the series

$$
\begin{equation*}
\sum_{n=1, \infty}(-1)(-1)^{n} \frac{x^{2 n-1}}{(2 n-1)!} \tag{1}
\end{equation*}
$$

converges. By a Property of $\mathbb{R}\left[\mid\right.$ For $\left.a, b \in \mathbb{R}, b \neq 0, \left.\frac{a}{-b}=-\frac{a}{b} \right\rvert\,\right]$,
$\frac{1}{-1}=-\frac{1}{1}=-1$,
and so,
$(-1)^{n-1}=\frac{(-1)^{n}}{-1}=(-1)^{n} \cdot \frac{1}{-1}=(-1)^{n}(-1)$
for all $n$. That is,
$(-1)^{n-1}=(-1)^{n}(-1)=(-1)(-1)^{n}$ for all $n$
Clearly, from $\left(\sigma^{1}\right)$ and $\left(\sigma^{2}\right)$ follows that the series
$\sum_{n=1, \infty}(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}$
converges.
Case $\boldsymbol{x}<\mathbf{0}$ By now every familiar arguments!!
Thus, we have
THEOREM 1 The sine series

$$
\sum_{n=1, \infty}(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}=\frac{x}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+
$$

$\qquad$
converges for all $x$. ///
6 SERIES DEFINITIONS We now give the series definitions of the elementary functions advertised in the Abstract.
(i) The exponential(the exponential function) is the function
$E: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, x \in \mathbb{R}$.
(ii) The cosine (the cosine function) is the function
$\cos : \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, x \in \mathbb{R}$.
(iii) The sine (the sine function) is the function
$\sin : \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}, x \in \mathbb{R}$.

## REFERENCES

[1] Adegoke Olubummo, Introduction to Real Analysis, Heinemann, Nig. Ltd, Ibadan, 1978
[2] Karl Stromberg, INTRODUCTION TO CLASSICAL REAL ANALYSIS, Wadsworth Inc., Bellmot, California, 1981.
[3] R.G. Bartle and Donald R. Sherbert, INTRODUCTION TO REAL ANALYSIS, $3{ }^{\text {rd }}$ Edition, John Wiley \& Sons, Inc., New York, 2000.

